
A Case for Staged Database Systems

Stavros Harizopoulos

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

stavros@cs.cmu.edu

Anastassia Ailamaki

Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

natassa@cmu.edu

Abstract

Traditional database system architectures face a
rapidly evolving operating environment, where
millions of users store and access terabytes of
data. In order to cope with increasing demands for
performance, high-end DBMS employ parallel
processing techniques coupled with a plethora of
sophisticated features. However, the widely
adopted, work-centric, thread-parallel execution
model entails several shortcomings that limit
server performance when executing workloads
with changing requirements. Moreover, the mono-
lithic approach in DBMS software has lead to
complex and difficult to extend designs.

This paper introduces a staged design for high-per-
formance, evolvable DBMS that are easy to tune
and maintain. We propose to break the database
system into modules and to encapsulate them into
self-contained stages connected to each other
through queues. The staged, data-centric design
remedies the weaknesses of modern DBMS by
providing solutions at both a hardware and a soft-
ware engineering level.

1 Introduction

Advances in processor design, storage architectures and
communication networks, and the explosion of the Web,
have allowed storing and accessing terabytes of informa-
tion online. DBMS play a central role in today’s volatile
IT landscape. They are responsible for executing time-
critical operations and supporting an increasing base of
millions of users. To cope with these high demands mod-

ern database systems (a) use a work-centric multi-
threaded (or multi-process) execution model for parallel-
ism, and (b) employ a multitude of sophisticated tools for
server performance and usability. However, the tech-
niques for boosting performance and functionality also
introduce several hurdles.

The threaded execution model entails several short-
comings that limit performance under changing work-
loads. Uncoordinated memory references from concurrent
queries may cause poor utilization of the memory hierar-
chy. In addition, the complexity of modern DBMS poses
several software engineering problems such as difficulty
in introducing new functionality or in predicting system
performance. Furthermore, the monolithic approach in
designing and building database software helped cultivate
the view that “the database is the center of the world.”
Additional front/back-ends or mediators [Wie92] add to
the communication and CPU overhead.

Several database researchers have indicated the need
for a departure from traditional DBMS designs [Be+98]
[CW00][SZ+96] due to changes in the way people store
and access information online. Research [MDO94] has
shown that the ever-increasing processor/memory speed
gap [HP96] affects commercial database server perfor-
mance more than other engineering, scientific, or desktop
applications. Database workloads exhibit large instruction
footprints and tight data dependencies that reduce instruc-
tion-level parallelism and incur data and instruction trans-
fer delays [AD+99] [KP+98]. As future systems are
expected to have deeper memory hierarchies, a more
adaptive programming solution becomes necessary to
best utilize available hardware resources and sustain high
performance under massive concurrency.

This paper introduces the Staged Database System
design for high-performance, evolvable DBMS that are
easy to tune and maintain. We propose to break the
DBMS software into multiple modules and to encapsulate
them into self-contained stages connected to each other
through queues. Each stage exclusively owns data struc-
tures and sources, independently allocates hardware
resources, and makes its own scheduling decisions. This
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staged, data-centric approach improves current DBMS
designs by providing solutions (a) at the hardware level: it
optimally exploits the underlying memory hierarchy and
takes direct advantage of SMP systems, and (b) at a soft-
ware engineering level: it aims at a highly flexible, exten-
sible, easy to program, monitor, tune and evolve platform.
The paper’s contributions are threefold: (i) it provides an
analysis of design shortcomings in modern DBMS soft-
ware, (ii) it describes a novel database system design
along with our initial implementation efforts, and (iii) it
presents new research opportunities.

The rest of the paper is organized as follows. The
next section reviews related work both in the database
and the operating systems community. Section 3 dis-
cusses modern commercial DBMS problems that arise
from under-exploitation of memory resources and a com-
plex software design. Next, in Section 4 we present the
Staged Database System design along with a scheduling
trade-off analysis and our initial implementation effort.
Section 5 shows how the Staged Database System design
overcomes the problems of Section 3, and Section 6 sum-
marizes the paper’s contributions.

2 Related research efforts

In the past three decades of database research, several
new software designs have been proposed. One of the ear-
liest prototype relational database systems, INGRES
[SW+76], actually consisted of four “stages” (processes)
that enabled pipelining (the reason for breaking up the
DBMS software was main memory size limitations).
Staging was also known to improve CPU performance in
the mid-seventies [AWE]. This section discusses repre-
sentative pieces of work from a broad scope of research in
databases, operating systems, and computer architecture.

Parallel database systems [DG92][CHM95] exploit
the inherent parallelism in a relational query execution
plan and apply a dataflow approach for designing high-
performance, scalable systems. In the GAMMA database
machine project [De+90] each relational operator is
assigned to a process, and all processes work in parallel to
achieve either pipelined parallelism (operators work in
series by streaming their output to the input of the next
one), or partitioned parallelism (input data are partitioned
among multiple nodes and operators are split into many
independent ones working on a part of data). In extensible
DBMS [CH90], the goal was to facilitate adding and
combining components (e.g., new operator implementa-
tions). Both parallel and extensible database systems
employ a modular system design with several desirable
properties, but there is no notion of cache-related interfer-
ence across multiple concurrent queries.

Recent database research focuses on a data process-
ing model where input data arrives in multiple, continu-
ous, time-varying streams [BB+02]. The relational

operators are treated as parts of a chain where the sched-
uling objective is to minimize queue memory and
response times, while providing results at an acceptable
rate or sorted by importance [UF01]. Avnur et al. propose
eddies, a query processing mechanism that continuously
reorders pipelined operators in a query plan, on a tuple-
by-tuple basis, allowing the system to adapt to fluctua-
tions in computing resources, data characteristics, and
user preferences [AH00]. Operators run as independent
threads, using a central queue for scheduling. While the
aforementioned architectures optimize the execution
engine’s throughput by changing the invocation of rela-
tional operators, they do not exploit cache-related bene-
fits. For example, eddies may benefit by repeatedly
executing different queries at one operator, or by increas-
ing the tuple processing granularity (we discuss similar
trade-offs over the next sections).

Work in “cache-conscious” DBMS optimizes query
processing algorithms [SKN94], index manipulation
[CGM01][CLH00][GL01], and data placement schemes
[AD+01]. Such techniques improve the locality within
each request, but have limited effects on the locality
across requests. Context-switching across concurrent
queries is likely to destroy data and instruction locality in
the caches. For instance, when running workloads con-
sisting of multiple short transactions, most misses occur
due to conflicts between threads whose working sets
replace each other in the cache [JK99][RB+95].

Recently, OS research introduced the staged server
programming paradigm [LP02], that divides computation
into stages and schedules requests within each stage. The
CPU processes the entire stage queue while traversing the
stages going first forward and then backward. The authors
demonstrate that their approach improves the perfor-
mance of a simple web server and a publish-subscribe
server by reducing the frequency of cache misses in both
the application and operating system code. While the
experiments were successful, significant scheduling
trade-offs remain unsolved. For instance, it is not clear
under which circumstances a policy should delay a
request before the locality benefit disappears.

Thread scalability is limited when building highly
concurrent applications [Ous96][PDZ99]. Related work
suggests inexpensive implementations for context-switch-
ing [AB+91][BM98], and also proposes event-driven
architectures with limited thread usage, mainly for inter-
net services [PDZ99]. Welsh et al. propose a staged
event-driven architecture (SEDA) for deploying highly
concurrent internet services [WCB01]. SEDA decom-
poses an event-driven application into stages connected
by queues, thereby preventing resource overcommitment
when demand exceeds service capacity. SEDA does not
optimize for memory hierarchy performance, which is the
primary bottleneck for data-intensive applications.



Finally, computer architecture research addresses the
ever-increasing processor-memory speed gap [HP96] by
exploiting data and code locality and by minimizing
memory stalls. Modern systems employ mechanisms
ranging from larger and deeper memory hierarchies to
sophisticated branch predictors and software/hardware
prefetching techniques. Affinity scheduling explicitly
routes tasks to processors with relevant data in their
caches [SL93][SE94]. However, frequent switching
between threads of the same program interleaves unre-
lated memory accesses, thereby reducing locality. We
address memory performance from a single application’s
point of view, improving locality across its threads.

To summarize, research in databases has proposed (a)
cache-conscious schemes to optimize query execution
algorithms, and (b) modular or pipelined designs for par-
allelism, extensibility, or continuous query performance.
The OS community has proposed (a) techniques for effi-
cient threading support, (b) event-driven designs for scal-
ability, and (c) locality-aware staged server designs. This
paper applies the staged server programming paradigm on
the sophisticated DBMS architecture, discusses the
design challenges, and highlights the performance, scal-
ability, and software engineering benefits.

3 Problems in current DBMS design

Our work is motivated by two observations, the first of
which has received less attention to date. First, the pre-
vailing thread-based execution model yields poor cache
performance in the presence of multiple clients. As the
processor/memory speed gap and the demand for massive
concurrency increase, memory-related delays and con-
text-switch overheads hurt DBMS performance even
more. Second, the monolithic design of today’s DBMS
software has lead to complex systems that are difficult to
maintain and extend. This section discusses problems
related to these two observations.

3.1 Pitfalls of thread-based concurrency

Modern database systems adopt a thread-based concur-
rency model for executing coexisting query streams. To
best utilize the available resources, DBMS typically use a
pool of threads or processes1. Each incoming query is
handled by one or more threads, depending on its com-
plexity and the number of available CPUs. Each thread
executes until it either blocks on a synchronization condi-
tion, or an I/O event, or until a predetermined time quan-
tum has elapsed. Then, the CPU switches context and
executes a different thread [IBM01] or the same thread
takes on a different task (SQL Server [Lar02]). Context-
switching typically relies on generated events instead of
program structure or the query’s current state. While this
model is intuitive, it has several shortcomings:

1. There is no single number of preallocated worker
threads that yields optimal performance under chang-
ing workloads. Too many threads waste resources
and too few threads restrict concurrency.

2. Preemption is oblivious to the thread’s current execu-
tion state. Context-switches that occur in the middle
of a logical operation evict a possibly larger working
set from the cache. When the suspended thread
resumes execution, it wastes time restoring the
evicted working set.

3. Round-robin thread scheduling does not exploit
cache contents that may be common across a set of
threads. When selecting the next thread to run, the
scheduler ignores that a different thread might bene-
fit from already fetched data.

These three shortcomings are depicted in Figure 1. In
this hypothetical execution sequence, four concurrent
queries handled by four worker threads pass through the
optimizer or the parser of a single-CPU database server.
The example assumes that no I/O takes place. Whenever

1. The choice between threads or processes also depends on the under-
lying operating system. Since this choice is an implementation detail,
it does not affect the generality of our study.

FIGURE 1: Uncontrolled context-switching can lead to poor performance.
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the CPU resumes execution on a query, it first spends
some time loading (fetching from main memory) the
thread’s private state. Then, during each module’s execu-
tion, the CPU also spends time loading the data and code
that are shared on average between all queries executing
in that module (shown as a separate striped box after the
context-switch overhead). A subsequent invocation of a
different module will likely evict the data structures and
instructions of the previous module, to replace them with
its own ones. The performance loss in this example is due
to (a) a large number of worker threads: since no I/O takes
place, one worker thread would be sufficient, (b) preemp-
tive thread scheduling: optimization and parsing of a sin-
gle query is interrupted, resulting in unnecessary reloads
of its working set, and (c) round-robin scheduling: opti-
mization and parsing of two different queries are not
scheduled together and, thus, the two modules keep
replacing each other’s data and code in the cache. These
shortcomings, along with their trade-offs and challenges
are further discussed over the next paragraphs.

3.1.1 Choosing the right thread pool size

Although multithreading is an efficient way to mask I/O
and network latencies and fully exploit multiprocessor
platforms, many researchers argue against thread scalabil-
ity [Ous96][PDZ99][WCB01]. Related studies suggest
(a) maintaining a thread pool that continuously picks cli-
ents from the network queue to avoid the cost of creating
a thread per client arrival, and (b) adjusting the pool size
to avoid an unnecessarily large number of threads. Mod-
ern commercial DBMS typically adopt this approach
[IBM01] [Lar02]. The database administrator (DBA) is
responsible for statically adjusting the thread pool size.
The trade-off the DBA faces is that a large number of
threads may lead to performance degradation caused by
increased cache and TLB misses, and thread scheduling
overhead. On the other hand, too few threads may restrict
concurrency, since all threads may block while there is
work the system could perform. The optimal number of
threads depends on workload characteristics which may
change over time. This further complicates tuning2.

To illustrate the problem, we performed the follow-
ing experiment using PREDATOR [SLR97], a research
prototype DBMS, on a 1GHz Pentium III server with
512MB RAM and Linux 2.4. We created two workloads,
A and B, designed after the Wisconsin benchmark

[De91]. Workload A consists of short (40-80msec), selec-
tion and aggregation queries that almost always incur disk
I/O. Workload B consists of longer join queries (up to 2-3
secs) on tables that fit entirely in main memory and the
only I/O needed is for logging purposes. We modified the
execution engine of PREDATOR and added a queue in
front of it. Then we converted the thread-per-client archi-
tecture into the following: a pool of threads that picks a
client from the queue, works on the client until it exits the
execution engine, puts it on an exit queue and picks
another client from the input queue3. By filling the input
queue with already parsed and optimized queries, we
could measure the throughput of the execution engine
under different thread pool sizes.

Figure 2 shows the throughput achieved under both
workloads, for different thread pool sizes, as a percentage
of the maximum throughput possible under each work-
load. Workload A’s throughput reaches a peak and stays
constant for a pool of twenty or more threads. When there
are fewer than twenty threads, the I/Os do not completely
overlap, and thus there is idle CPU time resulting in
slightly lower throughput4. On the other hand, Workload
B’s throughput severely degrades with more than 5
threads, as there is no I/O to hide and a higher number of
longer queries interfere with each other as the pool size
increases. The challenge is to discover an adaptive mech-
anism with low-overhead thread support that performs
consistently well under frequently changing workloads.

3.1.2 Preemptive context-switching

A server's code is typically structured as a series of logi-
cal operations (or procedure calls). Each procedure (e.g.,
query parsing) typically includes one or more sub-proce-
dures (e.g., symbol checking, semantic checking, query
rewriting). Furthermore, each logical operation typically

2. Quoting the DB2 performance tuning manual [IBM01] (“agents” are
implemented using threads or processes): “If you run a decision-sup-
port environment in which few applications connect concurrently, set
{num_pool_agents} to a small value to avoid having an agent pool
that is full of idle agents. If you run a transaction-processing environ-
ment in which many applications are concurrently connected,
increase the value of {num_pool_agents} to avoid the costs associ-
ated with the frequent creation and termination of agents.”

3. We also had to convert the system’s non-preemptive threads into
“cooperating” ones: an alarm timer was causing context-switches
roughly every 10msec.

4. We used user-level threads which have a low context-switch cost. In
systems that use processes or kernel threads (such as DB2), increased
context-switch costs have a greater impact on the throughput.

FIGURE 2: Different workloads perform differently as
the number of threads changes.
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consists of loops (e.g., iterate over every single token in
the SQL query and symbol table look-ups). When the cli-
ent thread executes, all global procedure and loop vari-
ables along with the data structures that are frequently
accessed (e.g., symbol table) consist the thread's working
set. Context-switches that occur in the middle of an oper-
ation evict its working set from the higher levels of the
cache hierarchy. As a result, each resumed thread often
suffers additional delays while re-populating the caches
with its evicted working set.

However, replacing preemption with cooperative
scheduling where the CPU yields at the boundaries of
logical operations may lead to unfairness and hurt aver-
age response time. The challenge is to (a) find the points
at which a thread should yield the CPU, (b) build a mech-
anism that will take advantage of that information, and (c)
make sure that no execution path holds the CPU too long,
leading to unfairness.

3.1.3 Round-robin thread scheduling

The thread scheduling policy is another factor that affects
memory affinity. Currently, selection of the next thread to
run is typically done in a round-robin fashion among
equal-priority threads. The scheduler considers thread sta-
tistics or properties unrelated to its memory access pat-
terns and needs. There is no way of coordinating accesses
to common data structures among different threads in
order to increase memory locality.

Table 1 shows an intuitive classification of common-
ality in data and code references in a database server. Pri-
vate references are those exclusive to a specific instance
of a query. Shared references are to data and code accessi-
ble by any query, although different queries may access
different parts. Lastly, common references are those
accessed by the majority of queries. Current schedulers
miss an opportunity to exploit shared and common refer-
ences and increase performance by choosing a thread that
will find the largest amount of data and code already
fetched in the higher levels of the memory hierarchy.

In order to quantify the performance penalty, we per-
formed the following experiment. We measured the time
it takes for two similar, simple selection queries to pass

through the parser of PREDATOR under two scenarios:
(a) after the first query finishes parsing, the CPU works
on different, unrelated operations (i.e. optimize, scan a
table) before it switches into parsing the second query,
and, (b) the second query starts parsing immediately after
the first query is parsed (the first query suspends its exe-
cution after exiting the parser). Using the same setup as in
3.1.1, we found that Query 2 improves its parsing time by
7% in the second scenario, since it finds part of the
parser’s code and data structures already in the server’s
cache. As shown in simulation results in Section 4.2, even
such a modest average improvement across all server
modules results into more than 40% overall response time
improvement when running multiple concurrent queries
at high system load (the full simulation results are
described elsewhere [HA02]).

However, a thread scheduling policy that suspends
execution of certain queries in order to make the best use
of the memory resources may actually hurt average
response times. The trade-off is between decreasing cache
misses by scheduling all threads executing the same soft-
ware module while increasing response time of other que-
ries that need to access different modules. The challenge
is to find scheduling policies that exploit a module’s affin-
ity to memory resources while improving throughput and
response time.

3.2 Pitfalls of monolithic DBMS design

Extensibility. Modern DBMS are difficult to extend and
evolve. While commercial database software offers a
sophisticated platform for efficiently managing large
amounts of data, it is rarely used as stand-alone service.
Typically, it is deployed in conjunction with other appli-
cations and services. Two common usage scenarios are
the following: (a) Data streams from different sources and
in different form (e.g., XML or web data) pass through
“translators” (middleware) which act as an interface to
the DBMS. (b) Different applications require different
logic which is built by the system programmer on top of
the DBMS. These scenarios may deter administrators
from using a DBMS as it may not be necessary for simple
purposes, or it may not be worth the time spent in config-
urations. A compromise is to use plain file servers that
will cover most needs but will lack in features. DBMS
require the rest of the services and applications to com-
municate with each other and coordinate their accesses
through the database. The overall system performance
degrades since there is unnecessary CPU computation
and communication latency on the data path. The alterna-
tive, extending the DBMS to handle all data conversions
and application logic, is a difficult process, since typically
there is no well-defined API and the exported functional-
ity is limited due to security concerns.

TABLE 1: Data and code references across all queries

classification data code

PRIVATE
Query Execution
Plan, client state,

intermediate results
NO

SHARED tables, indices
operator specific code
(i.e. nested-loop vs.

sort-merge join)

COMMON catalog, symbol table rest of DBMS code



Tuning. Database software complexity makes it difficult
to identify resource bottlenecks and properly tune the
DBMS in heavy load conditions. A DBA relies on statis-
tics and system reports to tune the DBMS, but has no
clear view of how the different modules and resources are
used. For example, the optimizer may need separate tun-
ing (e.g., to reduce search space), or the disk read-ahead
mechanism may need adjustment. Current database soft-
ware can only monitor resource or component utilization
at a coarse granularity (e.g., total disk traffic or table
accesses, but not concurrent demand to the lock table).
Based solely on this information it is difficult to build
automatic tuning tools to ease DBMS administration. Fur-
thermore, when client requests exceed the database
server’s capacity (overload conditions) then new clients
are either rejected or they experience significant delays.
Yet, some of them could still receive fast service (e.g., if
they only need a cached tuple).

Maintainability. An often desirable property of a soft-
ware system is the ability to improve its performance or
extend its functionality by releasing software updates.
New versions of the software may include, for example,
faster implementations of some algorithms. For a com-
plex piece of software, such as a DBMS, it is a challeng-
ing process to isolate and replace an entire software
module. This becomes more difficult when the program-
mer has no previous knowledge of the specific module
implementation. The difficulty may also rise from a non-
modular coding style, extended use of global variables,
and module interdependencies.

Testing and debugging. Large software systems are
inherently difficult to test and debug. The test case combi-

nations of all different software components and all possi-
ble inputs are practically countless. Once errors are
detected, it is difficult to trace bugs through millions of
lines of code. Furthermore, multithreaded programs may
exhibit race conditions (when there is need for concurrent
access to the same resource) that may lead to deadlocks.
Although there are tools that automatically search pro-
gram structure in run-time to expose possible race condi-
tions [SB+97] they may slow down the executable or
increase the time to software release. A monolithic soft-
ware design makes it even more difficult to develop code
that is deadlock-free since accesses to shared resources
may not be contained within a single module.

4 A staged approach for DBMS software

This section describes a staged design for high-perfor-
mance, scalable DBMS that are easy to tune and extend.
Section 4.1 presents the design overview and Section 4.2
describes performance improvement opportunities and
scheduling trade-offs. The results are drawn from experi-
ments on a simulated staged database server. Finally, Sec-
tion 4.3 discusses the current status of our ongoing
implementation on top of an existing prototype DBMS,
while Section 4.4 outlines additional design issues.

4.1 Staged database system design

A staged database system consists of a number of self-
contained modules, each encapsulated into a stage. A
stage is an independent server with its own queue, thread
support, and resource management that communicates
and interacts with the other stages through a well-defined
interface. Stages accept packets, each carrying a query’s

FIGURE 3: The Staged Database System design: Each stage has its own queue and thread support. New queries queue
up in the first stage, they are encapsulated into a “packet”, and pass through the five stages shown on the top of the fig-
ure. A packet carries the query’s “backpack”: its state and private data. Inside the execution engine a query can issue
multiple packets to increase parallelism.
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state and private data (the query’s backpack), perform
work on the packets, and may enqueue the same or newly
created packets to other stages. The first-class citizen is
the query, which enters stages according to its needs.
Each stage is centered around exclusively owned (to the
degree possible) server code and data. There are two lev-
els of CPU scheduling: local thread scheduling within a
stage and global scheduling across stages. This design
promotes stage autonomy, data and instruction locality,
and minimizes the usage of global variables.

We divide at the top level the actions the database
server performs into five query execution stages (see Fig-
ure 3): connect, parse, optimize, execute, and disconnect.
The execute stage typically represents the largest part of a
query’s lifetime and is further decomposed into several
stages (as described in Section 4.1.2). The break-up
objective is (a) to keep accesses to the same data struc-
tures together, (b) to keep instruction loops within a single
stage, and (c) to minimize the query’s backpack. For
example, connect and disconnect execute common code
related to client-server communication: they update the
server’s statistics, and create/destroy the client’s state and
private data. Likewise, while the parser operates on a
string containing the client’s query, it performs frequent
lookups into a common symbol table.

The design in Figure 3 is general enough to apply to
any modern relational DBMS, with minor adjustments.
For example, commercial DBMS support precompiled
queries that bypass the parser and the optimizer. In our
design the query can route itself from the connect stage
directly to the execute stage. Figure 3 also shows certain
operations performed inside each stage. Depending on
each module’s data footprint and code size, a stage may
be further divided into smaller stages that encapsulate
operation subsets (to better match the cache sizes).

There are two key elements in the proposed system:
(a) the stage definition along with the capabilities of stage
communication and data exchange, and (b) the redesign
of the relational execution engine to incorporate a staged
execution scheme. These are discussed next.

4.1.1 Stage definition

A stage provides two basic operations, enqueue and
dequeue, and a queue for the incoming packets. The
stage-specific server code is contained within dequeue.
The proposed system works through the exchange of
packets between stages. A packet represents work that the
server must perform for a specific query at a given stage.
It first enters the stage’s queue through the enqueue oper-
ation and waits until a dequeue operation removes it.
Then, once the query’s current state is restored, the stage
specific code is executed. Depending on the stage and the
query, new packets may be created and enqueued at other
stages. Eventually, the stage code returns by either (i)

destroying the packet (if done with that query at the spe-
cific stage), (ii) forwarding the packet to the next stage
(i.e. from parse to optimize), or by (iii) enqueueing the
packet back into the stage’s queue (if there is more work
but the client needs to wait on some condition). Queries
use packets to carry their state and private data. Each
stage is responsible for assigning memory resources to a
query. As an optimization, in a shared-memory system,
packets can carry only pointers to the query’s state and
data structures (which are kept in a single copy).

Each stage employs a pool of worker threads (the
stage threads) that continuously call dequeue on the
stage’s queue, and one thread reserved for scheduling pur-
poses (the scheduling thread). More than one threads per
stage help mask I/O events while still executing in the
same stage (when there are more than one packets in the
queue). If all threads happen to suspend for I/O, or the
stage has used its time quantum, then a stage-level sched-
uling policy specifies the next stage to execute. Whenever
enqueue causes the next stage’s queue to overflow we
apply back-pressure flow control by suspending the
enqueue operation (and subsequently freeze the query's
execution thread in that stage). The rest of the queries that
do not output to the blocked stage will continue to run.

4.1.2 A staged relational execution engine

In our design, each relational operator is assigned to a
stage. This assignment is based on the operator’s physical
implementation and functionality. We group together
operators which use a small portion of the common or
shared data and code (to avoid stage and scheduling over-
head), and separate operators that access a large common
code base or common data (to take advantage of a stage’s
affinity to the processor caches). The dashed box in Fig-
ure 3 shows the execution engine stages we are currently
considering (these are further discussed in Section 4.3).

Although control flow amongst operators/stages still
uses packets as in the top-level DBMS stages, data
exchange within the execution unit exhibits significant
peculiarities. Firstly, stages do not execute sequentially
anymore. Secondly, multiple packets (as many as the dif-
ferent operators involved) are issued per each active
query. Finally, control flow through packet enqueueing
happens only once per query per stage, when the opera-
tors/stages are activated. This activation occurs in a bot-
tom-up fashion with respect to the operator tree, after the
init stage enqueues packets to the leaf node stages (simi-
larly to the “push-based” model [Gra96] that aims at
avoiding early thread invocations). Dataflow takes place
through the use of intermediate result buffers and page-
based data exchange using a producer-consumer type of
operator/stage communication.



4.2 The scheduling trade-off

Staged architectures exhibit a fundamental scheduling
trade-off (mentioned in Section 3.1.3): On one hand, all
requests executing as a batch in the same module benefit
from fewer cache misses. On the other hand, each com-
pleted request suspends its progress until the rest of the
batch finishes execution, thereby increasing response
time. This section demonstrates that an appropriate solu-
tion to the scheduling trade-off translates into a signifi-
cant performance advantage for the staged DBMS design.
We summarize our previous work [HA02] in the general-
ized context of a simulated single-CPU database server
that follows a “production-line” operation model (i.e.
requests go through a series of stages only once and
always in the same order).

To compare alternative strategies for forming and
scheduling query batches at various degrees of inter-
query locality, we developed a simple simulated execu-
tion environment that is also analytically tractable. Each
submitted query passes through several stages of execu-
tion that contain a server module (see Figure 4). Once a
module’s data structures and instructions, that are shared
(on average) by all queries, are accessed and loaded in the
cache, subsequent executions of different requests within
the same module will significantly reduce memory
delays. To model this behavior, we charge the first query
in a batch with an additional CPU demand (quantity in
Figure 4). The model assumes, without loss of generality,
that the entire set of a module's data structures that are
shared on average by all requests can fit in the cache, and
that a total eviction of that set takes place when the CPU
switches to a different module. The prevailing scheduling
policy processor-sharing (PS) fails to reuse cache con-
tents, since it switches from query to query in a random
way with respect to the query’s current execution module.

The execution flow in the model is purely sequential,
thereby reducing the search space for scheduling policies
into combinations of the following parameters: the num-
ber of queries that form a batch at a given module (one,
several, all), the time they receive service (until comple-
tion or up to a cutoff value), and the module visiting order
(the scheduling alternatives are described and evaluated
elsewhere [HA02]).

Figure 5 compares the query mean response time for
a server consisting of 5 modules with an equal service

time breakdown (other configurations did not alter the
results). The graph shows the performance of PS, First
Come First Serve, and three of the proposed policies for a
system load of 95% and for various module loading times
(the time it takes all modules to fetch the common data
structures and code in the cache, quantity l). This quantity
varies as a percentage of the mean query CPU demand,
from 0% to 60% (the mean query service time that corre-
sponds to private data and instructions, m, is adjusted
accordingly so that m+l=100ms). This value (l) can also
be viewed as the percentage of execution time spent ser-
vicing cache misses, attributed to common instructions
and data, under the default server configuration (e.g.
using PS). The results of Figure 5 show that the proposed
algorithms outperform PS for module loading times that
account for more than 2% of the query execution time.
Response times are up to twice as fast and improve as
module load time becomes more significant. Referring to
the experiment of Section 3.1.3, the 7% improvement in
the execution time of the second query corresponds to the
time spent by the first query fetching the parser’s com-
mon data and code. Figure 5 shows that a system consist-
ing of modules with similar code and data overlap can
improve the average query response time by 40%.

4.3 Implementing a staged database system

We are currently building a staged mechanism on top of
PREDATOR [SLR97], a single-CPU5, multi-user, client-
server, object-relational database system that uses the
SHORE [Ca+94] storage manager. The reasons for choos-
ing this particular system are: (a) it has a modular code
design, (b) it is well-documented, and (c) it is currently
actively maintained. Our approach includes three steps:
(1) identifying stage boundaries in the base system and
modifying the code to follow the staged paradigm (these
were relatively straightforward changes that transformed
the base code into a series of procedure calls and are not
further discussed here), (2) adding support for stage-

FIGURE 4: A production-line model for staged servers.
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FIGURE 5: Mean response times for 95% system load.
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aware thread scheduling techniques, and (3) implement-
ing page-based dataflow and queue-based control-flow
schemes inside the execution engine.

Thread scheduling. SHORE provides non-preemptive
user-level threads that typically restrict the degree of con-
currency in the system since a client thread yields only
upon I/O events. We use this behavior to explicitly con-
trol the points at which the CPU switches thread execu-
tion. We incorporated the proposed affinity scheduling
schemes (from Section 4.2) into the system’s thread
scheduling mechanism by rotating the thread group prior-
ities among the stages. For example, whenever the CPU
shifts to the parse stage, the stage threads receive higher
priority and keep executing dequeue until either (a) the
queue is empty, or (b) the global scheduler imposes a gate
on the queue, or (c) all working threads are blocked on a
I/O event. The thread scheduler tries to overlap I/O events
as much as possible within the same stage.

Execution engine. Our implementation currently maps
the different operators into five distinct stages (see also
Figure 3): file scan (fscan) and index scan (iscan), for
accessing stored data sequentially or with an index,
respectively, sort, join which includes three join algo-
rithms, and a fifth stage that includes the aggregate opera-
tors (min-max, average, etc.). The fscan and iscan stages
are replicated and are separately attached to the database
tables. This way, queries that access the same tables can
take advantage of relations that lie already in the higher
levels of the memory hierarchy. We implemented a pro-
ducer-consumer type of operator/stage communication,
through the use of intermediate result buffers and page-
based data exchange. Activation of operators/stages in the
operator tree of a query starts from the leaves and contin-
ues in a bottom-up fashion, to further increase code local-
ity (this is essentially a “page push” model). Whenever an
operator fills a page with result tuples (i.e. a join’s output
or the tuples read by a scan) it checks for parent activation
and then places that page in the buffer of the parent node/
stage. The parent stage is responsible for consuming the
input while the children keep producing more pages. A
stage thread that cannot momentarily continue execution
(either because the output page buffer is full or the input
is empty) enqueues the current packet in the same stage’s
queue for later processing.

Current status. Our system in its current state and with
only 2,500 new lines of code (PREDATOR is 60,000 lines
of C++) supports most of the primary database function-
ality of the original system. We are currently integrating
the following into our implementation: updates, inserts,
deletes, transactions, data definition language support,
and persistent client sessions. We are also considering a
finer granularity in the stage definition in order to find an
optimal setting for different workloads and system con-

figurations. We expect the high-level design of Figure 3
to remain mostly the same since: (a) the existing stages
can add new routing information (i.e. bypassing the opti-
mizer on a DDL statement), and (b) additional stages will
include the new functionality (i.e. a “create/delete table”
stage inside the execution engine). A similar approach
can apply to the process of “staging” a commercial
DBMS which is far more complicated than our prototype.
The wizards, tools and statistic collection mechanisms
may be assigned to new stages, while complicated stages
(such as the optimizer) may break down into several
smaller stages.

4.4 Additional design issues

Stage granularity. There are several trade-offs involved
in the stage size (amount of server code and data struc-
tures attached). On the one end the system may consist of
just five high-level stages, same as those on the top part of
Figure 3. While this break-up requires a minimum rede-
sign for an existing DBMS, it may fail to fully exploit the
underlying memory hierarchy, since the large stage code
base and data structures will not entirely fit in the cache.
Furthermore, a scheme like that still resembles the origi-
nal monolithic design. On the other end, and depending
also on the characteristics of the server’s caches, the sys-
tem may consist of many, fine-granularity modules (i.e. a
log manager, concurrency control, or a B-tree module). In
that case a stage is attached to every data structure, mak-
ing the query execution totally data-driven. This scheme
requires a total redesign of a DBMS. Furthermore, the
large number of self-executing stages may cause addi-
tional overheads related to queueing delays and resource
overcommitment. Our initial approach towards address-
ing this trade-off is to create many self-contained modules
and decide their assignment into stages during the tuning
process (which is discussed next).

Self-tuning. We plan to implement a mechanism that will
continuously monitor and automatically tune the follow-
ing four parameters of a staged DBMS:

(a) The number of threads at each stage. This choice
entails the same trade-off as the one discussed in Sec-
tion 3.1.1 but at a much smaller scale. For example, it
is easier and more effective for the stage responsible
for logging to monitor the I/Os and adjust accord-
ingly the number of threads, rather than doing this for
the whole DBMS.

(b) The stage size in terms of server code and functional-
ity. Assuming that the staged DBMS is broken up
into many fine-grain self-contained modules, the tun-
ing mechanism will dynamically merge or split
stages by reassigning the various server tasks. Differ-
ent hardware and system load configurations may
lead to different module assignments.



(c) The page size for exchanging intermediate results
among the execution engine stages. This parameter
affects the time a stage spends working on a query
before it switches to a different one.

(d) The choice of a thread scheduling policy. We have
found that different scheduling policies prevail for
different system loads [HA02].

5 Benefits of staged DBMS design

This section discusses the benefits and advantages of the
staged DBMS design over traditional database architec-
tures. Section 5.1 shows how the staged execution frame-
work can solve the thread-based concurrency problems
discussed in 3.1. Next, in Section 5.2 we describe the
software engineering benefits of the design stemming
from its modular, self-containing nature. Section 5.3 and
5.4 discuss additional opportunities for future research.

5.1 Solutions to thread-based problems

The Staged DBMS design avoids the pitfalls of the tradi-
tional threaded execution model as those were described
in Section 3.1 through the following mechanisms:

1. Each stage allocates worker threads based on its
functionality and the I/O frequency, and not on the
number of concurrent clients. This way there is a
well-targeted thread assignment to the various data-
base execution tasks at a much finer granularity than
just choosing a thread pool size for the whole system.

2. A stage contains DBMS code with one or more logi-
cal operations. Instead of preempting the current exe-
cution thread at a random point of the code
(whenever its time quantum elapses), a stage thread
voluntarily yields the CPU at the end of the stage
code execution. This way the thread’s working set is
evicted from the cache at its shrinking phase and the
time to restore it is greatly reduced. This technique
can also apply to existing database architectures.

3. The thread scheduler repeatedly executes tasks
queued up in the same stage, thereby exploiting stage
affinity to the processor caches. The first task’s exe-
cution fetches the common data structures and code
into the higher levels of the memory hierarchy while
subsequent task executions experience fewer cache
misses. This type of scheduling cannot easily apply
to existing systems since it would require annotating
threads with detailed application logic.

5.2 Solutions to software-complexity problems

Flexible, extensible and evolvable design. Stages pro-
vide a well-defined API and thus make it easy to:

1. Replace a module with a new one (e.g., a faster algo-
rithm), or develop and plug modules with new func-

tionality. The programmer needs to know only the
stage API and the limited list of global variables.

2. Route packets through modules with the same basic
functionality but different complexity. This facilitates
run-time functionality decisions. For example,
important transactions may pass through a module
with a sophisticated recovery mechanism.

3. Debug the code and build robust software. Indepen-
dent teams can test and correct the code of a single
stage without looking at the rest of the code. While
existing systems offer sophisticated development
facilities, a staged system allows building more intui-
tive and easier to use development tools.

4. Encapsulate external wrappers or “translators” into
stages and integrate them into the DBMS. This way
we can avoid the communication latency and exploit
commonality in the software architecture of the
external components. For example, a unified buffer
manager can avoid the cost of subsequent look-ups
into each component’s cache. A well-defined stage
interface enables the DBMS to control distribution of
security privileges.

Easy to tune. Each stage provides its own monitoring and
self-tuning mechanism. The utilization of both the sys-
tem’s hardware resources and software components (at a
stage granularity) can be exploited during the self-tuning
process. Each stage is responsible for adjusting all stage-
related parameters: the number of threads, buffer space,
slice of CPU time, scheduling policies, and routing rules.
Although there are more parameters to tune than in a tra-
ditional DBMS, it is easier to build auto-tuning tools.
Stage autonomy eliminates interdependencies and facili-
tates performance prediction. Furthermore, under over-
load conditions, the staged design can (a) quickly push
through the system requests easily served (i.e. request for
a cached tuple) and (b) respond by routing packets
through alternative, faster stages (i.e. trading off accuracy
for speed) and thus momentarily increase server capacity.
Back-pressure packet flow techniques ensure that all
modules can reach near-maximum utilization.

5.3 Multi-processor systems

High-end DBMS typically run on clusters of PCs or
multi-processor systems. The database software runs
either as a different process on each CPU, or as a single
process with multiple threads assigned to the different
processors. In either case, a single CPU handles a whole
query or a random part of it. A staged system instead nat-
urally maps one or more stages to a dedicated CPU.
Stages may also migrate to different processors to match
the workload requirements. A single query visits several
CPUs during the different phases of its execution. The
data and code locality benefits are even higher than in the



single-CPU server, since fewer stages are exclusively
using a single processor’s cache. In shared memory sys-
tems the query’s state and private data remain in one copy
as the packets are routed through different processors. In
non-shared memory systems, stage mapping incorporates
the overhead of copying packets (and not pointers to
them) along with each client’s private data. This scheme
resembles the architecture of parallel shared-nothing
architectures (such as GAMMA [De+90]), where each
operator is assigned to a processor and parallel processing
techniques are employed in order to minimize the over-
head of shipping data between the different CPUs.

5.4 Multiple query optimization

Multiple query optimization [Sel88][RS+00] has been
extensively studied over the past fifteen years. The objec-
tive is to exploit subexpression commonality across a set
of concurrently executing queries and reduce execution
time by reusing already fetched or computed input tuples.
Our design complements past approaches by providing a
staged infrastructure that naturally groups accesses to
common data sources at every phase of a query’s lifetime
(and not only to input tuples or intermediate results).
Since all queries are forced to repeatedly execute at well
defined stages (for example perform a join operation or
scan a specific table), new scheduling algorithms can take
advantage of this infrastructure. Information collected at
the optimizer combined with run-time queue information
of each execution engine stage, can be used to further
increase the data overlap among queries at any phase of
their execution. A query that arrives at a stage and finds
an ongoing computation of a common subexpression, can
reuse those results. This way, the burden of multiple
query optimization can move from the optimizer to the
run-time execution engine stages. Furthermore, the opti-
mizer can spend less time waiting for a sufficient number
of incoming queries with common subexpressions, since
newly arrived queries can still exploit common data from
other queries already inside the execution engine.

6 Conclusions

In this paper we discussed several issues of modern data-
base architectures and introduced a new staged DBMS
design with many desirable properties. Modern database
servers suffer from high processor-memory data and
instruction transfer delays. Despite the ongoing effort to
create locality-aware algorithms, the interference caused
by context-switching during the execution of multiple
concurrent queries results in high penalties due to addi-
tional conflict and compulsory cache misses. Further-
more, the current threaded execution model used in most
commercial systems is susceptible to suboptimal perfor-
mance caused by an inefficient thread allocation mecha-

nism. Looking from a software engineering point of view,
years of DBMS software development have lead to
monolithic, complicated implementations that are diffi-
cult to extend, tune and evolve.

Based on fresh ideas from the OS community [LP02]
[WCB01] and applying them in the complex context of a
DBMS server, we suggested a departure in the way data-
base software is built. Our proposal for a staged, data-
centric DBMS design remedies the weaknesses of mod-
ern commercial database systems by providing solutions
(a) at the hardware level: it optimally exploits the under-
lying memory hierarchy and takes direct advantage of
SMP systems, and (b) at a software engineering level: it
aims at a highly flexible, extensible, easy to program,
monitor, tune, maintain, and evolve platform.

The paper’s contributions are threefold: (i) it pro-
vides an analysis of design shortcomings in modern
DBMS software, (ii) it describes a novel database system
design along with our initial implementation efforts, and
(iii) it presents new research opportunities.
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