9,370 research outputs found

    Ordered greed

    Get PDF
    Scheduling problems are among the most challenging and realistic problems application of problem solving heuristics, such as genetic algorithms (GAs). The naive greedy algorithm for scheduling simply assigns, in turn, each item to be scheduled the best yet untaken position for that item. We investigate using a genetic algorithm to search the space of orderings for this greedy algorithm. That is, the GA individuals are permuations that determine the permutations that are the schedules, rather than the GA individuals directly being the schedules. We have experimented with the classical N Queens problem anda realistic soccer tournament scheduling problem, comparing the GA individual as the assignment with our greedy hybrid algorithm ( ordered greed ). Warnsdorff\u27s heuristic is introduced to modify blind greed with excellent results. We also introduce the use of signatures in our GAs to represent permutations. Signatures are easy to create and manipulate in crossover and mutation operations

    Optimal advertising campaign generation for multiple brands using MOGA

    Get PDF
    The paper proposes a new modified multiobjective genetic algorithm (MOGA) for the problem of optimal television (TV) advertising campaign generation for multiple brands. This NP-hard combinatorial optimization problem with numerous constraints is one of the key issues for an advertising agency when producing the optimal TV mediaplan. The classical approach to the solution of this problem is the greedy heuristic, which relies on the strength of the preceding commercial breaks when selecting the next break to add to the campaign. While the greedy heuristic is capable of generating only a group of solutions that are closely related in the objective space, the proposed modified MOGA produces a Pareto-optimal set of chromosomes that: 1) outperform the greedy heuristic and 2) let the mediaplanner choose from a variety of uniformly distributed tradeoff solutions. To achieve these results, the special problem-specific solution encoding, genetic operators, and original local optimization routine were developed for the algorithm. These techniques allow the algorithm to manipulate with only feasible individuals, thus, significantly improving its performance that is complicated by the problem constraints. The efficiency of the developed optimization method is verified using the real data sets from the Canadian advertising industry

    An efficient memetic, permutation-based evolutionary algorithm for real-world train timetabling

    Get PDF
    Train timetabling is a difficult and very tightly constrained combinatorial problem that deals with the construction of train schedules. We focus on the particular problem of local reconstruction of the schedule following a small perturbation, seeking minimisation of the total accumulated delay by adapting times of departure and arrival for each train and allocation of resources (tracks, routing nodes, etc.). We describe a permutation-based evolutionary algorithm that relies on a semi-greedy heuristic to gradually reconstruct the schedule by inserting trains one after the other following the permutation. This algorithm can be hybridised with ILOG commercial MIP programming tool CPLEX in a coarse-grained manner: the evolutionary part is used to quickly obtain a good but suboptimal solution and this intermediate solution is refined using CPLEX. Experimental results are presented on a large real-world case involving more than one million variables and 2 million constraints. Results are surprisingly good as the evolutionary algorithm, alone or hybridised, produces excellent solutions much faster than CPLEX alone

    Framework for sustainable TVET-Teacher Education Program in Malaysia Public Universities

    Get PDF
    Studies had stated that less attention was given to the education aspect, such as teaching and learning in planning for improving the TVET system. Due to the 21st Century context, the current paradigm of teaching for the TVET educators also has been reported to be fatal and need to be shifted. All these disadvantages reported hindering the country from achieving the 5th strategy in the Strategic Plan for Vocational Education Transformation to transform TVET system as a whole. Therefore, this study aims to develop a framework for sustainable TVET Teacher Education program in Malaysia. This study had adopted an Exploratory Sequential Mix-Method design, which involves a semi-structured interview (phase one) and survey method (phase two). Nine experts had involved in phase one chosen by using Purposive Sampling Technique. As in phase two, 118 TVET-TE program lecturers were selected as the survey sample chosen through random sampling method. After data analysis in phase one (thematic analysis) and phase two (Principal Component Analysis), eight domains and 22 elements have been identified for the framework for sustainable TVET-TE program in Malaysia. This framework was identified to embed the elements of 21st Century Education, thus filling the gap in this research. The research findings also indicate that the developed framework was unidimensional and valid for the development and research regarding TVET-TE program in Malaysia. Lastly, it is in the hope that this research can be a guide for the nations in producing a quality TVET teacher in the future

    Genetic algorithm based DSP multiprocessor scheduling

    Get PDF

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    A greedy heuristic approach for the project scheduling with labour allocation problem

    Get PDF
    Responding to the growing need of generating a robust project scheduling, in this article we present a greedy algorithm to generate the project baseline schedule. The robustness achieved by integrating two dimensions of the human resources flexibilities. The first is the operators’ polyvalence, i.e. each operator has one or more secondary skill(s) beside his principal one, his mastering level being characterized by a factor we call “efficiency”. The second refers to the working time modulation, i.e. the workers have a flexible time-table that may vary on a daily or weekly basis respecting annualized working strategy. Moreover, the activity processing time is a non-increasing function of the number of workforce allocated to create it, also of their heterogynous working efficiencies. This modelling approach has led to a nonlinear optimization model with mixed variables. We present: the problem under study, the greedy algorithm used to solve it, and then results in comparison with those of the genetic algorithms

    A Component Based Heuristic Search Method with Evolutionary Eliminations

    Get PDF
    Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. This paper presents a new component-based approach with evolutionary eliminations, for a nurse scheduling problem arising at a major UK hospital. The main idea behind this technique is to decompose a schedule into its components (i.e. the allocated shift pattern of each nurse), and then to implement two evolutionary elimination strategies mimicking natural selection and natural mutation process on these components respectively to iteratively deliver better schedules. The worthiness of all components in the schedule has to be continuously demonstrated in order for them to remain there. This demonstration employs an evaluation function which evaluates how well each component contributes towards the final objective. Two elimination steps are then applied: the first elimination eliminates a number of components that are deemed not worthy to stay in the current schedule; the second elimination may also throw out, with a low level of probability, some worthy components. The eliminated components are replenished with new ones using a set of constructive heuristics using local optimality criteria. Computational results using 52 data instances demonstrate the applicability of the proposed approach in solving real-world problems.Comment: 27 pages, 4 figure
    • 

    corecore