16,296 research outputs found

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    Different Approaches to Dual Enrollment: Understanding Program Features and Their Implications

    Get PDF
    Examines program features, challenges, and benefits of secondary-postsecondary partnerships that allow high school students to take college courses for credit, with a career-focused strategy for engaging underperforming students. Includes recommendations

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    On localized application-driven topology control for energy-efficient wireless peer-to-peer file sharing

    Get PDF
    Wireless Peer-to-Peer (P2P) file sharing Is widely envisioned as one of the major applications of ad hoc networks in the near future. This trend is largely motivated by the recent advances in high-speed wireless communication technologies and high traffic demand for P2P file sharing applications. To achieve the ambitious goal of realizing a practical wireless P2P network, we need a scalable topology control protocol to solve the neighbor discovery problem and network organization problem. Indeed, we believe that the topology control mechanism should be application driven in that we should try to achieve an efficient connectivity among mobile devices in order to better serve the file sharing application. We propose a new protocol, which consists of two components, namely, Adjacency Set Construction (ASC) and Community-Based Asynchronous Wakeup (CAW). Our proposed protocol is shown to be able to enhance the fairness and provide an incentive mechanism in wireless P2P file sharing applications. It is also capable of increasing the energy efficiency. © 2008 IEEE.published_or_final_versio

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    Integrating secure mobile P2P systems and Wireless Sensor Networks

    Get PDF
    Aquesta tesi tracta de les diferents limitacions trobades a WSN per a habilitar-ne el desplegament en nous escenaris i facilitar la difusió de la informació obtinguda. A un nivell baix, ens centrem en el consum d'energia, mentre que, a un nivell més alt, ens focalitzem en la difusió i la seguretat de la informació. Reduïm el consum d'una mote individual en xarxes amb patrons de trànsit dinàmic mitjançant la definició d'una funció de planificació basada en el conegut controlador PID i allarguem la vida d'una WSN globalment distribuint equitativament el consum energètic de totes les motes, disminuint el nombre d'intervencions necessàries per a canviar bateries i el cost associat. Per tal d'afavorir la difusió de la informació provinent d'una WSN, hem proposat jxSensor, una capa d'integració entre les WSN i el conegut sistema P2P JXTA. Com que tractem informació sensible, hem proposat una capa d'anonimat a JXTA i un mecanisme d'autenticació lleuger per a la seva versió mòbil.Esta tesis trata las diferentes limitaciones encontradas en WSN para habilitar su despliegue en nuevos escenarios, así como facilitar la diseminación de la información obtenida. A bajo nivel, nos centramos en el consumo de energía, mientras que, a un nivel más alto, nos focalizamos en la diseminación y seguridad de la información. Reducimos el consumo de una mota individual en redes con patrones de tráfico dinámico mediante la definición de una función de planificación basada en el conocido controlador PID y alargamos la vida de una WSN globalmente distribuyendo equitativamente el consumo energético de todas las motas, disminuyendo el número de intervenciones requeridas para cambiar baterías y su coste asociado. Para favorecer la diseminación de la información procedente de una WSN hemos propuesto jxSensor, una capa de integración entre las WSN y el conocido sistema P2P JXTA. Como estamos tratando con información sensible, hemos propuesto una capa de anonimato en JXTA y un mecanismo de autenticación ligero para su versión móvil.This thesis addresses different limitations found in WSNs in order to enable their deployment in new scenarios as well as to make it easier to disseminate the gathered information. At a lower level, we concentrate on energy consumption while, at a higher level, we focus on the dissemination and security of information. The consumption of an individual mote in networks with dynamic traffic patterns is reduced by defining a scheduling function based on the well-known PID controller. Additionally, the life of a WSN is extended by equally distributing the consumption of all the motes, which reduces the number of interventions required to replace batteries as well as the associated cost. To help the dissemination of information coming from a WSN we have proposed jxSensor, which is an integration layer between WSNs and the well-known JXTA P2P system. As we are dealing with sensitive information, we have proposed an anonymity layer in JXTA and a light authentication method in its mobile version
    corecore