8 research outputs found

    Memory aware query scheduling in a database cluster

    Get PDF
    Query throughput is one of the primary optimization goals in interactive web-based information systems in order to achieve the performance necessary to serve large user communities. Queries in this application domain differ significantly from those in traditional database applications: they are of lower complexity and almost exclusively read-only. The architecture we propose here is specifically tailored to take advantage of the query characteristics. It is based on a large parallel shared-nothing database cluster where each node runs a separate server with a fully replicated copy of the database. A query is assigned and entirely executed on one single node avoiding network contention or synchronization effects. However, the actual key to enhanced throughput is a resource efficient scheduling of the arriving queries. We develop a simple and robust scheduling scheme that takes the currently memory resident data at each server into account and trades off memory re-use and execution time, reordering queries as necessary. Our experimental evaluation demonstrates the effectiveness when scaling the system beyond hundreds of nodes showing super-linear speedup

    Thinking Big in a Small World — Efficient Query Execution on Small-Scale SMPs

    Full text link
    Many techniques developed for parallel database systems were focused on large-scale, often prototypical, hardware platforms. Therefore, most results cannot easily be transfered to widely available workstation clusters such as multiprocessor workstations. In this paper we address exploitation of pipelining parallelism in query processing on small multiprocessor environments. We present DTE/R, a strategy for executing pipelining segments of arbitrary length by replicating the segment's operator. Therefore, DTE/R avoids static processor-to-operator assignment of conventional processing techniques. Consequently, DTE/R achieves automatic load-balancing and skew-handling. Furthermore, DTE/R outperforms conventional pipelining execution techniques substantially

    Pipelining in multi-query optimization

    Get PDF
    AbstractDatabase systems frequently have to execute a set of related queries, which share several common subexpressions. Multi-query optimization exploits this, by finding evaluation plans that share common results. Current approaches to multi-query optimization assume that common subexpressions are materialized. Significant performance benefits can be had if common subexpressions are pipelined to their uses, without being materialized. However, plans with pipelining may not always be realizable with limited buffer space, as we show. We present a general model for schedules with pipelining, and present a necessary and sufficient condition for determining validity of a schedule under our model. We show that finding a valid schedule with minimum cost is NP-hard. We present a greedy heuristic for finding good schedules. Finally, we present a performance study that shows the benefit of our algorithms on batches of queries from the TPCD benchmark

    Running stream-like programs on heterogeneous multi-core systems

    Get PDF
    All major semiconductor companies are now shipping multi-cores. Phones, PCs, laptops, and mobile internet devices will all require software that can make effective use of these cores. Writing high-performance parallel software is difficult, time-consuming and error prone, increasing both time-to-market and cost. Software outlives hardware; it typically takes longer to develop new software than hardware, and legacy software tends to survive for a long time, during which the number of cores per system will increase. Development and maintenance productivity will be improved if parallelism and technical details are managed by the machine, while the programmer reasons about the application as a whole. Parallel software should be written using domain-specific high-level languages or extensions. These languages reveal implicit parallelism, which would be obscured by a sequential language such as C. When memory allocation and program control are managed by the compiler, the program's structure and data layout can be safely and reliably modified by high-level compiler transformations. One important application domain contains so-called stream programs, which are structured as independent kernels interacting only through one-way channels, called streams. Stream programming is not applicable to all programs, but it arises naturally in audio and video encode and decode, 3D graphics, and digital signal processing. This representation enables high-level transformations, including kernel unrolling and kernel fusion. This thesis develops new compiler and run-time techniques for stream programming. The first part of the thesis is concerned with a statically scheduled stream compiler. It introduces a new static partitioning algorithm, which determines which kernels should be fused, in order to balance the loads on the processors and interconnects. A good partitioning algorithm is crucial if the compiler is to produce efficient code. The algorithm also takes account of downstream compiler passes---specifically software pipelining and buffer allocation---and it models the compiler's ability to fuse kernels. The latter is important because the compiler may not be able to fuse arbitrary collections of kernels. This thesis also introduces a static queue sizing algorithm. This algorithm is important when memory is distributed, especially when local stores are small. The algorithm takes account of latencies and variations in computation time, and is constrained by the sizes of the local memories. The second part of this thesis is concerned with dynamic scheduling of stream programs. First, it investigates the performance of known online, non-preemptive, non-clairvoyant dynamic schedulers. Second, it proposes two dynamic schedulers for stream programs. The first is specifically for one-dimensional stream programs. The second is more general: it does not need to be told the stream graph, but it has slightly larger overhead. This thesis also introduces some support tools related to stream programming. StarssCheck is a debugging tool, based on Valgrind, for the StarSs task-parallel programming language. It generates a warning whenever the program's behaviour contradicts a pragma annotation. Such behaviour could otherwise lead to exceptions or race conditions. StreamIt to OmpSs is a tool to convert a streaming program in the StreamIt language into a dynamically scheduled task based program using StarSs.Totes les empreses de semiconductors produeixen actualment multi-cores. Mòbils,PCs, portàtils, i dispositius mòbils d’Internet necessitaran programari quefaci servir eficientment aquests cores. Escriure programari paral·lel d’altrendiment és difícil, laboriós i propens a errors, incrementant tant el tempsde llançament al mercat com el cost. El programari té una vida més llarga queel maquinari; típicament pren més temps desenvolupar nou programi que noumaquinari, i el programari ja existent pot perdurar molt temps, durant el qualel nombre de cores dels sistemes incrementarà. La productivitat dedesenvolupament i manteniment millorarà si el paral·lelisme i els detallstècnics són gestionats per la màquina, mentre el programador raona sobre elconjunt de l’aplicació.El programari paral·lel hauria de ser escrit en llenguatges específics deldomini. Aquests llenguatges extrauen paral·lelisme implícit, el qual és ocultatper un llenguatge seqüencial com C. Quan l’assignació de memòria i lesestructures de control són gestionades pel compilador, l’estructura iorganització de dades del programi poden ser modificades de manera segura ifiable per les transformacions d’alt nivell del compilador.Un dels dominis de l’aplicació importants és el que consta dels programes destream; aquest programes són estructurats com a nuclis independents queinteractuen només a través de canals d’un sol sentit, anomenats streams. Laprogramació de streams no és aplicable a tots els programes, però sorgeix deforma natural en la codificació i descodificació d’àudio i vídeo, gràfics 3D, iprocessament de senyals digitals. Aquesta representació permet transformacionsd’alt nivell, fins i tot descomposició i fusió de nucli.Aquesta tesi desenvolupa noves tècniques de compilació i sistemes en tempsd’execució per a programació de streams. La primera part d’aquesta tesi esfocalitza amb un compilador de streams de planificació estàtica. Presenta unnou algorisme de partició estàtica, que determina quins nuclis han de serfusionats, per tal d’equilibrar la càrrega en els processadors i en lesinterconnexions. Un bon algorisme de particionat és fonamental per tal de queel compilador produeixi codi eficient. L’algorisme també té en compte elspassos de compilació subseqüents---específicament software pipelining il’arranjament de buffers---i modela la capacitat del compilador per fusionarnuclis. Aquesta tesi també presenta un algorisme estàtic de redimensionament de cues.Aquest algorisme és important quan la memòria és distribuïda, especialment quanles memòries locals són petites. L’algorisme té en compte latències ivariacions en els temps de càlcul, i considera el límit imposat per la mida deles memòries locals.La segona part d’aquesta tesi es centralitza en la planificació dinàmica deprogrames de streams. En primer lloc, investiga el rendiment dels planificadorsdinàmics online, non-preemptive i non-clairvoyant. En segon lloc, proposa dosplanificadors dinàmics per programes de stream. El primer és específicament pera programes de streams unidimensionals. El segon és més general: no necessitael graf de streams, però els overheads són una mica més grans.Aquesta tesi també presenta un conjunt d’eines de suport relacionades amb laprogramació de streams. StarssCheck és una eina de depuració, que és basa enValgrind, per StarSs, un llenguatge de programació paral·lela basat en tasques.Aquesta eina genera un avís cada vegada que el comportament del programa estàen contradicció amb una anotació pragma. Aquest comportament d’una altra manerapodria causar excepcions o situacions de competició. StreamIt to OmpSs és unaeina per convertir un programa de streams codificat en el llenguatge StreamIt aun programa de tasques en StarSs planificat de forma dinàmica.Postprint (published version

    Scheduling Problems in Parallel Query Optimization

    No full text
    We introduce a class of novel multiprocessor scheduling problems that arise in the optimization of SQL queries for parallel machines. These consist of scheduling a tree of interdependent communicating operators while exploiting both inter-operator and intra-operator parallelism. We develop algorithms for the specific problem of scheduling a Pipelined Operator Tree in which all operators run in parallel using inter-operator parallelism. Weights associated with nodes and edges represent respectively the cost of operators and communication. Communication cost is incurred only if adjacent operators are assigned different processors. The optimization problem is to assign operators to processors so as to minimize the maximum processor load. We develop two approximation algorithms for this NP-hard problem. The faster algorithm has a performance ratio of 3.56 while the slower algorithm has a ratio of 2.87. 1 Introduction Exploiting parallel execution [DG92, Val93] to speed up database querie..
    corecore