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ABSTRACT

Query throughput is one of the primary optimization goals in interactive web-based information systems in order

to achieve the performance necessary to serve large user communities. Queries in this application domain di�er

signi�cantly from those in traditional database applications: they are of lower complexity and almost exclusively

read-only. The architecture we propose here is speci�cally tailored to take advantage of the query characteristics.

It is based on a large parallel shared-nothing database cluster where each node runs a separate server with a fully

replicated copy of the database. A query is assigned and entirely executed on one single node avoiding network

contention or synchronization e�ects. However, the actual key to enhanced throughput is a resource eÆcient

scheduling of the arriving queries. We develop a simple and robust scheduling scheme that takes the currently

memory resident data at each server into account and trades o� memory re-use and execution time, reordering

queries as necessary.

Our experimental evaluation demonstrates the e�ectiveness when scaling the system beyond hundreds of nodes

showing super-linear speedup.

1991 ACM Computing Classi�cation System: H.2.4 Database systems, Distributed databases, Parallel databases

Keywords and Phrases: Query routing, database cluster, main-memory databases.

Note: Funded by CWI/INS1 theme.

1. Introduction

A signi�cant number of web-based information systems rely on database technology to serve large
user communities which makes scalability a key issue for the design of web-enabled database
systems. Parallel processing and data replication, are necessary to deal with the peak loads
encountered. Likewise, an e�ective query dispatching scheme is needed to level the system load
as well as to guarantee quality-of-service in terms of response time.
In this paper we are concerned with initial experiences with a multi-media portal under

construction based on the Monet database system [BK99]. The system is intended to provide
eÆcient access to a large collection of indexed multi-media objects. It is endemic to this kind of
information system that user interaction is dominated by read accesses. A number of systems
with similar requirements regarding the deployed database backend have been developed and
many more are currently under construction.
With each user interaction, the interface emits a number of queries to the database that

ideally lead to an answer set of a few tens of candidate results. Involving accesses to di�erent
multi-dimensional indexes, the evaluation of such queries is usually in the order of few seconds.
Still, the queries are of distinctly low complexity compared to queries in classical database



2. Related Work 2

applications. Moreover, the deviation of running time among the queries is limited, not least to
ensure acceptable response times.
The primary challenge in this setting is to develop processing techniques to optimize the

query throughput. Parallel processing is an essential element to achieve this, however, a straight
forward recasting of methods developed for parallel databases does not apply here since most
solutions devised in this area are almost exclusively geared to tackle highly complex and long
running queries. There, queries are usually parallelized on a granularity of partial plans or
even single operators, i.e. single operators like the join of two tables are executed in parallel
on di�erent nodes involving exchange of partial results among the single nodes. However, these
techniques are ine�ective for the kind of query we are considering since communication and
coordination overheads would outweigh the actual bene�ts.
In this paper, we propose a parallel query processing architecture that can take advantage of

the query characteristic by its physical design, suitable query scheduling, and the way queries
are executed.
The platform of operation is a shared-nothing environment|i.e. a cluster of inexpensive PCs|

where each node runs a Monet server with a fully replicated copy of the database. One machine
is distinguished as coordinator node that dispatches the arriving queries to the servers according
to a scheduling strategy. The scheduling schema we develop in this paper di�ers radically from
previous work as we do not try to model various system parameters in order to exploit primarily
idle system resources, but take into account what data is memory-resident at the servers, i.e.
cached by the servers. The algorithm is based on a metric that determines the distance between a
server and a query|the less this distance, the more similar the state of the memory at this server
and what is required to process this query. Moreover, we investigate possibilities of re-ordering
and deferred execution of queries to further reduce execution costs. Once a query is assigned to
a server it is executed in isolation on this server, so no synchronization or communication within
the cluster is needed freeing interconnection bandwidth for shipping of both queries and results.
Since we are dealing with read-only accesses, we do not have to consider transaction mecha-

nisms to keep the replicated data consistent across the database cluster. Rather, the databases
are periodically updated by mirroring a master database.
The experimental evaluation of the techniques proposed show substantial savings over con-

ventional greedy scheduling that takes only the machines' workload into account. In a large
number of experiments we investigate the impact of individual parameters closely. Our results
con�rm the architectural decisions showing excellent scaling behavior.

The remainder of this paper is organized as follows. We review related work in Section 2.
In Section 3 we present the architecture and describe the query model in Section 4. Section 5
discusses the modeling of the server pool and the scheduling algorithm. In Section 6, we present
a comprehensive performance analysis. Section 7 contains a discussion of the design decisions.
We conclude the paper with Section 8.

2. Related Work

Parallel query processing has been studied in a large variety of facets, see e.g. [PMC+90, DG92,
HS93, WFA95, Gra95]. Most of related work in this �eld concentrated on possibilities to speedup
highly complex queries with long running times. Approaches as taken in [HM94] and [GI96]
suggest a decomposition of the query plans into sub-plans which are then executed in parallel
on di�erent nodes of the parallel processing environment. The granularity of this decomposition
varies and can be as �ne as parallelizing single operator as studied for example in [SD89, SD90,
WFA95] but is often chosen coarser [HM95, CHM95, GI96, GI97].
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These approaches have in common that they require communication between single nodes
for shipping or exchanging partial results. This causes network contention and synchronization
e�ects where nodes have to wait for others to complete their tasks �rst. As a result, a paral-
lelization along these lines only pays if the query is of suÆciently high complexity. Otherwise
communication overhead and synchronization e�ects outweigh performance gains.
Moreover, parallel processing as outlined above scales only for small numbers of nodes ef-

fectively. In shared-nothing architectures, network contention becomes increasingly a bottle-
neck; in the case of shared-everything, the high degree of resource sharing limits the scaling
[Sto86, NZT96].
General memory allocation issues have been explored extensively with respect to various as-

pects of query processing. In [MD93], authors proposed dynamic memory allocation schemes for
multi-query workload to level memory allocation without sharing resident data among di�erent
queries. By analyzing queries and their common sub-expressions the re-use of memory resident
data is often a by-e�ect [SSN94]. In [MSD93], authors consider batch scheduling for parallel
processing. However, main-memory is in both cases transparently viewed as a central resource
and data location within distributed memory has not been considered.
In the context of transaction processing, several query routing schemas for database clusters

have been investigated (see e.g. [Tho87, FGND93, RBS00]). This �eld of application di�ers from
the problem at hand in its preliminaries: queries are usually of complex nature and updates to
the database need to be propagated over the complete cluster. One of the major goals is for
instance to schedule queries so that locking conicts are avoided. For a comprehensive overview
on this subject see e.g. [Rah92].

3. Architecture

Figure 1 shows the architecture of our system. It consists of a cluster of database servers
managed by a central scheduler node. All machines have separate main-memory, CPU, and
disks not sharing any resources other than network bandwidth. We use Monet, the main-
memory database system developed at CWI, as database server [BK95, BK99]. Besides its
vertical fragmented data model, Monet is distinguished by its memory awareness, i.e. it solely
uses operating system primitives for its memory management, mapping database tables directly
to virtual memory, to avoid the overhead of a proprietary bu�er manager simulating a virtual
memory layer. Moreover it provides speci�cally cache aware operator implementations [BMK99]
to maximize system utilization on running queries.
Additionally, a pool of web-servers forms the front-end of the system which clients interact

with. The web-servers receive either parameterized queries using text-based forms, or they
interact with visual query formulation tools.
Processing of a client query is done in 7 steps: Users formulate their query using the web-

interface (Fig. 1,(1)). At the web-server, the query is re-formulated using the internal procedural
query representation of the database system|in our case MIL, the query language of Monet|
and submitted to the query scheduler (2). The scheduler maintains a queue of queries that
are to be executed. By analyzing the data requirements for the execution of a query and the
data resident in main-memory at the servers, the scheduler determines a favorable assignment of
queries to servers (4). The query is executed on the assigned node (5) and the result is returned
to the front-end host (6).1 After formatting the result, it is shipped to the user (7).
This architecture directly aims at the throughput optimization of compact queries where an

execution on a single node is the most eÆcient kind of processing. But this architecture also

1For simplicity of presentation arrows (6) follow the routing of the query (2{4), however, the query result can
be sent directly to the front-end and does not have to pass the query scheduler.
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Figure 1: Query processing architecture

exploits the second query characteristic: the impreciseness of the data. For example, data
gathered by robots from the Internet to build up a multi-media index is updated only at low
frequency. Thus, the server cluster do not have to be kept in sync as would be the case if updates
by users were allowed. Instead, the databases are updated periodically replicating the master
database (U). The frequency of updates depends naturally on the application domain.

4. Query Model

The choice of Monet as database software for the back-end cluster implies a speci�c model for
the query execution. The vertical fragmentation of the tables in Monet causes bulk-processing
to be more eÆcient than pipelining techniques. As a consequence, there are no more than two
tables processed on a single CPU at a time. Note, this execution model does not impose any
restrictions on the shape of the execution plans|both linear and bushy plans are feasible. Access
to a table can be either of type load or scan. load reads a table from disk into memory to
make it part of the hot set, e.g. used with inner relations of nested-loop joins. scan reads the
table, but does not keep the data in memory after the actual operation is performed, e.g. used
in selections or for the probe relation of a hash join. The building of a hash table can be seen
as special type of load as the result is only accessible via the hash attribute.
The costs for executing a relation algebra operator consists of the costs of loading/scanning

of the table plus the actual costs for the operation. Fitting the pieces together, we can describe
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a query as a sequence

Q = h(t1; a1; l1; w1); : : : ; (tn; an; ln; wn)i

where each quadruple corresponds to an operator or|as in case of a join|to a partial operator.
ti speci�es the table necessary for the operation. ai denotes the hash attribute, i.e. the operator
accesses ti via this attribute; ai = � if not applicable.
The associated loading costs, if the table is not already resident in main-memory, are given

by li. We denote the total loading costs of a query as

L(Q) =
X
i

li:

The costs to execute the operator, the operator costs, are denoted by wi. We denote the total
operator costs of a query as

W (Q) =
X
i

wi:

Note, both li and wi are expressed in terms of the same unit to achieve a proper comparison.
A queries execution time on a \cold" server, i.e. no data is loaded yet, is

�(Q) = L(Q) +W (Q):

If all tables needed by Q are already in memory|and in case of hash tables, are hashed by the
proper attribute|the execution costs of the query amounts to W (Q) only.

Examples

Here are some examples to illustrate this modeling based on Monet performance characteristics.
The two tables A and B used in this example are of size 8.8MB and 4.95MB, respectively. Our
test platform achieved a bandwidth of 5.5MB/s for disk access.

� Nested-Loop Join, A 1 B

Q = h(A; �; 1:6; 0); (B; �; 0:9; 2:6)i

Table A takes 1.6s to load, no operator costs occur. Table B takes 0.9s to load; performing
the join requires 2.6s.

� Hash Join, A 1 B

Q = h(A; a; 2:7; 0); (B; �; 0:9; 1:1)i

Similar to previous but now, A must be a hash table with hash attribute a. Hence loading
A is more expensive as it includes building the hash table.

5. Query Scheduling

The query scheduling comprises several elements. Besides a model for the servers we de�ne a
server-query distance which captures the potential re-use of memory resident data. Additionally,
we also introduce deadlines.
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5.1 Servers

For the scheduling, a server of the database cluster is modeled by its state of memory and the
workload. The state of memory is the set of tables resident together with a replacement strategy.
We are considering base tables only and discard intermediate results of the processing as soon as
they are no longer used. As a replacement strategy we use LRU as it exhibits the best average
performance. The loading and dropping of tables is done via the memory mapping functionality
of the operating system. To maintain suÆcient control over the memory allocation throughout
the complete cluster we load and drop only complete tables. This way, the scheduler can rely on
the information which tables are memory-resident, i.e. accessing them will not cause additional
costs for swapping. Swapping may only occur when all unused tables are already dropped but
the memory requirements of the current operation are still not met.
For the workload, we distinguish the two states idle and busy, i.e. we assign one query to one

server at a time. This is not just a simpli�cation to facilitate the scheduling but a necessity in
main-memory databases where cache awareness and concurrent memory access are of distinctly
higher importance than in I/O-dominated database models [MBK00]. We model the workload
as function J(S) which returns the expected time of job completion at server S, given its current
workload, i.e. the expected time from now when S will become idle. If the server is idle, J(S)
evaluates to 0. J will be used in the scheduler to �nd the node that will �nish its job next. J is
computed by conventional cost formulae known from sequential query processing: Given the time
x0 the currently running query has been assigned to server S, x the time J is evaluated, and e the
expected running time of the query, the time of job completion computes to J(S) = x0 + e� x.
See also Section 7 for a discussion on the accuracy of J .

5.2 Distance Metric

We de�ne the server-query distance as the costs to load the tables for a given query Q on a
server S:

d(Q;S) =
X
i

R(ti; ai) � li

where

R(ti; ai) =

(
0; if ti is memory-resident at S and hashed by attribute ai

1; else

indicates whether table ti is resident in memory at S. In case ti is required as hash table, R also
checks whether the table is hashed by attribute ai.

Scheduling a batch of queries optimally on k servers is �nding a division into k batches
B1; : : : ; Bk, each of which are executed sequentially on one server, such that the running time
of the batch with the longest completion time

max
i

�X
j

�
d(Qj ; S) +W (Qj)

�
; Qj 2 Bi

�

is minimal.

5.3 Scheduling Algorithm

We use the distance measure to develop a greedy scheduling algorithm that establishes an
acceptable trade-o� between workload- and memory-focused scheduling. Figure 2 shows an
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Algorithm mas

while queue not empty do

cmin  1

foreach query Q in topn(queue) do

for i = 1 to number of servers do

c = d(Q;Si) +W (Q) + J(Si)

if c < cmin dobQ QbS  Si

cmin  c

done

done

if expired (Q) then break

done

assign query bQ to server bS
remove bQ from queue

done

Figure 2: Scheduling Algorithm mas

outline of our algorithm called Memory Aware Scheduling (mas). It iterates over the queue of
arriving queries, selecting one at a time, and determines the best ad-hoc assignment.
In detail, we examine the �rst n elements of the queue|or less if the queue does not contain

n queries. We investigate the impact of n and suitable values for it in the next section. For each
of the n queries, we compute c which consists of the distance to all servers Si plus the operator
cost of the query and the expected time at which server Si becomes available, J(Si). We record
the pair ( bQ; bS) with the lowest value for c. After examination of all n queries, we assign bQ to bS
which means that bQ will be executed on bS as soon as this server gets idle.
The algorithm is in O(N �n � s) where N is the number of queries in total, n is the number of

queries considered in each run, and s is the number of servers available, i.e. the algorithm is linear
in the number of queries. To give any meaningful bounds on the performance is particularly
diÆcult because of the LRU replacement of tables.

5.4 Deadlines

In order to give the user a guarantee of service, we tag every query with a deadline. This deadline
refers to the latest point in time the query has to be assigned to a server for execution, i.e. as
soon as the deadline of a query expires, the scheduler has no other choice than assigning this
very query to a server.
We tag all queries with a time stamp according to their arrival. In other words queries are

not forced by deadlines to overtake others, though it is often bene�cial. As a result, we need
only check the �rst query of the current top n batch for deadline expiration. If the �rst query's
deadline is expired, we do not need to examine any other query in the batch but have to assign
the �rst immediately to a server. Otherwise, if the �rst query's deadline is not yet expired, no
other deadline can be due. Testing for expiration after the �rst query has been checked against
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Size � 20MB � 30MB � 40MB � 50MB > 50MB

Number of tables 233 87 24 15 17

Table 1: Sizes and numbers of base tables

all servers ensures the best assignment in case the deadline expired.

6. Experimental Results

In this section, we describe experimental results obtained with a simulator. We chose to simulate
the system in order to experiment with parameters that are strictly limited by an actual hardware
con�guration, such as size of the database cluster or main-memory available at the individual
servers.

6.1 Preliminaries

Since the full multi-media Acoi demonstrator database is still under construction, we had to
con�ne the experiments to the part already operational. The part chosen is the index system of
the ACM Anthology, which is included in the demonstrator to assess its capabilities in the area
of XML-based database processing. We used statistical data available from an actual Monet
database instance which contains the complete XML code of the Anthology decomposed into
the vertically fragmented data model [SKWW00]. Including indexes, the database contains 376
tables with up to nearly 60000 rows. The numbers of tables according to their sizes are given
in Table 1. Typical queries use some 5 tables or less, seldom up to 10 or more. We generated
batches of 10,000 and 100,000 queries of exponentially distributed sizes accessing 5 tables on
average.

We do not consider mechanisms to reject user queries due to overload since this can be done
already at the front-end level. Modeling arrival rates probabilistically is not necessary as queries
do not signi�cantly di�er in running time, thus information about the queries does not need to be
considered to make a choice which queries to accept and which to reject. For our experiments, we
assume the maximal expected query arrival rate to model the worst case behavior with maximum
load. Moreover, we assume all hosts within the database cluster are of identical con�guration
regarding the cost relevant parameters.

Since the replacement of tables along an LRU strategy makes analytical modeling of the
algorithm hard, we implemented Graham's list scheduling (gls), which is based on workload
�gures [Gra69], for comparison. We adapted the original algorithm to �t the online arrival of
queries, i.e. to use the kind of look-ahead we introduced in mas above. Graham's algorithm is
known to be highly e�ective despite its simplicity overcoming some characteristic disturbances
also known as scheduling anomalies. These anomalies occur with jobs that di�er signi�cantly
in completion time. Please note, we run Graham's algorithm in exactly the same setting, i.e.
with LRU replacement of tables as necessary. As a result, Graham's algorithm also pro�ts from
re-use of memory resident data.

The main parameters we want to investigate are, foremost, the number of servers, the look-
ahead during the scheduling, and the amount of memory available at each server. Note, there
are two principal ways of comparison: a one-on-one comparison of both algorithms run on
identic con�gurations of the platform (relative performance), or a comparison of the scaling
characteristics. Typical examples for the latter are speedup and scale-up. We will compare the
two algorithms using both principles where adequate.
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Figure 3: Relative performance of warm over cold servers

6.2 Warm/Cold Processing

In this �rst experiment we investigate the di�erences between warm and cold servers. We refer
to a server as cold if no other tables than system tables have been loaded. If more than 80%
of the available memory are allocated we call a server warm.2 This is not only relevant for
later experiments but also for the real application scenario when the system has to be shutdown
and re-started for technical reasons like maintenance etc. We can expect di�erent e�ects if the
amount of memory per server is varied. For small server con�gurations the warm up is completed
earlier than for large ones. However, more important is the amount of memory in total, i.e. the
number of servers. Figure 3 shows the relative execution times of batches of 10,000 queries as
function of the number servers. For example the leftmost data point for mas reects the ratio
of execution times for mas on a cold to that on a warm server. The left graph shows times for
a server con�guration of 64, the right for 256MB.
For gls, cold and warm execution times are almost the same. Warm processing is only up to

5% quicker. For mas the ratio di�ers signi�cantly showing gains of more than 35%. Especially
for the range up to 50 servers, the larger con�guration (right) achieves better performance, i.e.
the curve is steeper. For more servers, the impact of the larger amount of memory decreases:
for 100 servers and more, results are virtually equal. We address the issue of memory sizes in
more detail in 6.5.
All further results presented in this section are obtained from warm servers.

6.3 Reordering of Queries

The next experiment investigates the impact of the look-ahead during scheduling, i.e. the max-
imal number of queries that may be re-ordered between each assignment.
Figure 4 shows execution times for a single server (left) and a cluster of 100 servers (right).

In both cases the server(s) had 64MB of memory. The execution time is shown as a function
of the look-ahead, scaled to gls's �rst data point, which corresponds to a �rst-come-�rst-serve
(FCFS) scheduling. The size of the complete query batch was 10,000. In the case of one server,
the look-ahead is of high importance for mas and savings can amount up to 20% of the execution
time. gls, however, does not signi�cantly pro�t from look-ahead.

2We determined the value 80 in preliminary experiments. Execution times on servers with more than 80%
allocated memory did not di�er signi�cantly.
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Figure 4: Impact of look-ahead; Single server (left) and cluster of 100 servers(right)

In the case of 100 servers, the situation changes. gls relatively improves more with increasing
look-ahead but for mas hardly any improvement is noticeable, though its execution time is
substantially below the one of gls. This is due to the fact that in a pool of 100 servers
many server o�er a very low server-query distance and di�erences are often very small. As a
consequence re-ordering cannot help �nding a signi�cantly lower server-query distance as it did
in the sequential case.
In all further experiments we use a look-ahead of 100 queries unless stated otherwise.

6.4 Speedup and Scale-up

The two fundamental measures when investigating the performance of parallel systems are
speedup and scale-up. The previous quanti�es the gains when scaling up the platform but
keeping the problem size constant, the latter describes the system's ability to cope with problem
sizes growing proportionally with the platform (cf. e.g. [DG92]).
Figure 5 shows the speedup for a query batch of 100,000 queries evaluated on up to 4096

servers with 64MB memory each. As the plot shows, gls achieves slightly sub-linear speedup
whereas mas achieves even super-linear speedup which translates to e�ective re-use of memory
resident data. To better illustrate this phenomenon, consider a very basic example using 4 tables
A,B,C and D of same size such that only two table �t into memory at the same time, and a
batch of 4 queries:

Q1 = h(A; 2; 2); (B; 2; 2)i
Q2 = h(C; 2; 2); (D; 2; 2)i
Q3 = h(D; 2; 2)i
Q4 = h(A; 2; 2)i

On a single machine, the total costs amount to 8 + 8 + 4 + 4 = 24. With linear speedup, we
would expect 12 cost units for a parallelization on two hosts. mas assigns queries Q1 and Q4 to
one, Q2 and Q3 to the other machine which amounts to 8 + 2 = 10 costs at each node. Hence,
the total execution time is 10 compared to 24 on a single node which gives a speedup of 2.4.
Figure 6 shows the scale-up for the same server pool con�guration. mas maintains a scale-up

of about 1.1 even for large con�gurations whereas gls drops quickly to about 0.8.
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6.5 Direct Comparison

In our last experiment, we compare the algorithms directly, i.e. we determine the ratio of mas's
execution time to the one of gls for each individual parameter setting. Values below 1.0 indicate
that mas outperforms gls. As parameter of the experiment we vary number of servers, memory
available, and look-ahead.

Figure 7 shows the relative execution time as a function of the number of servers and the
amount of memory per server. The number of servers varies between 5 and 100, memory between
32 and 640MB. As the diagram displays, mas outperformed gls in all 400 individual experiments
achieving execution times as short as 40% of those of gls. However, as the diagram reveals,
this is no monotonic process, rather, with increasing memory sizes, gls manages to \catch up",
though only to a certain degree. See for example the front row where, after mas increases its
lead (0.4 at ca. 160MB) it cannot further improve on the running time whereas gls becomes
increasingly better. For more than ca. 320MB neither algorithm can achieve any improvement,
thus the plateaux.
Figure 8 shows the relative performance as function of the number of servers and the look-

ahead. All servers had 64MB of memory. The plot shows results that aÆrm the previously
found ones now also in the direct comparison: For small number of servers look-ahead plays an
important role (see last row), which fades as the number of server increases (see front row).

7. Discussion

While implementing and testing di�erent versions of mas we made several design decisions which
are not self-evident at �rst sight and deserve to be discussed more elaborately in the following.
The most important question in the design process was whether to include more system infor-

mation about the servers or not. Typically, cost models in parallel databases try to model the
system|particularly the shared resources like network or shared disks|as detailed as possible.
We chose not to incorporate this kind of information for three reasons: Firstly, the type of query
we are dealing with cannot pro�t much from the kind of parallel processing these cost models
have been developed for. Secondly, a cost computation that takes details at this �ne granularity
into account is computational too expensive to deliver cost estimates for hundreds of servers
when an online arrival of queries needs to be scheduled in real-time. Lastly, this detailed system
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information is hard to maintain. To keep it accurately up-to-date during the processing would
require a substantial share of both network and processing resources.
In contrast to that the cost values used by mas are of simpler nature. The cost estimates

for the query execution time (see Section 5.1) can be assembled from sequential cost estimates.
Since the queries are emitted by a �xed interface, there is the possibility to pre-compile queries
which are then instantiated with a few parameters. In that case highly accurate cost estimates
can be pre-computed and|like the queries|instantiated with parameters.
The information necessary to describe the system for the scheduling is in so far easy to main-

tain as it consists only of a feedback indicating that processing of the last query has terminated,
i.e. the result has been shipped, and what tables are now in main-memory. To avoid idleness
between feedback and new assignment, servers can be extended to bu�er one query while pro-
cessing the previously assigned. The feedback together with the fact that servers do not maintain
own query queues ensures that the impact of a few, inaccurate cost estimates, which can never
be completely avoided, is kept down to a minimum.

Finally, the query execution we proposed does not allow for multi-programming, i.e. running
several queries concurrently on one server. This choice was motivated by two facts. Firstly,
multi-programming is not very bene�cial in main-memory databases like Monet as concurrently
processed queries often get into each other's way, unlike in I/O dominated database systems.
Secondly, and more importantly as this holds for other database back-ends too, the potential
gains of multi-programming where I/O of one query and CPU intensive computation of another
one can be aligned is very limited as it is our foremost goal to avoid costly I/O operations at
all.

8. Conclusion

Web-enabled databases and database back-end technology for large web-base information sys-
tems are one of the fastest growing segments of the database market. Those systems challenge
the traditional repertoire of optimization techniques used in database technology. Powerful, user
interfaces for multi-media object retrieval concurrently submit large numbers of queries to the
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database back-end which make throughput optimization a primary optimization goal.
In this paper, we propose a parallel query processing architecture and investigated the pos-

sibility to exploit data sharing by clever scheduling of the arriving queries. We have developed
mas, a scheduling strategy that tries to maximize the re-use of data resident in main memory
across the database cluster. The algorithm is distinguished by its simplicity and robustness on
one hand|the information needed to make mas work is easy to obtain, accurate, and needs
only little e�ort to be kept up-to-date|and its e�ectiveness on the other hand.
Our experiments show superior results compared to conventional list scheduling in terms of

both query throughput and scaling behavior con�rming our considerations. Moreover, by re-
using the data available rather than assigning data actively, the scheduling algorithm adapts to
changing hotspots.

Our future work is geared toward extending the scheduling schema to consider intermediate
results and exploit similarities among queries.
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