208 research outputs found

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves „perceptual‟ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the „partial‟ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    On the Design of Perceptual MPEG-Video Encryption Algorithms

    Get PDF
    In this paper, some existing perceptual encryption algorithms of MPEG videos are reviewed and some problems, especially security defects of two recently proposed MPEG-video perceptual encryption schemes, are pointed out. Then, a simpler and more effective design is suggested, which selectively encrypts fixed-length codewords (FLC) in MPEG-video bitstreams under the control of three perceptibility factors. The proposed design is actually an encryption configuration that can work with any stream cipher or block cipher. Compared with the previously-proposed schemes, the new design provides more useful features, such as strict size-preservation, on-the-fly encryption and multiple perceptibility, which make it possible to support more applications with different requirements. In addition, four different measures are suggested to provide better security against known/chosen-plaintext attacks.Comment: 10 pages, 5 figures, IEEEtran.cl

    Embedding Authentication and DistortionConcealment in Images – A Noisy Channel Perspective

    Get PDF
    In multimedia communication, compression of data is essential to improve transmission rate, and minimize storage space. At the same time, authentication of transmitted data is equally important to justify all these activities. The drawback of compression is that the compressed data are vulnerable to channel noise. In this paper, error concealment methodologies with ability of error detection and concealment are investigated for integration with image authentication in JPEG2000.The image authentication includes digital signature extraction and its diffusion as a watermark. To tackle noise, the error concealment technologies are modified to include edge information of the original image.This edge_image is transmitted along with JPEG2000 compressed image to determine corrupted coefficients and regions. The simulation results are conducted on test images for different values of bit error rate to judge confidence in noise reduction within the received images

    Image processing algorithms employing two-dimensional Karhunen-Loeve Transform

    Get PDF
    In the fields of image processing and pattern recognition there is an important problem of acquiring, gathering, storing and processing large volumes of data. The most frequently used solution making these data reduced is a compression, which in many cases leads also to the speeding-up further computations. One of the most frequently employed approaches is an image handling by means of Principal Component Analysis and Karhunen-Loeve Transform, which are well known statistical tools used in many areas of applied science. Their main property is the possibility of reducing the volume of data required for its optimal representation while preserving its specific characteristics.The paper presents selected image processing algorithms such as compression, scrambling (coding) and information embedding (steganography) and their realizations employing the twodimensional Karhunen-Loeve Transform (2DKLT), which is superior to the standard, onedimensional KLT since it represents images respecting their spatial properties. The principles of KLT and 2DKLT as well as sample implementations and experiments performed on the standard benchmark datasets are presented. The results show that the 2DKLT employed in the above applications gives obvious advantages in comparison to certain standard algorithms, such as DCT, FFT and wavelets

    Image processing algorithms employing two-dimensional Karhunen-Loeve Transform

    Get PDF
    In the fields of image processing and pattern recognition there is an important problem of acquiring, gathering, storing and processing large volumes of data. The most frequently used solution making these data reduced is a compression, which in many cases leads also to the speeding-up further computations. One of the most frequently employed approaches is an image handling by means of Principal Component Analysis and Karhunen-Loeve Transform, which are well known statistical tools used in many areas of applied science. Their main property is the possibility of reducing the volume of data required for its optimal representation while preserving its specific characteristics.The paper presents selected image processing algorithms such as compression, scrambling (coding) and information embedding (steganography) and their realizations employing the twodimensional Karhunen-Loeve Transform (2DKLT), which is superior to the standard, onedimensional KLT since it represents images respecting their spatial properties. The principles of KLT and 2DKLT as well as sample implementations and experiments performed on the standard benchmark datasets are presented. The results show that the 2DKLT employed in the above applications gives obvious advantages in comparison to certain standard algorithms, such as DCT, FFT and wavelets

    A Blind Multiple Watermarks based on Human Visual Characteristics

    Get PDF
    Digital watermarking is an alternative solution to prevent unauthorized duplication, distribution and breach of ownership right. This paper proposes a watermarking scheme for multiple watermarks embedding. The embedding of multiple watermarks use a block-based scheme based on human visual characteristics. A threshold is used to determine the watermark values by modifying first column of the orthogonal U matrix obtained from Singular Value Decomposition (SVD). The tradeoff between normalize cross-correlation and imperceptibility of watermarked image from quantization steps was used to achieve an optimal threshold value. The results show that our proposed multiple watermarks scheme exhibit robustness against signal processing attacks. The proposed scheme demonstrates that the watermark recovery from chrominance blue was resistant against different types of attacks

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value
    corecore