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Renato Lo Cigno and Gianluca Ciccarelli
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Abstract—Peer-to-peer systems have reached a widespread use,
ranging from academic and industrial applications to home
entertainment. The key advantage of this paradigm lies in
its scalability and flexibility, consequences of the participants
sharing their resources for the common welfare.

Security in such systems is a desirable goal. For example, when
mission-critical operations or bank transactions are involved,
their effectiveness strongly depends on the perception that users
have about the system dependability and trustworthiness. A
major threat to the security of these systems is the phenomenon
of collusion. Peers can be selfish colluders, when they try to
fool the system to gain unfair advantages over other peers, or
malicious, when their purpose is to subvert the system or disturb
other users.

The problem, however, has received so far only a marginal
attention by the research community. While several solutions exist
to counter attacks in peer-to-peer systems, very few of them are
meant to directly counter colluders and their attacks. Reputation,
micro-payments, and concepts of game theory are currently used
as the main means to obtain fairness in the usage of the resources.

Our goal is to provide an overview of the topic by exam-
ining the key issues involved. We measure the relevance of the
problem in the current literature and the effectiveness of existing
philosophies against it, to suggest fruitful directions in the further
development of the field.

I. I NTRODUCTION

Peer-to-peer applications have gained a large popularity over
the years, becoming an alternative to other communication
paradigms and providing services in a more efficient way, by
using the network, storage and computation capabilities ofthe
machines that participate as peers.

One factor that still strongly limits the use of this paradigm
for mission-critical and money transactions is their perceived
lack of security. More than in the other systems, in peer-to-
peer networks the users can behave like in a real society,
trying to gain advantages over the system or other users in
a number of ways. Among the security threats to which a P2P
system is subject, collusion has received but a partial attention
by the scientific community. Collusion is the phenomenon
created by intelligent agents1 when they cooperate, not only
with malicious goals, but also just to exploit at their advantage
the flaws of the system. For example, let us consider a system
based on incentives, like many existing applications do. In
such systems, peers earn points by providing their resources,
and can then spend those points to obtain resources. It is
easy to imagine a group of peers that collaborate lying about
each other’s contribution: if only two peers claim that one has
provided a service to the other, they can earn points and obtain

1Specifically, agents are the selfish and rational participants to the protocol
(see Nisan and Ronen[1]).

a better service, that is, use other peers’ resources, without
actually providing theirs.

Scientific community has designed many systems that ad-
dress the problem of security in general, and sometimes the
collusion threat. Reputation and micro-payment systems have
been developed and analyzed, either as research prototypes
or as deployed on top of existing systems. Besides, since
collusion, as stated before, is a social problem too, economics
and social sciences come into play by offering models and
theories to support the development of systems that can be
proved to effectively fight this kind of threats. Among these
tools, game theory and mechanism design have joined the
classical solutions provided to ensure the integrity of data in
distributed systems, creating a number of approaches to this
problem.

A general classification of such partial solutions with a
special attention to collusion, however, is currently missing
in the literature. Our contribution is the tentative presentation
of the problem of collusion in its generality, and the analysis of
how well the current systems counter colluders. We provide an
extensive comparison among a variety of approaches to gain
insights in the problem and determine possible strategies for
future development.

The paper follows this outline: in Section II we illustrate
the problem in detail and motivate the need of an overview
of the literature. In Section III we introduce the concept of
incentives and the different ways which they are implemented
in; later, we define the approach taken in micro-payment
systems (Section IV as a viable alternative to incentives. In
Section V we illustrate some approaches that extend known
security mechanisms to limit misbehaviour by malicious and
selfish collectives, without using incentives. We concludethe
paper in Section VI summarizing the insights gained and
prospecting future directions for study.

II. COLLUSION: MOTIVATION AND FLAVOURS

In any P2P system in which peers exchange services, we
can coarsely distinguish betweenhonestor altruistic agents,
who behave according to the rules that the system enforces in
order to ensure a global benefit, anddishonestagents, who do
not follow those same rules. Collusion [2], [3], [4], [5] may
be defined as the collaboration among two or more dishonest
agents aimed at:

• subverting the system, e.g. by partitioning the overlay,
through the diffusion of malicious executables (viruses),
or the denial of service;

• unfairly gain advantage over/at the expense of the system
or of the honest agents;
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• damage/isolate one (group of) honest peers, or
• any combinations of the above.

According to the objective of colluders: the collectives that
try to create damage to the systems or to honest users can be
classified asmalicious colluders, while the groups that try to
gain unfair advantage can be classified asselfish colluders.

1

X Z

W

1
1

Y

(a) The colluders X, Y, and Z
provide a (false) good reputation
to W (promotion of W)

X Y Z

P

0
0

0

(b) The colluders X, Y, and Z
misreport about the honest agent
P

Fig. 1. Problem of misreport in reputation systems. The circles represent
colluding malicious agents; the hexagons represent honest,collaborative
agents. A report of 1 means the reporter received a good service; vice versa
for 0
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(b) The colluders misreport about
a group of honest agents

Fig. 2. Problem of group misreporting in reputation systems.

Two approaches are possible against collusion: reputation
systems and micro-payments systems (MPS).

Reputation systems [6], [7], [8], [9], [10] are meant to
provide a measure of the reliability and honesty of an agent.
The higher the reputation of a peer, the less probable he
will be part of any malicious threat, including malicious
collaboration. Exchanges build reputation: for each transaction
between two agentsp and q, wherep requests a service and
q provides it, agentp expresses an evaluation of the service
received, that can be binary (good or bad) or take on any real
value in a set, e.g.,[0, 1]. The reputation of a target agent is
computed by combining the evaluations of the agents who had
a direct exchange with the target. Since the peers expressing
the evaluation may be dishonest too, their reputation is used
to weigh their evaluation about the target. The underlying
assumption is that the history of the past interactions is shared
among agents. Under this assumption, colluders can boost each
other’s reputation to easily obtain service from honest peers,
as illustrated in Fig. 1 and 2.

Collusion as analyzed so far is only one form of the
problem. Other types of misbehaviour in reputation systems
are simplified as theTraitor and theMole problems; while the
traitor, however, is not a colluder, the mole is. In fact, a traitor

behaves honestly and earns a good reputation for a first period,
then starts negating the service. The motivation of a traitor
is unclear; still, as no collaboration with other misbehaving
agents occur, the traitor is not the object of our study. On
the other hand, a mole or dormant colluder (also known as
front peer) behaves honestly for a first period of time, then
starts colluding according to one of the schemes previously
discussed, and is therefore of interest to our survey.

Reputation systems oscillate around a trade-off. Given the
different flavours of collusion, by aggregating information
about trust values it is always possible to detect auto-referential
circles of peers, but at the expense of a greater quantity of
information needed. An alternative to (subjective) reputation
is a central authority that controls the transactions and verifies
the actual exchange of services, but this usually requires a
greater control overhead.

Using this principle, the micro-payment systems (MPSs)
[11], [12], [13], [14], based on the circulation of a form of
money (e.g., coins or tokens), are an alternative to reputation
systems. A peer can request a service if he can afford it: a
transaction is defined as the provision of a service in exchange
for money. Current solutions require a central authority, which
we call broker, to produce the money and control its dis-
tribution. The solutions proposed deal with the problem of
alleviating the load of the broker by moving it toward the
involved peers. In fact, the overall computation performed
in the system may become heavy because of the presence
of cryptographic primitives (signature and public/private keys
generation).

In a MPS, collusion is harder to achieve with respect to
reputation systems. Colluders trying to disrupt the system
can try to attack the broker, that represents a single point
of failure, but existing solutions can be used to alleviate this
kind of threat. On the other hand, a colluder interested in the
service provided by the system cannot earn money by falsely
claiming he provided a service to another colluder, because
the transactions are strictly controlled, and the control entity
can establish whether a money/service exchange occurred.
Colluders can still try to forge money, but this strategy may
be very expensive. Forging money is a powerful way to
damage honest peers by buying services from them and paying
them with false money; these payments, however, are easily
traceable by the broker, and the source can easily be kicked out
of the system. This implies that the reliability of such systems
depends on how easy it is to create and manage new identities:
if a peer excluded by the system can easily change identity, and
come back in the system forging money2, then the credibility
of the broker may be damaged and honest peers may lose
interest in the service provided. Nonetheless, if securityis
well-designed, forgery and change of identity are very hard
to achieve, and MPSs can be considered tougher to attack for
colluders.

2The phenomenon of frequent, cheap (if not free) change of identities is
known aswhitewashing.
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Other than reputation and micro-payment systems, to
counter collusion attacks we can use the instruments provided
by different fields. In fact, collusion spans over both computer
security and social-economic systems, and the most effective
solutions currently available make use of tools from both areas.
Interesting research approaches are given by game theory
and mechanism design, on one hand, and by Public Key
Infrastructure, DHT-based overlays, and bandwidth puzzles on
the other.

III. I NCENTIVES SYSTEMS

Let us examine now a first approach to making the user’s
decisions influence the utility of the system. Unlike anti-
collusion by design, this approach makes use of incentives
to give the peers some benefit in exchange of their resources.
A good incentives system encourages cooperation from selfish
peers.

A typical design method uses game theory[15], [1], [16].
By modeling the user’s behaviour through game theory it is
possible to enforce equilibria that will be followed because
they are the most convenient choice for all the users.

We proceed as follows: Section III-A shows some attempts
to incentivize peers towards cooperation, with a special at-
tention to P2P streaming. In Section III-B, we discuss some
incentives techniques based on game theory, subsequently
analyzing a specialization of this approach known as mech-
anism design (Section III-C). In Section III-D we introduce
reputation systems, specializing them in Section III-E, by
introducing the trust mechanisms to build reputation.

A. Incentives system in P2P streaming applications

Peers in a streaming system can be incentivized to cooperate
in order to reach the goal of social welfare. Incentives are
given in return of some service provided, for example the
provision of upload bandwidth. However, while file-sharing
applications can benefit of simple mechanisms as tit-for-
tat, results exist that prove this approach poorly effective.
Chu, Chuang and Zhang [17] discuss the uniqueness of the
case of P2P live streaming over the conventional file-sharing
applications, in that commonly used tit-for-tat or bit-for-bit
schemes are inefficient, because they strongly limit the benefit
that peers can derive from the application. As a concrete
example, let’s consider the average peer which has an ADSL
connection, and can thus benefit of a download bandwidth far
larger than their upload bandwidth. With a bit-for-bit scheme,
it will receive a stream at the speed determined by its upload
bandwidth, that is a waste of the larger download bandwidth:
this disincentivizes the peer’s cooperation, making him leave
the system or try to fool it.

The incentives system introduced by the authors, on the
other hand, uses linear taxation to incentivize peers to cooper-
ation. To implement it, an entity (the publisher of the content)
is assumed to have the will and the means to enforce a payment
by the users. The users in fact incur a cost by providing
upload bandwidth, in order to receive a benefit, that can be
expressed in terms of received bandwidth. Formally, each peer

i has a forwarding capacityFi and a receiving capacityRi,
while his actual provided and received bandwidth is denoted
as fi and ri. The cost and the benefit are expressed asci

andbi, respectively. With this notation, users are supposed to
maximize a utility function that can be expressed as:

ui(ri, fi, Fi) = bi(ri) − ci(fi, Fi)

subject to :

{

ri ≤ Ri

fi ≤ Fi

Peers try to gain the maximum received bandwidth possible
and to minimize the cost of providing upload bandwidth. The
publisher, on his side, implements a taxation model in the
form:

f = max(t · (r − G), 0)

wheret is the marginal tax rate decided by the publisher (t ≥
1), andG is the dynamically computed demogrant, that is, the
bandwidthfi that exceeds the receivedri and is redistributed
evenly to peers. Indeed, the cost that each peer incurs into
depends on the quantity of content he receives deprived of the
bonus given by the demogrant factor.

To explain in which terms the received and forwarded
bandwidth are adjusted, we briefly describe the streaming
model used by the system. Peers form a multiple-tree struc-
tured overlay, and the stream is divided into stripes that are
distributed along different trees formed by the peers them-
selves. If a peer subscribes to a tree, he receives the content.
Multiple Description Coding is used, i.e., the content of the
stripes is divided in such a way that if a peer receives more
stripes, the quality of the received stream improves. With such
scheme, assuming unit increases, joiningr trees is equivalent
to increase the received bandwidth byr, while the increase
of the forwarding capacity is achieved through increasing the
fan-out of a node. The publisher has to control the access to
trees to enforce his tax policy. The authors do not focus on
how the publisher can achieve this control, or which kind of
punishment is used to deter peers from misbehaving.

To evaluate the system, the authors simulate the taxation
mechanism using a distributed algorithm. Unfortunately, the
results show that the overhead produced by the distributed
algorithm used to compute the fair tax values for all peers
is two times the normal overhead in which the system in-
curs by just managing the overlay structure. The comparison
in terms of fairness proves the system to be effective, in
that it strongly dominates the bit-for-bit strategy when peers
are heterogeneous (in terms of bandwidth resources), while
weakly dominates it when peers are homogeneous. An ideal
taxation scheme is used for comparison, created by assuming
optimality of the social welfare. The idea of a taxation scheme
shows the inherent uniqueness of streaming over file-sharing
applications, but the study does not address explicitly the
problem of collusion.

Another similar approach is presented by Liu et al.[18]. The
authors present a simple tit-for-tat scheme that favour thepeers
that directly contributed to the uploader. Unlike the solution
by Chu, Chuang and Zhang[17], however, the coding scheme
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is layer-based rather than MDC-based. This means that layers
are ordered and have different importance, and that a higher-
order layer can not be used in the decoding process if the
lower-order layers have not been received yet.

The architecture in which layers are distributed is of type
mesh-pull: peers request video chunks to their neighbours
according to their needs. To upload chunks, the serverp
maintains a queue for each requesting neighbour. The incentive
consists in giving priority to the peers that contributed most
to p. On the other side of the communication, instead, the
receiverq maintains a data structure, the buffer map, to keep
track of the chunks requested but not received yet, available
but not requested yet, and buffered but not played back yet.
The peerq requests chunks according to three parameters:

1) the layer index: in a given instant of time, a lower-order
layer is given higher priority than the higher-order layers

2) the playback deadline: the layers of closer deadline for
the playback are given higher priority than the farther
ones

3) the number of duplicatesλ: the priority is given to the
rarest chunk among those available at the neighbours

The receiver also selects the neighbour to which forward
the request for each chunk. The selection is based on an
estimation of the download time made by the receiver. Since
the estimation might not be accurate, the receiver also sends
probing requests, that are served after the regular requests in
case any bandwidth is available at the server’s side.

The authors present results obtained through simulation, in
order to prove their system’s resilience to free-riding. Simula-
tion results prove that layered coding gives higher performance
than MDC. Furthermore, free-riders are effectively discour-
aged because they receive a poor video quality. Although
the problem of collusion, however, receives no attention, the
results suggest an effective way of punishing misbehaviour
which is general enough to be applied as deterrent against
colluders.

Ngan, Wallach and Druschel [19] examine a research pro-
totype based on incentives provided by a barter system in a
totally decentralized way (no central authority). Peers use the
system to manage storage quotas in such a way that each
peer receives space remotely when he provides space to store
others’ files. The attack scenarios consider the presence of
collusion and compare the performance of the system when
colluders are present or totally absent. The authors assume
that the colluders are a minority, and can even try to bribe
other peers to let them use their space without offering space
in exchange.

The design of the incentives system is based on the concept
of random audits and altruistic punishment. A public key in-
frastructure is assumed to exist. Each peerp owns ausage file,
digitally signed with his private key, containing the advertised
capacity provided to store other peers’ files, a local list with
the files stored locally for others, and a remote list containing
information aboutp’s files stored remotely. The peer can store
his files whenever he isunder quota, that is, his advertised
capacity is smaller than the storage he’s consuming remotely

in other peers’ storage. Ifp wants to store a fileF in q, q
checks ifp is under quota, then two entries are created:

1) an entry inp’s remote list:F 3

2) an entry inq’s local list: (p, F )

The main threat against this system is peerx lying about
his advertised capacity, claiming he can store locally more
than he actually can, or lying about files stored remotely,
claiming he stores remotely less files than he actually does.
In particular, colluders can form a chain to hide an imbalance
between offered and used quota by a misbehaving peer, that
the authors identify as thecheating anchor.

Attacks are prevented by using random auditing on top of
anonymized communication. Ifp is storing a fileF for peer
x, he can queryx about his remote list. In an anonymous
communication situation, sincex cannot know who is auditing
him, he cannot know which file he can lie about, by hiding the
corresponding entry in the remote list. In fact, ifx’s remote
list maliciously lacks the presence ofF (x tries to increase
his under-quota situation by claiming he is using less space
than he actually uses),p can delete it from his local storage,
becausex is not paying for the storage anymore. The operation
of auditing a node that a peer has a storing relationship with
is callednormal auditing.

To discover collusion and chains of cheating, in theory, it
is necessary to walk the chain up to its originating cheating
anchor, but this is computationally expensive if the system
is composed of thousands of peers. For this reason, other
than normal auditing, peers are required to perform arandom
auditing on a randomly chosen peer in the P2P system, not
necessarily they are having a relationship with. The authors
prove that with high probability all the peers in the system
are subject to audit, including the cheating anchor. Since the
usage file is digitally signed, the misbehaviour of the cheating
peer is clearly certified by himself. Peer can ask the system
to evict the misbehaving peer.

B. Game theory approach

Game theory offers powerful tools to model environments
where autonomous agents, the players (peers, in our case),
aim at the maximization of a utility function. The concept
of equilibrium effectively describes selfish behaviours and the
corresponding strategies, allowing the protocol designerto
know when a player does have advantages in obeying the rules
of the protocol, and when he does not. In this Section, we
compare different approaches to the design of efficient peer-
to-peer protocols, where peers have utility in following the
protocol, highlighting the possibility of further study wherever
the presence of colluders is not tackled explicitly.

Buragohain, Agrawal, and Suri [20] analyze a resource-
sharing application and characterize the behaviour of its users
with a game theory approach. They study the existence of
equilibria that can allow the system designers to build a selfish-
resilient application. Peers are assumed rational and strategic,

3The underlying P2P quota application makes it possible to findon which
peer the file is remotely stored.
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that is, they want to maximize their utility and can choose
actions to influence the system. The strategy of a peer, in this
setting, is the level of his contribution, that is, a peer can
decide how much contribute.

Di denotes the level of contribution for peeri. D can be
anything meaningful in the application context: for example, in
a file-sharing application, it can be the disk space shared; in a
streaming system, it can be the dimension of the buffer map. A
peeri incurs a unit costci when he contributes a resource. If a
peer contributesDi, the total cost isciDi, and we can express
the contribution in a normalized form as follows:di = Di

D0

.
The designer wants peers to contribute at leastdi.

Peers get a benefit by joining the system, which should
be so high as to compensate the cost they incur. A matrix
B = {Bij} describes the benefit that peeri receives from
peerj’s contribution. To obtain the benefit, the peeri requests
a resource to peerj, who provides it according to a probability
distribution p(di), that depends on the contribution provided
by i. The authors choose the formp(d) = dα

1+dα , with α > 0,
but any monotonically increasing function can provide sucha
probability.

By combining costs and benefits, a peeri decides whether
to join the system or not. The utility function describes the
way costs and benefits are related: it has the form:

Ui = −ciDi + p(di)
∑

j

BijDj

or, in a normalized form,ui = Ui

ciD0

= −di + p(di)
∑

j bijdj ,
where D0 is a normalization constant. The first term is the
joining cost, and the second the total expected benefit. As we
see, this expected utility (fori) is the sum of the resources
provided (−di) and the product of three elements:

1) what other peers contribute to the system (dj),
2) how important their contributions are toi (bij),
3) and the probability thati will manage to get his requests

satisfied (p(di)).

Given this model, the authors analyze the existence of Nash
equilibria, that characterize the social environments where
the optimal strategy chosen by a peer is stable, that is, no
unilateral deviation from it can produce a higher benefit. First,
a homogeneous setting is studied. In this scenario, each peer
gains the same benefit from all the others, i.e.,bij = b. The
utility functions all have the formu = −d + p(d)(N − 1)bd,
so the game can be studied as a 2-player game:

u1 = −d1 + b12d2p(d1)u2 = −d2 + b21d1p(d2).

This setting is known asCournot duopoly, which has a well-
known Nash equilibrium described by:

d∗1 =
√

b12d∗2 − 1d∗2 =
√

b21d∗1 − 1

assumingα = 1 in the probability function of requests
acceptance. The system can be solved asd∗ = (b/2 − 1) ±
√

(b/2 − 1)2 − 1.
A solution to this equation exists ifb ≥ 4. We definebc = 4

as a threshold under which the peer finds no advantage in

joining the system4. Forb = bc, only one solutiond∗1 = d∗2 = 1
b > bc, then two solutions exist, an unstable one and a stable
one. We can think about the first solution as the equilibrium
that is reached when the users’ contribution is so low that
a new peer would not gain any advantage in joining the
system, because his cost would overcome the benefit. The
stable equilibrium is reached when a peer iteratively adjusts
his strategy in response to the actions of other peers, until
convergence. This equilibrium is stable because no peer would
gain any more benefit by deviating from it (contributing lessor
more resources) after reaching it. ForN players, by analogy
the system to be solved to find the optimal strategy becomes:
d∗ =

√

b(N − 1)d∗ − 1.
The homogeneous case is not realistic, but is used as a

model for comparison. Assuming heterogeneous peers, that is,
a benefit matrix with genericbij , the set of equations to solve

is d∗i =
√

∑

j 6=i bijd∗j − 1, for eachi. Solving such system is
infeasible, thus the authors use an iterative learning algorithm
to find a solution. In this algorithm, all peers start with random
contributions; then, in each successive step, each peer adjusts
his contribution according to the other peers’ strategy. When
the algorithm converges, a Nash equilibrium is found.

The results of the study are mainly meant to address the
selfish free-riders, that in such equilibria would not have a
reason not to contribute resources in exchange for what they
receive. The security issues, however, are neglected. The peers
are assumed to be trustworthy and not malicious, and thus
to correctly report about their contribution level. The authors
admit the need for an audit mechanism to verify the reports
from the peers, but no actual implementation rule is described
in detail.

Feldmanet al. [21] propose a model of the peers’ interac-
tions based on the generalized prisoner’s dilemma (PD[22]).
One of the two players is identified as a client, who consumes
a service offered by the second, a server, who offers it. The
server can untraceably refuse to provide the service, i.e.,the
player who does not receive the service can not know who
denied it. A basic assumption is the lack of any centralized
trust or control. The study shows that the manipulation of
the typical payoff matrix used in the formulation of the PD
problem can be used to adapt the game to the P2P systems.
The matrix must satisfy the following requirements:

1) The mutual cooperation leads to better payoff than
mutual defection;

2) The mutual cooperation leads to higher payoff than the
case when the two players behave differently from each
other (one defects and one cooperates);

3) Defection dominates cooperation at the individual level,
i.e., the single player gets a better payoff by behaving
selfishly, even though the whole system does not.

The scenario in which these assumptions hold is also called
social dilemmabecause the individual earns more by defecting
than by cooperating, while the system as a whole has a

4For generalα, bc = 4/α.
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better global payoff when everybody cooperate. The players
are assumed to be homogeneous, that is, they all have the
same resources and can provide the same services, but their
availability is not always guaranteed. The clients are assumed
to always cooperate because they incur no costs whether they
cooperate or defect.

The authors simulate different scenarios generated by mod-
ifying the behaviour of groups of peers and studying the
effect of those modifications against the incentives mechanism
proposed. The simulations are divided in rounds, in each of
which every player requests and is requested a service in each
round. At the end of a round, a player can behave in four
ways:

1) mutate (switch to a randomly chosen strategy),
2) learn (switch to a more convenient strategy),
3) suffer turnover (log off of the system and be replaced

by another peer),
4) keep her strategy.

A traitor is defined as a player who switches strategy, but
keeps identity. The different percentage of nodes following
these basic behaviours determine the differences in the sce-
narios.

To implement the learning process of a peer, any strategy
is assigned a rating, given by the ratio between two moving
averages:

MovAvg(si ∗ age)

MovAvg(age)

wheresi is the i-th player’s strategy’s payoff, andage is the
number of rounds he used that strategy for. The interpretation
of the ratio is the following: it normalizes the payoff of a
strategy through a time window (implemented by the moving
average), then weighs it with respect to the previous history.
The switch to another strategy occurs with a probability
proportional to the difference between the currently used
strategy’s rating and the highest rated strategy’s.

The main contribution of the paper is the introduction
of a decision function namedReciprocative, according to
which a peer decides whether to serve a request or not.
A decision functiontakes a Boolean decision (cooperate or
do not cooperate) according to a history. In particular, the
Reciprocative function is based on a measure of the generosity
of peers, defined as the ratio between what they provide
and what they consume, normalized by dividing the server’s
generosity and the client’s: then the probability to serve a
request is proportional to thenormalized generositybetween
the client and the server. The need for a normalized generosity
arises as in some circumstances the authors found out that the
Reciprocative peers may find themselves to have consumed
more than they contributed: in this case, if the Reciprocative
function used the generosity function, the decision whether
to help the client or not would have been negative with high
probability, so the reciprocative peers would become defective
to each other.

The Reciprocative function is tested in a number of sim-
ulations, whose results show that by using a server selection

mechanism and a shared history of the service, the system
scales to large populations and is resilient to turnover and
asymmetry of interests5. The server selection mechanismis
based on the use of two fixed-length lists, one for the served
and one for the server players. The client picks uniformly
at random from one of the two lists whenever he has to
choose a server to interact with, thus increasing the probability
for a peer who previously received a service to reciprocate.
However, this strategy alone does not scale well to large
populations, and is ineffective against high turnover rates. The
shared historymechanism makes all the peers aware of the
previous behaviour of all the other peers, thus increasing the
reliability of the reciprocative scheme; on the other hand,it
is hard to implement in a completely distributed system (a
task usually accomplished through DHT-based storage), andit
creates the possibility for the peers to lie about the reported
history, thus opening the possibility to collusion.

C

C

C

C

A

B

20

30

0

0

100

100
100

Fig. 3. Example of collusion and how the Maxflow algorithm fights it

To fight the collusion phenomenon, a maxflow
algorithm[23], [24] is introduced that allows the Reciprocative
function to compute a subjective reputation of a node. In
contrast to an objective reputation, a subjective reputation
does not use a global knowledge of how much peer agree
on the trust of each other peer in the system: in particular,
the maxflow algorithmoperates on a portion of a digraph to
give a value to the paths that may exist between the client
and the server. The digraph is built in the following way (see
Fig. 3): the vertices are the peers, the edges represent the
service a client requested to a server, while the weights are
the reports about the service that the source (client) received
from the sink (the server). The maxflow algorithm computes
the path between the node calculating the reputation and the
node under examination. In Fig. 3 the node A finds a flow of
capacity 0 towards the node B because, even if the colluding
nodes (indicated with a C letter) report that B helped them,
the node whom A trusts has never dealt with B, thus it
is correctly identified as not trustworthy. The subjective

5The asymmetry of interests occurs when a server player who is requested
of a service does not know that the requesting client has served other peers
than her, thus effectively collaborating inside the systembut not directly with
the server herself.
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reputation of the player B perceived by player A is:

min

{

maxflow(j, i)

maxflow(i, j)
, 1

}

The drawback of Maxflow is its cost in terms of running time,
which isO(V 3); however, the authors use a truncated version
of the algorithm which presents good properties of scalability,
though in some cases no flow is found even if it exists.

Type of misre-
port

Effect Comments

No service re-
ceived

Lower reputation of the
server

Expensive (the liar must
provide service before
lying effectively)

Service
received

Increase reputation of
the server (Collusion)

Expensive

Service
provided

Increase own reputation Minimized by the struc-
ture of Maxflow (the
closest entity is trusted
more)

Service not pro-
vided

No benefit Ineffective

TABLE I
SYNOPSIS OF THE TYPES OF FALSE REPORTS.

Problem Solution Comments

Reputation Reciprocative decision
function

Shared history opens
the possibility to collu-
sion

Collusion Maxflow accuracy vs. running
time

Mole - Expensive strategy for
the mole, thus not used
for long

False reports Trust the closest peer
more

Expensive strategy

Whitewashing Adaptive stranger pol-
icy

Trade-off (Being stingy
with all newcomers dis-
courages new contrib-
utors); ineffective for
high turnover rates

Traitor Short-term history Trade-off (Long history
creates more stable rep-
utation but proves inef-
fective)

TABLE II
PROBLEMS ADDRESSED INFELDMAN et al. [21]

The paper then addresses the mole problem, false reports,
zero-cost identities and traitors. The system can not really
address the problem of amole, i.e., a peer who earns a good
reputation and then starts colluding; however, the authorsshow
that the mole’s strategy is expensive because it takes upon
itself the cost of providing the service, which turns out to be
an ineffective strategy and is rapidly abandoned. An analogous
solution is discussed about false reports of a peer about any
other peer (see Tab.I): in particular, it is demonstrated that
the false reports are expensive to produce because require a
good reputation, to obtain which it is necessary to invest in
providing services. The problem of whitewashing caused by
the zero-cost identity mechanisms is addressed by an adaptive

strategy, with positive results over the fixed strategies, until
the turnover is under the rate of10−3. Finally, the problem
of the traitors is addressed. Atraitor is a peer who earns a
good reputation and then start defecting (i.e., negating service)
to other nodes. It is shown that traitors are disruptive for the
system whenever a long-term history is kept, while by using
a shorter-term history the effects of good reputation are easily
removed without destabilizing the system. A resume of the
main results of this paper is shown in Tab. II.

Morselli, Katz and Bhattacharjee [25] propose a game-
theoretic framework to analyze the robustness of a trust-
inference protocol, that is, where the interaction betweenpeers
is directed by the trust they have in each other. Without
focusing on a single protocol, they give a notion of robustness
in a strong adversarial model, in the absence of a central
authority, that can be used to analyze a protocol and to
compare different incentives systems6.

Let Π be the protocol that honest peers obey to, and
malicious peers do not. The protocol describes the way trustis
computed and assigned to each peer, and the actions that peer
perform according to the trust values. The adversary,A, knows
the details of the protocol, can see every message exchanged
between any two peers, and can interfere with the protocol by
sending messages.

The peers are identified through pseudonyms. The
pseudonyms are distinct, easy to create, but cannot be used
by an adversary to impersonate an honest peer. The adversary
can use four oracles, that are functions that simulate his power
of manipulating the interactions and provide a worst-case for
the analysis:

1) NewUser: Create an honest user, whomA knows of.
Through this oracleA controls the size of the network;

2) HonestPlay(i,j): Makei andj (honest peers) play
a game. Through this oracle,A controls the trading
partner of the honest peer;

3) Play(i, id, action): Play a game betweenA
(identified by id) and i. A plays action, while i plays
according toΠ;

4) Send(i, id, message): Send a message
message from A’s id to useri.

The interactions between peers are described through a pay-
off matrix typical of a classical Prisoner’s Dilemma7, which
means that the best strategy (highest payoff) for each player
is to defect instead of cooperating. The authors, however, do
not explicitly limit the choice of the game.

The robustness of the protocol helps understanding whether
following the protocol is the best strategy for the adversary.
To model robustness,A is assumed to have the capability
to perform a limited number of contemporary actions: in
particular, he stores an integer timestampt ≥ 0 for each action
he performs, and the model assumes a limit to the number

6An important consideration is that incentives are meant to encourage
selfish peers, whereas the malicious ones have to be counteredby other means,
more related to security.

7See AppendixA.
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of new user created at the same time by usingNewUser,
and a limit to the number of simultaneous interactions created
by invoking Play. The protocol is run normally up to the
time when the adversary decides to perform an action, and
A can engage more users without giving them the chance to
interact (according to the protocol) in the meanwhile. In other
words, we can suppose thatΠ is followed by honest peers, and
then, at timet, everything stops, andA interacts with more
peers at the same time. After the simultaneous interaction,
the honest peers can keep on interacting normally (until the
next A’s action). Now, each time he plays thePlay oracle,
the adversary increases his utility of an amountδtµ, where
δ < 1 is a discount factorand µ is the payoff given by the
payoff matrix defined above. The discount factor models the
decrease in utility as a result of playing later in time.A’s goal
is to maximize his utility. For this reason, the protocolΠ is
robust if A maximizes his utility by obeying to it.

In this framework, a protocol can satisfy additional desired
properties. Theexpected utility, that is, the utility everyone
receives when everyone obeys the protocol, should be max-
imized. A protocol is moreover required to beefficient in
the usage of network resources (for instance, by limiting the
number of overhead messages), and specifically efficient in the
policy it uses with newcomers. Finally, it is desirable thatthe
protocol be resistant to faults, in particular that it keepshis
robustness when faults occur.

With these properties in mind, a designer can prove his
protocol to satisfy formal requirements and compare it with
existing protocols. The authors, however, do not provide an
example of a protocol which is robust and at the same time
admits the presence of colluders, even if the framework allows
modeling malicious/selfish coalitions.

Keidar, Melamed and Orda [26] design a peer-to-peer
system that counter freeloaders by modeling the adversarial
environment as a non-cooperative game for which an equilib-
rium is devised that ensures all the participants will receive
all the content (content distribution) or the content produced
from their arrival into the system onwards (streaming).

A single serverS distributes a numberP of data packets to
N peers,p packets per unit of time. A node is assumed to have
sufficient upload bandwidth to sendp/k (plus a small constant)
packets per unit of time to each of hisk neighbours. TheN
peers are assumed to be non-cooperative. Among the strategies
they can decide to follow, the authors describe the properties
of the Protocol-Obedient Strategies(POSs), which are the
strategies that follow the protocol and define the number of
connections and the traffic flowing in them. Users endeavour to
maximize their utility, by using strongly dominant strategies,
that is, strategies that incur the minimum cost for any choice
of other peers’ strategies. The cost function useri tries to
minimize has the form:

ci(s1, s2, . . . , sN ) =

{

∞ if ini < P
outi if ini = P

whereini, outi are the number of packets received and sent,
respectively, andsi is the strategy of peeri. This function is

slightly different in case of streaming applications. In fact,
a peer can join a stream in every moment, but he is not
interested on packets appeared before his join. In this case,
P is substituted withmp, wherem is the number of rounds
the peer has sojourned in the system, andp is the multicast
rate from the source.

The central (logical) serverS builds an overlay that connects
the peers. The overlay is required to satisfy strong constraints
to bound the delay of messages and to grant the existence of
an equilibrium of the strategies: in particular, all nodes have to
have exactlyk neighbours. The diffusion of packets is based on
gossip: every round, each node exchanges information with its
neighbour about the packets received, and provides the packets
requested. Each node keeps a balance between himself and
each of his neighbours between what it provides and what
the neighbour provides him in terms of packets. The balance
should never fall below a threshold8. If a peer does not own
a sufficient number of packets, he asks the source to provide
packets on its behalf, and pays a fee in terms offine packets,
i.e., dummy packets which do not contribute to their balance,
but waste their resource (and the network’s). In these cases,
the sourceS is said to behave as anemulated node. It is clear
that it is not in the interest of the peer to ask the help of
the source; on the other hand, the frequency of such situation
may limit the scalability of the system for the load the source
incurs in.

In each round, a peer is requested to send and receive
packets. A peer who wants to minimize his cost decides to pay,
in terms of fine packets, rather than fall below the threshold
and misbehave. In fact, if a peer does not receive gossip
messages, nor requests for packets from one of his neighbour,
he assumes the neighbour is misbehaving, and he cuts the
overlay link toward him and asks the server to replace it. The
punishment for misbehaviour, thus, is the irreversible eviction
from the system. It is not completely clear, however, whether
the peer can reconnect by using another identity. Since no
reputation mechanism is used, a user evicted from the system
can just rejoin with another identity. This strategy, however, is
ineffective in streaming applications, where being evicted from
the system, even for a few seconds, substantially degrades the
quality of the user experience.

The authors prove that if all the nodes choose strongly
dominant strategies in the set of POSs, then

1) All nodes have an initial set ofk neighbours
2) All nodes keep their neighbours until the end of the

multicast session
3) All nodes receive all the packets

In particular, no unilateral deviation from such dominant
strategy gives the peer a greater utility (lower cost), so this
is proved to be an equilibrium. This theorem, however, is
proved for the static setting, where no joins or leaves occur.
The basic assumptions are that most users use a POS because
they do not have the technical skill to hack the application,or

8The threshold is conceptually similar to the imbalance ratio described in
Li et al. [27].
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refrain from installing hacked applications. It is also assumed
that no out-of-channel communication occurs among users:
the results found by the authors depend on the substantial
isolation of users. For this reason, the system cannot be proved
to be collusion-resistant (nor was collusion-resilience adesign
objective). In particular, no malicious peer is assumed.

Eventually, the authors describe a dynamic setting with join
and leave operations.

Li et al.[27] design a system that encourages collaboration
by delaying the benefit until reciprocation is fulfilled (long
service maturation). The authors implement a video streaming
application, that enforces anapproximatedNash equilibrium,
described by a parameterε. While obtaining a perfect Nash
equilibrium may be very hard or even impossible, due to
computational complexity problems related to the distributed
nature of the system and to the interactions among its users,an
approximated Nash equilibrium is computationally acceptable,
and can still provide the desired quality of service, despite the
presence of both rational and Byzantine players.

The system involves three types of entity. First, a sourceS
generatesP new chunks in each round, and distributes them to
a small fraction of peers. Each chunk has an expiration date,
after which it becomes useless (adds no utility to the receiving
peer). Second, a tracker keeps track of the participants by
storing their identities (public keys): each user interested in the
stream asks to join to the tracker. Third, the peers participate
to the stream in order to get the benefit of watching the stream.
Each peer deliversP chunks in a round; if this does not
happen, then a loss occurred and the video quality degraded.
The goal of the system is to minimize the number of rounds
where the quality degrades, or, to keep high and constant the
continuity index as defined in [28].

The authors model the adversary according to the BAR
assumption, where the acronym stands as a reminder of
the three kinds of interacting players in the network, i.e.,
they assume the presence and interaction of altruistic (A),
Byzantine (B), and rational players (R). The latter pursue
the maximization of a utility function that can be expressed
as u = (1 − j)β − wκ where j is the average number of
discontinuities,β is the benefit obtained when a continuous
stream is received,w is the used upload bandwidth (in kbps),
andκ is the cost of 1 kbps upload bandwidth. We can interpret
the utility as the number of continuous rounds (without losses)
minus the cost in terms of upload bandwidth.In such setting,
a ε-equilibrium is a steady state where peers deviate if they
expect a utility increase of a factorε.

To reach the design goal, the authors design a basic gossip-
based protocol to ensure robustness against up to a fraction
of Byzantine players, and then augment it with a number
of improvements to increase the performances. The basic
protocol comprises four phases. Let’s suppose that the source
sends both chunks and a linear digest that can be used to prove
the chunks authenticity in each round. In each round, the peers
follow these four phases:

1) Select a partner using a verifiable pseudo-random al-
gorithm (to avoid malicious selection, and at the same

time take advantage of the randomness to implement
robustness against faulty nodes);

2) Exchange buffer maps (histories) to decide exactly
which chunks exchange according to what a peer owns
and what the partner owns;

3) Exchange encrypted chunks (briefcases), plus a signed
promisemessage that matches the briefcase content. The
promise may be used as a Proof of Misbehaviour if the
briefcase contains garbage. A peer accused with a POM
is evicted from the system.

4) Eventually, upon checking briefcase and promise and
finding them matching, the peer sends the decryption
key to the partner.

The basic protocol is robust against the presence of faulty
nodes, but suffers from unacceptable penalty in performance.
To address this issue, the authors plug into the basic protocol
a set of improvements. First of all, peers reserve trades one
round before performing them, in order to organize the con-
nections with partners and limit a probable excess of requests.
Nodes are instructed to refrain from asking for the same
missing chunks to more than one partner, thus optimizing the
network load; an appropriate chunk selection mechanism and
the usage of erasure codes techniques ensure the minimization
of losses. A further improvement includes a tolerance in the
imbalance between the quantity of data uploaded and down-
loaded, in order to give disadvantaged peers the possibility of
obtain the stream even though uploading slightly less chunks.
A detection module monitors the exchange of chunks and
suggests a node to initiate more trades in a round to catch up
with missing chunks and recover quality of service. Eventually,
a further improved partner selection algorithm deals with
newcomers and alleviates the load on older participants by
bounding the possible partner choices of newcomers to a
smaller subset of the entire participant set.

The system gains in performance, but, what is more impor-
tant, it can be proved to enforce anε-Nash equilibrium. Let’s
see now how the authors analyze the equilibrium and how
the analysis affects the design of the protocol. The starting
point is the consideration that the equilibrium enforced bythe
system is not valid in every round, that is, a peer may gain
more by deviating. Let’s consider the optimal strategy and the
utility that comes out of it, that can be expressed asuo. We
can describe the relative advantage of the optimal cheating
strategy over the strategy the obeys the protocol (that we can
call ue) as follows:

ε = uo−ue

ue
=

(je−jo)β−(wo−we)κ
(1−je)β−weκ

=
cje

1−je
+(1−b)

c−1

where b is a fraction (b < 1) of the bandwidth used to run
the protocol (that can be lower-bounded). In steady state,
the user has to upload at leastminups = ⌈needed

1+a
⌉, with a

corresponding cost ofcost = γ +minups× ρ. The parameter
γ represents the fixed cost of a trade in kbps, whileρ is the
increase in cost for each chunk uploaded; finally,needed is
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the number of chunks a peer needs in each round. To find the
equilibrium, we can solve forc with the objectiveε = 0.1:
we find that this is an equilibrium if the rational peer values
the stream at least 3.36 times more than his cost in bits.

The system is proved to be robust against 10% of Byzan-
tine peers, and resilient against selfish behaviour. Long term
strategies performed by malicious colluding peers, however,
are not considered explicitly and their study is put off as a
future work.

Kash, Friedman, and Halpern [29] offer an alternative
vision of collusion and Sybil attacks, where the formation of
coalitions, be them formed by rational users or by mock users
(as is the case for Sybil agents), can have a positive effect on
the system’s overall welfare.

T set of types
ft fraction of nodes with typet
m average money per agent

TABLE III
PARAMETERS THAT DESCRIBE THE MODEL USED BYKASH et al. [29]

The system is modeled withn agents, each of which can ask
for a service and provide it, if he has enough capabilities. The
system is described as a tuple(T, f, n,m), whose components
are explained in Tab. III. A standard agent is described through
a tuplet = (αt, βt, γt, δt, ρt, χt) (see Tab. IV). The prices for
services are assumed to be fixed and normalized to 1$, that is,a
service provided by agenti to agentj costs 1$ toj and makes
i earn the same amount of money. An important assumption is
that the random variables that model the behaviour of agents
in coalitions are correlated, thus the authors cannot use the
concept of entropy to measure the difference among them,
but they have to use the concept ofrelative entropy, that
measures the weighted distance among the distributions. The
agents value the exchange of services with the same valuation
γ.

The agent’s strategy consists in the simple choice of a
thresholdk, below which he starts volunteering to earn money.
It can be interpreted as the greed of the agent: ifk is high,

Definition Interpretation

αt Cost of satisfying the request Amount of resources provided
βt Pr{Agent can satisfy the re-

quest}
The Agent has the same type of the
request and the required resources

γt Utility gained from the agent
when his request is satisfied

Benefit received without consider-
ing costs

δt Discount rate Peer’s patience: The more patience,
the more the utility got in the next
round will be similar (in amount)
to the same utility received in this
round

ρt Service request rate A peer’s need for service
χt Pr{being chosen to give ser-

vice | the agent is capable of
satisfying the request}

If more peers volunteer to offer the
service, they are chosen according
to this probability distribution

TABLE IV
MODEL OF THE AGENTS INKASH et al. [29]

the peer has higher incentive to start volunteering.
Given this model, the authors analyze two types of scenario,

Sybil attacks and Collusion, finding out that there is an over-
lapping between them in some cases. A sybilling agent, i.e.,an
agent that controls Sybils, can be effectively discouragedfrom
Sybil behaviour by making him pay a cost for each identity
he creates. The authors observe that the Sybil threat is more
effective on the system’s utility when the number of sybilling
agents increase, thus arguing that the designers have to find
a method to stop the phenomenon in the early stages of the
system’s operations. The conclusion is somehow surprising,
because there are situations where the presence of Sybil
agents is beneficial to the system. This can be explained by
considering that the social welfare almost coincides with the
number of requests satisfied. The sybilling agents have a high
chance to satisfy requests, thus they tend to have lowerk (they
earn more, so they are less greedy, too), thus leaving place
to the competition among fewer honest nodes. In particular,
if we call pe the probability of earning 1$ when providing
a service, andps the probability of spending 1$ as there is
an agent willing to satisfy this agent’s request, then sybilling
provides a net gain to the attacker whenpe < ps, and a loss
otherwise: the longer the distance between the two quantities,
the more the gain or loss, respectively. This can be explained
by considering that with a cost for the creation of identities,
creating an identity is profitable if the need for earning (pe) is
far less than the spending capability (ps). With these premises,
the authors prove a theorem according to which, by carefully
manipulating the quantity of money present in the systemm,
Sybil attacks can be effectively countered, keepingpe high
enough for honest peers to have advantage in staying in the
system.

The simulation results show that when the value ofm goes
over a threshold, the system crashes. Without Sybils,m can
be increased up to a value of 10.5 before the system crashes;
when Sybils are present, this value decreases (m = 9.5).
This means that settingm without considering the presence
of Sybils can take the system to crash, clearly unveiling the
existence of a trade-off between efficiency (higherm) and
stability (lessm).

Collusion, as said above, can overlap with the Sybil attack
whenever colluders pass off a request to another member of
the coalition. The authors model the collusion as the presence
of coalitions inside which money and resources are shared,
thus assuming away the presence of more types for the agents.
To separate the study of collusion from the problem of Sybil
agents, they also assume that a colluder accepts a request when
he can directly satisfy it. The advantage in colluding is that
when a peer does not have money to request a service (and
only in this case), the members of the coalition volunteer.
Moreover, all the request that can be satisfied inside the
coalition are indeed satisfied by another colluder. As the size
of the coalition grows up, there is less and less need to send
requests outside it. This situation has clear advantages for the
members of the coalition; it is clear, however, that other non-
colluding agents with lowpe have less chances to earn money
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because most requests from the colluders will be satisfied
inside to the group. The authors obtain results similar to the
case of Sybil agents, showing that the system benefits when
the number of colluders is in a certain range, but that when
the second extreme of the interval is overcome, the system
becomes unstable until it eventually crashes.

The collusion can also be encouraged to provide a loan
service: a member of the coalition without money can ask to
borrow some from another member. This mechanism, however,
is particularly sensitive to whitewashing, where agents change
identity to escape debts, and its design represents an open
question for research.

C. Mechanism Design

Mechanism design (along with Algorithmic Mechanism
Design, or AMD, and Distributed AMD, or DAMD) [1],
[30], [31] has a strict dependence on game theory, which
has been used as a modeling tool for the construction of
incentive systems. The characteristics of systems modeled
using mechanism design is that they rely on the system inner
structure to discourage and combat collusion, that is, the
system directly enforces fair behaviours.

Mechanism design (MD) is the discipline that tries to induce
a behaviour onto selfish agents by designing the payments
and the punishments for good and bad behaviour, respectively.
Formally, we haven agents having atype each, denoted as
ti ∈ T i for agent i. The type is a privately known input,
while the other information is publicly known. A mechanism
design problem is composed of an output specification, that
mapst = t1...tn 7→ o ∈ O, whereO is the set of allowed
outputs, and a set of utility functions for the agents. According
to his typeti, each agent gives a value, calledvaluation, to
any output, in the formvi(ti, o). The utility can be expressed
as the sum of the number of currency units assigned by the
mechanism to the agent (pi), plus his valuation of the output:

ui = pi + vi(ti, o)

This last form of the utility function is known as quasi-linear.
Mechanism design is an economic theory, but it can be

combined with tools from the computer science, like approxi-
mation, and a particular concern about computational tractabil-
ity. An overview of Algorithmic Mechanism Design with an
example application is provided by Nisan and Ronen[1]. The
authors describe MD optimization theory, and then introduce
the Vickrey-Groves-Clarke mechanisms that prove useful to
solve many algorithm mechanism design problems. At this
point, they focus on a specific case study, i.e., a task scheduling
problem, introducing the concept of randomized mechanism,
and the addition of averificationphase to the mechanism, that
can be used to punish misbehaviour.

According to the previous outline, let’s define what an opti-
mization problem is in the context of MD. A MD optimization
problem can be defined by two components:

1) An output specification, given by a functiong(o, t)
positive and with real values and a set of feasible
(computable) outputs,F ;

2) An output requirement,o ∈ F that minimizesg, or an
approximation.

In the context of an optimization problem, we can describe
the concept ofmechanism. A mechanismm = (o, p) must
assure the required output when agents behave selfishly. It
defines payments for each agent, depending on the strategy
they used. Particularly, the mechanism defines the possible
actions that each agenti can perform as a setAi from which
agent i chooses his strategyai. An output function has the
form: o(a1 . . . an), that is, it depends on the choices of agents.
The payments are assigned according to the chosen strategies,
in the form of a vectorpi(a1 . . . an),∀i. As conventional
in game theory, we define the vectora−i as the vectora
without the component related to agenti. With this notation,
a mechanism can be designed withdominant strategiesif:
(1) ∀i, ti it exists ai ∈ Ai (dominant) such that∀a−i, ai the
mechanism maximizesi’s utility, and (2) ∀a = (a1 . . . an),
the outputo(a) satisfies the specification. A mechanism is
poly-time computable when the outputs and the payments are
computable in polynomial time.

The optimization problems, as they are formulated above,
create a wide spectrum of cases. To further restrict the analysis,
the authors use the revelation principle: If there exists a mecha-
nism that implements a problem with dominant strategies, then
there exists a truthful implementation as well. If the revelation
principle holds, we can concentrate the analysis on truthful
implementations.

A particularly useful class of truthful implementation is
known as Vickrey-Groves-Clarke (VGC). VGC can be applied
to maximization problems where the objective function is
given by the sum of the valuations from all the agents.
The problem, however, is that VGC mechanisms are often
intractable, through optimal. This requires the use of approx-
imated solutions.

To show an example of the approximated approach, the
authors describe the classical task allocation problem and
find an approximated algorithm for a special sub-case by
using AMD techniques. The task allocation problem can be
described in terms of MD as follows: We want to assign
k tasks to n agents. The type of each agenti is tij , the
minimum time thati needs to perform taskj. The feasible
outputs are the partitionsx = (x1 . . . xn), where xi is the
set of tasks assigned to agenti, and the objective function
is g(x, t) = maxi

∑

j∈xi tij . Each agent gives a valuation
vi(x, ti) = −

∑

j∈xi tij , i.e., the opposite of the total time
spent to execute the tasks in the setxi. First, the authors find
an upper bound by defining a mechanism where each task is
assigned to the agent that can execute it in the least time, and
for each taskj he is paid in terms of the time that the second
fastest agent would have used to execute the same task. The
lower bound is a 2-approximation, that is, it performs twice
worse than the optimal algorithm.

The theoretical bounds provide two limits to how well a
mechanism can perform. The authors, however, prove that
a randomized version of a mechanism can perform better
than the lower bound described above. Before describing
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how, let’s see how a randomized mechanism is defined. A
randomized mechanismis a probability distribution over a
family of mechanisms{mr|r ∈ I} that share the same set
of strategies and possible outputs. The mechanism’s outcome
is a probability distribution over outputs and payments, while
the objective function is the expectation computed over all
possible objective functions of each mechanism. Now, we
can outline the procedure followed in the study to prove
the effectiveness of the randomized mechanisms. First, a
mechanism is defined, which depends on a parameterβ and
a bit vectors ∈ {1, 2}

k. At his point, the random version
assigns a fixed value toβ , but defines a uniform distribution
for the bit vector. It can eventually be proved that the random
mechanism so defined is a 7/4-approximation for the task
scheduling problem when two agents are in the system.

As we can see, to obtain closed forms for the results
we have to narrow down our perspective to very special
cases. Another path, however, allows the authors to define an
interesting technique to counter malicious peers. Namely,in
the task allocation problem, we can distinguish two stages in
the strategies of the agents: in a first stage, they declare the
times they need to execute the tasks, while in a second stage
they actually execute, in a time generally different from what
they originally declared, the tasks the mechanisms assigned
them. The mechanism, however, assigns the paymentsafter the
actual execution, according to the difference between whatwas
declared and the actual execution times. The consequent mech-
anism, called Compensation-and-Bonus, is such that lying
agents are punished for their misbehaviour. The mechanism
is intractable because it requires exponential time algorithms
for the computation of the payments and outputs; it is possible,
however, to approximate it with a polynomial algorithm, but
losing the truthfulness property. In particular, a sub-case of
the task scheduling problem can be approximated with a1+ε
polynomial approximation∀ε > 0.

Ma et al.[16] design a framework that provides service
differentiation according to users’ contribution and incents
peers to contribute resources to the system, with an interesting
formal result about the amount of collusion the application
can tolerate. The framework consists in a resource allocation
mechanism, the Resource Bidding Mechanism with Incentive
and Utility (RBM-IU), that induces a competition game among
nodes requesting a service to a peer. The competition is
modeled through a competition game played by following
a network protocol. Peeri expresses his requests through
biddings (bi(t)) sent to the source of a services. The source
has a given amountWs of bandwidth to distribute to requesting
peers, according to their biddings and their contribution.The
game is proved to have a unique Nash equilibrium, practically
implementable using a linear time algorithm by perturbing the
theoretical solution by a small positive amountε.

The RBM-IU mechanism is built upon a max-min fairness
model for bandwidth allocation and encourages contribution
by assigning more resources to more contributing peers. The
theoretical problem of maximization the source solves for the

assignment is:

max

N
∑

i=1

Cilog

(

xi

bi

+ 1

)

s.t.

N
∑

i=1

xi ≤ Ws

with xi ∈ [0, bi]∀i. This allocation procedure does not waste
resources and is proved to be Pareto-optimal, that means
that the allocation vector cannot be improved further without
reducing the utility of at least one node.

The allocation mechanism generates a competition that can
be modeled using game theory. In particular, the parameters
Ws andCi are supposedly common knowledge of every player
(the peer). The strategies are defined by the bidding valuesbi

for everyi, and~b = {b1, b2, ·, bN} describes a strategy profile.
The allocation mechanism can be imagined as a system that
takes as input the contributions~C and the biddings~b, and
produces the assignments~x, outcome of the game (the players
want to maximize the allocationxi)9.

After describing the game structure, the authors prove two
results, and then describe how the theoretical analysis can
be translated in a practical implementation. Specifically,the
strategy

b∗i =
WsCi
∑N

j=1 Cj

for each playeri is a (unique) Nash equilibrium. Given the
validity of this result, it is possible to prove an interesting
property of collusion resistance of the system. Let’s startfrom
a definition:κ-collusion occurs when a subset ofκ competing
nodesNκ use a strategy profilebi 6= b∗i and achieve a larger
allocation of bandwidth, in the following form:

∑

i∈Nκ

xi >
∑

i∈Nκ

x∗
i .

The authors prove thatκ-collusion does not create a better
allocation than the Nash equilibrium, thus peers have no in-
terest in deviating from the solution that ensures the maximum
social welfare.

In order to translate these nice properties into an existing
and feasible system, the authors make some modifications to
the theoretical model, proving the persistence of the properties
discussed above. The first practical issue is the common
knowledge of contribution of all peers by all peers. This
problem is solved by making the source send a signal at the
beginning of the competition game stating the value of the
allocation in terms of user contribution. The source has the
interest to apply this procedure because it enforces the Pareto-
optimality and thus a fair allocation that the source itselftakes
advantage of. To take into account the possible resource waste
due to network congestion, the authors modify the bidding
system with a perturbation factor. In particular, nodes usea
bidding value given bybi = min{wi, (1+ ε)si}, whereε is a
small positive number,wi is the maximum download capacity
of peer i, andsi is the signal sent by the source. The result

9By specifying the players, the strategies and the outcomes, we have
described the game in normal form.
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is not strictly a Nash equilibrium, but becomes exact whenε
is small.

In the context of BAR systems, that is, a scenario where
players can be divided into Byzantine, Rational (selfish),
and Altruistic (obedient to the protocol), Clementet al.[32]
argument against the lack of a clear process for the design
of a rational-resilient protocol, and propose a protocol which
is proved to be resistant to collusion by using the game
theory results. The authors show that the players increase their
utility when obeying the protocol. The analysis, however, is
based on a cost-benefit model that, once changed, weakens the
protocol’s resilience.

The process of designing a strategy-proof protocol follows
four steps:

1) Describe the protocol as a game
2) Enumerate the possible players’ violations
3) Design a BAR-tolerant protocol
4) Analyze the protocol

The study leverages on the results that prove that players do
follow a protocol when they have no greater benefit by deviat-
ing than by obeying it. The authors prove that the results about
k-Fault Tolerant Nash Equilibria, that is, Nash equilibria10 that
are tolerant to up tok selfish peers (including colluders), have
too narrow a range of applicability (the Walrasian problems),
and that the results about (k, t)-robust protocols (which tolerate
up tok rational andt Byzantine players) rely on too strong an
assumption, i.e., the inexpensiveness of communication among
players. According to these premise, the focus moves to Re-
peated Terminating Reliable Broadcasting problems (R-TRB),
which are a class of protocols that are proved to be resilient
to Byzantine nodes. Specifically, they prove that the Dolev-
Strong TRB protocol [33] is not a Nash equilibrium, thus
allowing players to defect and the social utility to decrease.

To counter the problems of R-TRB, the study proposes
a protocol based on Dolev-Strong, calledJust TRB. The
design, however, overcomes the weaknesses of Dolev-Strong’s
solution, classified as follows:

1) Impossibility to distinguish communication failures from
selfish silence

2) Possibility of increasing the long term utility by defect-
ing

3) No punishment for misbehaviour

To clearly distinguish between failures and selfish behaviour,
the Just TRB protocol uses predictable communication pat-
terns: the number of messages to exchange is always the
same, and, when the phase requires fewer, padding messages
are sent. A cost balance decreases the utility gained by not
sending messages, and an accountability mechanism induces
the certainty of punishment.

The protocol is based on the classification of the players,
from each player’s point of view, into Friends, Ex-Friends,
and Enemies. The status depends on the direct interactions
between peers, but once a relationship turns worse, it cannot

10See Appendix A.

be rebuilt. The presence of ad-hoc penance messages ensures
that a player cannot turn a Friend into an Ex-Friend without
motivation.

A key contribution of the paper is the rationality analysis of
the protocol presented. The authors prove that their protocol is
a Nash equilibrium with the assumed cost-benefit model, thus
the players do not have any advantage in deviating from the
equilibrium strategy because they would in that case decrease
their utility. The analysis enumerates all the possible deviations
from the equilibrium, and calculates the benefit gained by
following them. The proof is based on the following result:
the maximum utility gained by deviating is smaller than the
minimum benefit gained by obeying the protocol.

Feigenbaum and Shenker[30] survey the state of the art
in the Distributed Algorithmic Mechanism Design (DAMD)
field, which can be exemplified as the study and the design
of distributed systems where participants, assumed to be
self-interested, have to be properly incentivized to follow
the system’s algorithm. As self-interested, the user will not
generally follow the algorithm if this is not an advantage for
them. Specifically, DAMD addresses both incentive compati-
bility and computational tractability in systems where agents
and resources are distributed. The authors illustrate the open
problems inherent to the DAMD problems formulation: first,
they show that it is still missing a measure of the hardness of
a problem; second, they question the value of approximated
solutions to hard problems; eventually, an overview of solution
concepts alternative to Nash equilibria and dominant strategies
are investigated, and indirect mechanisms are presented as
possible candidates to direct mechanisms, where not strictly
required by the domain.

Let’s provide some specific definitions to further illustrate
the problems mentioned above. The system goals are charac-
terized by theSocial Choice Function(SCF), which generally
does not coincide with the single user’s utility. A SCF is
strategy-proof if no agent has an incentive to lie about his
utility, it is group-strategy-proofif there is at least one agent
suffering penalty whenever other agents collude to get benefits.
A mechanism pair(M,S), whereS is calledstrategy space,
from which agents choose a strategy, andM is a function that
maps vectors of strategies into outcomes. The mechanism is
indirect when we know something about players’ utility only
through the indirect choice of the strategies fromS, direct
otherwise.

The design of a mechanism depends on a model of the
problem. While, however, theoretical computer science has
defined a notion of hardness of a problem in both the Turing
and the PRAM models, the authors point out that there is
still no such distinction for DAMD problems. In this context,
it can be defined the notion ofcanonical hardness, which
comprises the problems where either computational tractability
or incentive compatibility can be achieved, but not both.
Now, it is desirable to know whether a hard problem can be
approximated by a simpler problem, and how good the ap-
proximation is. Only basic results exist about approximation:
in particular, strategically faithful approximations areproblem
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approximations where the strategic properties of the original
model hold, but other properties are approximated. There exist
three such approximations:

1) ε-dominance: A strategy vector(s1, s2, . . . , sN ) is anε-
dominant equilibrium if for every agenti, and strategies
ti and ~t−1, it is true thatui(M(t−i∪si))+ε ≥ u(M(~t)).
In this approximation,si is not the best strategy, but it
is within a factorε of the optimal strategy (also see Li
et al. [27] for an example of application).

2) Feasibly strategyproof mechanisms: A better strategy
exists, but it is infeasible to compute for ALL the agents,
that is, the infeasibility derives from computational
limits.

3) Tolerably manipulable mechanisms: A mechanism is
tolerably manipulable if it is not group-strategyproof, but
we can characterize the types of malicious groups that
can form, and we can demonstrate that their effects on
the community are tolerable. Such mechanisms answer
the question: How large can the effects of malicious
coalitions be? For this reason, they are particularly
interesting for the study of collusion.

As we said above, the problems from a mechanism de-
sign perspective are usually studied with a special focus on
dominant strategies and Nash equilibria, which are known
to be hard to compute. Alternative strategies may well be
thought over, however. In fact, it is realistic, in a distributed
environment like the Internet, to assume that the agents not
only do not know of the existence of each other, but they
observe different payoff for themselves applying the same
strategy, for mutated network conditions. In this case, we
obtain an interesting simplifying assumption by modeling the
system as an iterative game, in which the players do not know
about the payoffs of other players, but can iteratively learn
them by observing the output of the choices as they appear in
the network.

Finally, the authors show that the design of indirect mecha-
nisms offers a trade off between the privacy of the agents,
who just partially (if at all) reveal their utility functions,
and the network complexity that derives from the need to
retrieve that information in other ways, which usually involves
the explosion of the number of messages to exchange. It
is not proved that indirect mechanisms inherently require a
network complexity higher than direct mechanisms, however,
so that it would be a result to show examples of scenarios
where the former incurs in lower network complexity than the
corresponding direct mechanism.

D. Reputation systems

General overviews of the literature are provided in the
works by Marti and Garcia-Molina [34] and by Despotovic
and Aberer [35].

Marti and Garcia-Molina[34] classify the design needs for
P2P applications that require a reputation system. Reputation
systems are used against three types of adversaries: selfish
peers, malicious peers and Byzantine peers; only one type

of adversary, however, (especially selfish peers) is usually
considered, while others are neglected.

Against any adversary, a reputation system complies with
a number of sometimes contrasting requirements. First, as
any system, P2P applications are required to be stable, so as
to provide a good service to well-behaved users: resilience
against churn (peers connecting and disconnecting from the
network) exemplifies this problem, because high percentages
of churning might disrupt the service and the quality of user’s
experience. Second, to build a reputation, it is fundamental
to persistently and securely store the data that describe the
behaviour of users: in fact, one of the main targets of an
adversary is the removal of the proofs of his misbehaviour.
Third, users in a distributed environment must be subject
to proper admission policies to access the resources of the
system, but ideally (and in opposition) also having the option
to remain anonymous. Anonymity and access control are
clearly contrasting requirements. Persistence of data, onthe
other hand, is hard to achieve in a continually mutating system.

For a reputation system to manage reputations and re-
sources, a control entity is required. Control can be central
or distributed. Naturally, a distributed system should favour
the latter; a centralized control, however, reduces the number
of entities to trust, while making them a more isolated target
for malicious agents.

Now that we have explained the requirements, let’s focus
on the way to organize the architecture. The main components
of a reputation architecture are:

1) the policy of information gathering about peers’ inter-
action,

2) the ranking system with the ways of using it, and
3) the system’s response mechanism to a misbehaviour.

The information about a peer binds an identity to a behaviour.
It is impossible to build a reputation without assigning it
to an individual; the requirement of anonymity, however,
may prevent system designers from binding a real identity
to a virtualpersona. As stated previously, for example, Sybil
attacks are a way of misbehaving about identities and to falsely
build a reputation by using more coordinated identities. The
information about a peer can be gathered by hierarchically
expanding the single peer’s trust: starting with direct inter-
action, that can be easily recognized as good or bad, a peer
may trust his real-life friends’ judgment about other peers,
then using the neighbours’ experience, and so on. A general
assumption is that, by aggregating more opinions, the accuracy
of information about a peer is likely to become high. Related
to the problem of reputation building is the stranger policy,
i.e., how to relate with peers that for the first time join the
system and thus have no reputation at all.

The ranking system establishes which behaviour influences
the reputation. Particularly, since it is hard to prove misbe-
haviour, it is generally possible to measure the number of good
transactions. As we will see later on, transactions, on their side,
may have different importance, according to their value for
the peers involved and with respect to the resources used. For
this reason, both the quality and the quantity of interactions
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have an impact on the score assigned. While some solutions
use a single scalar value to rank a peer, some systems, like
TRELLIS[36], assign arrays of values to separately mark
different faces of the reputation of a peer.

The way the system uses the reputation is the last design
dimension of reputation systems. A punishment limits the
behaviour of malicious users without encouraging contribution
by selfish users. Punishments can range from the ejection from
the system to the emission of fines, where this latter alternative
requires strong identity infrastructure and solid anti-collusion
mechanisms. In fact, a group of colluders may slander an
honest peer and make the system unfairly fine him. On the
other hand, scores can be used as incentives, which encourage
the cooperation of selfish peers. Incentives can be money in
a money-based system (see Section IV) or a better quality of
service.

Despotovic and Aberer [35] make a comparison between the
reputation systems implemented using one of two approaches,
namely, probabilistic estimation techniques and social net-
works. The terms of the comparison are:

1) the performance of the estimation of the behaviour of
peers given the history of their past behaviours;

2) the computational cost of the estimation;
3) the possibility of using the estimated reputation values

to build trust.
In order to formalize the definition of a reputation system,

the authors introduce the concept oftrust multigraph: it is
defined as a digraph in which the peers are the nodes and
the interaction between a peerp producing a service and a
peerq requiring the service defines an edgep → q which is
weighted by a value that represents an evaluation produced
by q about the service received byp. A definition of a P2P
reputation systemis then given as a quadruple (G, A, W ,
T ). G is a directed weighted multigraph defined by (P , V ),
P being the set of the peers andV being the set of vertices
of the graph.W is the set of evaluations from which peers
extract the value to assign to the service received, whileA
is an algorithm that exploits the information contained in the
multigraph to produce the valuet ∈ T of the trustworthiness
of a peer in the network.

The information that the algorithmA uses to build the
multigraph can be imagined as a table storing(key, value)pairs
representing the identifier of the peer and the trustworthiness
value. This table can be stored differently according to the
underlying P2P overlay: in a structured P2P overlay, the table
can be assigned to a node in a pre-specified way, because
the keys are assigned to peers by the key space; on the other
hand, in an unstructured overlay (which lacks an organization
of the peers’ disposition) each peer can store the information
about itself and its outgoing edges (the evaluations given to
interacting nodes). Since the information stored by peers in a
structured graph does not concern themselves, they can earna
profit by misreporting it: in this case, ad-hoc voting systems
should be conceived to identify misreported content. The most
expensive network operation performed by the algorithmA is
the exploration on the graph to gather aggregate feedback and

build reputation, which coincides with an exploration of the
underlying overlay graph11. Now, the main difference between
social networks and probabilistic estimation techniques is that
the former need to aggregate the feedback values of all the
peers of the network to compute the trustworthinesst of any
peer, while the latter only need information about the peer and
its interactions (conveyed by a fraction of the trust multigraph).
The algorithmA can actually exploit this difference in the
quantity of information to collect when the underlying overlay
is structured, performing the necessary search operationsin
O(lnN) time (N being the number of peers), unlike the
case of social networks, where a flooding is necessary which
requires a cost ofO(N). However, the costs become the same
in case of unstructured overlay networks, where even to build
a partial multigraph a flooding is necessary (in both cases, the
cost isO(E) whereE is the number of edges of the whole
trust multigraph).

The main contribution of the paper, other than the analysis
of the two approaches, is threefold. First, a definition of a
set of collusive patterns which peers can follow in case of
misbehaviour is proposed and analyzed through simulation.
The scenarios analyzed are four. The population is assumed to
divide into two groups: the honest peers, who always report
honestly, and the liars (dishonest peers), who misbehave in
different ways. Bepi the probability for peeri to behave trust-
worthily: the analyzed scenarios are the following:

1) Simple collusion. The liars always misreport about hon-
est peers, and always report 1 (trustworthy behaviour)
about peers of the same group.

2) Collusive chain. The liars form an ordered circular set
(chain): if there aren liars, then peerci always reports
1 for peerci−1 and misreports on all the others, with
the additional rule (circularity) establishing thatc0 ≡ cn.
Chains are most effective when loops bring gains, which
normally is the case in social networks.

3) Two collusive groups. The population of liars further
splits into two groups, which we callL1 andL2: a peer
i belonging toL1 always behaves honestly (pi = 1),
but always report 1 for the service provided by any peer
from L2; a peerj belonging toL2 always report 1 for
the services provided by any peer fromL1, but we do
not do any hypothesis about the service it provides (pj

is not necessarily 1). This means that peers of groupL1

gain high reputation in force of their honest behaviour,
and acquire high credibility to recommend peers of the
groupL2.

A fourth scenario is calledIndependent misreporting, that we
report for the sake of completeness but we believe not directly
related to the subject of this survey. In this case, the liars
always misreport on any other peers, even those from the
same group; however, this cannot be considered a collusive
scenario, because malicious peers do not coordinate.

11The authors deem the building of an another overlay for the reputation
management as too much an expensive operation if compared to the improve-
ments obtained with respect to using the existing overlays.
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The second main contribution is the comparison between
the two kinds of approach. The results show that the prob-
abilistic estimation techniques perform a better prediction of
the peers’ behaviour than social networks when the population
of collusive peers is a fraction sufficiently far from half ofthe
entire population (between 0.1 and 0.3 and between 0.6 and
0.9), with the only exception of the simple collusion scenario.
The only case when the social networks are preferable is when
the population of the collusive peers is equivalent in number to
the population of the honest peers; however, the costs required
to aggregate the feedback, as said before, are to be taken into
account.

A third contribution is about the number of interactions
required for each peer to provide a sufficient amount of
feedback information for the estimation to be performed with
tolerable error. The simulation results show that a significant
variation in the number of peers in the network has a little
impact on the number of interactions: it has been found
that 20-30 are sufficient to obtain a good prediction of the
trustworthiness of any peer (bygoodmeaning that the absolute
mean error between the prediction and the actual value is
around 0.3). Obviously, different requirements may demand
higher- or lower-quality estimations.

As the authors admit, there are some assumptions which
may not be valid in the real world. First, the probabilistic
models used in the simulations are not proved to model
the behaviour of P2P communities: this means that further
work is required in this direction. Second, they assume that
the information about the trust multigraph is available, while
this might not be the case in presence of churning (nodes
disappearing from the network may have stored non-replicated
content), or simply if not all nodes are on-line. This last objec-
tion, however, can be removed whenever effective replication
strategies are used.

Marti and Garcia-Molina [37] show how much a pool of
trusted peers in a file-sharing system can reduce the number
of attempts a peer has to perform in order to obtain a valid
resource (a file, in the study). In a system ofn agents, they
suppose that a peer queries for a resource, and a number
of peers owning a copy of that resource replies. Users are
supposed to verify the validity of a file by using a function
that requires a cost, and the query is re-issued in case the file
obtained was corrupted.

The authors conceive a threat model that takes into account
the collusion of a group of peers, particularly focusing on front
peers that always provide good files but lie about the reputation
of malicious peers. To avoid the attacks, a reputation system
is designed. The reputation of a target peer is based on two
components: the direct opinion of the sender, if he already had
interactions with the target, and the (indirect) opinions that
other peers have about the target peer. The two components
are weighed according to the trust the sender has in the peers
that express an indirect opinion about the target.

When peers reply to a query, the sender selects one of
them according to different policies. A local policy selects
peers which the sender has a direct opinion about, and whose

identifiers are stored in a Friend Cache. According to the
local policy, a trade-off must be decided about, by choosing
whether the most reputable peer should always be selected,
thus intensifying the load over him, or if a peer should be
selected probabilistically, with probability proportional to their
reputation, thus distributing the load among the most reputable
peers. A local policy corresponds to a weight of zero about
other peers’ opinions about the target peer. A voting policy, on
the other hand, also considers the other peers opinions. Now, to
select the other peers which the sender trusts the opinion of, a
selection policy can be used among two (voters policy): select
the neighbours, that not necessarily had an interaction with the
sender in the past, or select the voters in the Friend Cache.
In an adversarial, untrusted environment, choosing from the
Friend Cache turns out to be fundamental.

The authors perform experiments with different adversarial
settings, analyzing the efficiency of their system in terms of
number of files to download to obtain a valid one, the load on
good peers, and the traffic generated by the system messages
to manage the reputations. The results show that collusion
is better countered when peers make an extensive use of the
Friend Cache. Particularly, as could be expected, collusion is
more effective when indirect opinions are given more weight.
As in any reputation system, furthermore, the problem of
whitewashing caused by cheap identities may significantly
reduce the effectiveness of the reputation system. The authors
propose to use a login server to limit the effectiveness of this
type of collusive behaviour.

Now that we have a general view of reputation systems,
let’s examine some solutions described in the literature. The
problem of reputation calculation is addressed by Gupta,
Judge, and Ammar[38] with a partially decentralized solution
that is based on the presence of a central authority, the
Reputation Computation Agent(RCA), which is assumed to
be trustworthy, and two different computation systems. The
context the authors have in mind is a file-sharing application,
in which a query-based search phase precedes a download
phase. Given this scheme, a peer gains a high score (1) by
ensuring his contribution in the processing and forwardingof
the queries, and (2) by staying on-line during the transfer phase
if he is chosen by the requester (the client of the interaction) as
the server of the content. By considering these two basic types
of contribution, the reputation score is built using objective
criteria, that is, peers’ contribution do not depend on how
good the receiver considers the transaction, as is the case
in subjective reputation systems such as EigenTrust[39], but
by using objective elements (the quantity of data transferred,
weighted through the capability of the involved agents).

More precisely, the reputation score is computed according
to two elements: the peer’s behaviour, i.e., his contribution
in both the search and the download phases, and the peer’s
capability, i.e., his resources in terms of CPU power, memory,
storage, and bandwidth. Once computed, the score is stored
locally, but a proof on the validity of its value is replicated in
the RCA’s records.

The authors illustrate two schemes for the computation
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of the reputation score: a Debit-Credit (DC) and a Credit-
Only (CO) scheme. The contribution is measured among four
dimensions:

1) the credit acquired by processing queries,
2) the credit acquired by uploading content,
3) the debit accumulated by downloading content, and
4) the credit acquired by sharing content,

where the third lacks, of course, in the CO scheme. To compute
these components, the system requires a registration procedure
for the peers who want to benefit of it, and thus give up
their privacy (by making every interested peer aware of their
contribution). Each enrolling peer sends a pair of (public,
private) keys (PKp, SKp for peerp) to the RCA, who then
uses a digest of the peer’s public key to identify him. The
querying peers sign their queries, that are then stored by the
serving peers to prove they actually got a request. For this
reason, the signed queries are called Proofs of Processing
(PPs). The RCA stores ahistory of the transactionsbetween
peers, thus preventing a server from asking for credit more
than once for each transaction. At the same time, if no
interaction occurred between a client and a server, the lying
client can be proved to lie because his signature identifies him,
and a lying server can be proved to lie because he will not hold
a signed request of processing. The RCA’s transaction history,
however, has to be kept under limited size, thus starting losing
records after a given time: this can create problems about
accuracy of the reputation score where a peer does not ask
for his credit from the RCA for too long.

In the DC scheme, the file transfer produces a credit for the
server, and a debit for the client. The procedure is validated
by the presence of areceipt, that proves the request from the
client and the actual delivery of the content by the server.
The client produces a signed Requester Portion of the Receipt
(RPR) before the transfer occurs, that the server stores as a
receipt after checking its authenticity against the requester’s
public key. At this point, the server serves the content. The
requester is forced to produce a RPR to make the transfer
start, while the server is forced to serve the content when it
accepts, otherwise the client can complain with the RCA for
misconduct and lower the reputation of the server or making
him kicked out of the system. In the CO scheme, on the other
hand, the debit does not exist, so the RPR is sent only after
the transfer. The receiver has no disadvantage in sending it,
since it does not produce debit; he has no advantages, either.
This makes the system dangerously subject to unpaid credit,
that could discourage altruistic agents from participating to it.

The sharing credit is eventually computed by the RCA
by inspecting his transaction history, thus retrieving theup-
time of a peer from the timestamps of the first and last
transaction, or by periodically asking the peer himself about
his shared content. Both the methods, however, are inaccurate.
The first one may miss the presence of peers that are in the
system, but for some reason do not participate to transfers;
the second method is still more inaccurate, since it depends
on the frequency of the polls and on the system used to verify

that the polled peer is not lying.
The authors do not explicitly address the problem of multi-

ple identities. In the CO scheme, since no debits are used, itis
preferable for each peer to use a single identity to accumulate
reputation score. In the DC scheme, however, a peer can use
two identities, one for uploads, that accumulates reputation,
and another one for downloads, that accumulates debits. The
lack of a method to enforce expensiveness of identities creates
the possibility of collusion. In particular, in the DC scheme a
peer can use multiple identities to avoid debit, while collusion
among more agents is ineffective, since one of the colluders
has to pay for the download. In the CO scheme, the situation is
worse because colluders can claim to have transfers between
them, thus accumulating reputation score. Even though less
credit could be assigned to peers that always interact with the
same partners, this is not wise because the frequent interaction
might be the consequence of common interests.

The solution introduced by Ntarmos and Triantafillou [40]
is based on a two-layer modular infrastructure which uses a
DHT to store reputation values, and uses them to schedule
the requests stored in each peer’s queue. The two layers
separate the problems tackled by the system. A first layer,
SAL, monitors the peers’ behaviour, and is meant to fight
selfishness by using a reputation system. The second layer,
SVL, tackles the problem of malicious peers that try to subvert
the system.

The reputation system is based on the concept of favor. A
peerp asks a favor to a peerq by requesting a resource,r. For
each favor granted, the client stores an entry in a list of owed
favors, while the server stores an entry in a corresponding
list of granted favors. The selfishness of a peer is measured
by comparing the number of favors granted to the number
of favor owed: the more the list of favors granted is longer
than the list of favor owed, the more a peer is altruistic. To
implement the infrastructure that stores the reputation values,
the SVL layer uses a DHT system that can be created ad
hoc when the underlying application does not provide it, or
can exploit an existing DHT used by the application itself.
Peers use an asymmetric key pair, and are identified by the
hash of their public key. This system prevents malicious peers
to position themselves in a well-chosen location in the DHT,
because their position is determined by their public key. All
resources are identified by a UUID, and so are the interactions
between peers.

To create reputation, peers interact through transactions. Ei-
ther peer in a transaction stores a Transaction Receipt (TR)in
the form TR = (client.ID||server.ID, r.ID, timestamp),
which has the important property of giving a quantitative
information about how important a favor is, thus providing a
differentiation between transactions involving a small amount
of resources from the more resource consuming interactions.
The server, as said above, stores the TR in his credits list,
while the client stores it in his debits list. When a server is
requested a resource, moreover, he can redirect the requesting
peer to one of the peers who owe him a favor. The redirect can
be recursive, i.e., the peer pointed to can point to another peer
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who owes him a favor, and is regulated probabilistically by a
node-defined parameter, according to which the peer accepts
the redirect or refuses it.

The transactions may involve altruistic and selfish peers.
According to their behaviour in a transaction, the peers gain
or lose reputation. The reputation enforcement is based on
black and white lists. When a peerp interacts with peer
q and observes a deviating behaviour,p publishes on the
DHT a blacklisting request (BLR). The receivers of the BLR
grants the misbehaving peer a second chance according to a
probabilityP (SC), or blacklist him creating a blacklist record.
The BLR is structured in such a way that the storing node
cannot read the identity of the blacklisted node. Every node
periodically probes the DHT overlay looking for black-records
regarding him, and if he finds any, he can clear his reputation
by starting reciprocating favors to the blacklisting peer.

The other mechanism that determines the reputation of a
peer is the white-listing. The local list of favors granted from
each peer serves as white-list and is used when requesting
resources to a server. Each request receives ascore, computed
as follows: The client chooses a subset of his granted favors
and sums up the sizes of the corresponding resources granted.
From this value, sent to the server together with the request,
the server subtracts the sum of the resource sizes involved in
the transactions subject to black-listing, and the size of the
requested resource itself. According to the score, the request
is inserted in the server’s queue. Thus, the scheduling of the
requests in the queue depends on the client’s reputation, i.e.,
the size of the favor he has granted.

The system considered so far, however, assumes that the
participants are not malicious. To counter the presence of
malicious (isolated or coordinated) peers, the second layer
(SVL) is designed to provide security mechanisms to prevent
the attackers from controlling at their own advantage, and
at disadvantage of the system, the resources that describe
the reputation system. To this end, SVL slightly modifies
the mechanism of the SAL. The TR is now signed by both
parties, for accountability. Each node periodically verifies the
validity of black records by asking for the corresponding BLR
and the TRs stored at the client and server who interacted.
The periodical check also gives the nodes unfairly blacklisted
(slandered) to file a blacklist request for the perjurer12. In the
same way, more control is put on the white lists. When a client
sends a request, the server checks the validity of a part of
his white list according to a probability parameterP (C). The
black records, which constitute the second term of the sum that
defines the priority of the request, are checked with probability
P (B). The values of the probability parameters allows for a
trade-off between the accuracy of the control procedures and
the overhead introduced in the network to check the validity
of the information exchanged.

The authors explicitly consider two types of attack, namely,
the Sybil attack and the presence of colluders. The Sybil

12The randomness of the checks does not provide a tight bound on the time
it takes for a perjurer to be punished for his behaviour.

attack is discouraged by the reputation system, that erases
the reputation of a peer when he first joins the network as
a newcomer. The presence of colluding malicious coalitions,
however, is not tackled extensively. A group of colluders can
build a fake reputation for any of its members, and the only
way to counter this phenomenon is the counterbalance offered
by the presence of black records. If black records are avoided
and white records are provided by colluders, the system
may prove less effective than in more optimistic cases with
weak, uncoordinated adversaries. Moreover, the combination
of Sybil attacks and collusion may make the adversarial threat
destabilizing.

Banerjee et al. [41] propose an agent-based system to
build trust in a P2P environment. The following threats are
recognized as destabilizing for trust:

1) Free-riding, i.e., the phenomenon of acquiring benefits
without providing any. This problem is effectively ad-
dressed by mechanisms that provide benefits proportion-
ally to the resourcesτ shared by the peerp who requests
the resourcex to another peerq;

2) Collusion. Authors recognize that in order to avoid
using the information provided by a clique of colluding
peers that try to promote a malicious node, it would
be necessary, in the worst case, to exchange messages
with the whole network (in the worst case in which it
is impossible to be sure about the honesty of the other
peers).

3) Zero-cost identity, which gives the malicious agents the
chance to behave selfishly and cancel their low reputa-
tion by logging out of the system, creating a new identity
and then logging in again, exploiting the bootstrapping
mechanisms meant to favour participation. As we have
seen before, this problem is partially addressed by giving
greater advantages to identities with high reputation,
so that peers are encouraged to cooperate to gain high
reputation and greater benefits13;

In order to fight the presented problems, the authors propose
a mechanism based on agents installed at each peer and on the
exchange of histories of interactions between pairs of peers
(shared history). A client peerq is granted a resource requested
to a server peerp according to theexpected utilityp can gain
by helping. The expected utility is calculated by exchanging
messages with a limited number of neighbour peers in order to
collect information about the past behaviour ofq: in particular,
if the requested resource is of typeτ , p will help q if the
expected utilityE(p, q, τ) evaluates to a positive number. In
fact, in that case the peerp can expect with high probability
that the peerq will help it back in the future.

The probability for a peerq of being helped by a peerp at
time t̄ is the sum of two quantities, in the following form:

Prpq(t̄) = (1 − α) × localp(q) + α × remotep(q)

13This design choice leaves open the chances to gaining a high reputation
and then exploiting it selfishly, and to forging high-reputed identities by
malicious users.
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wherelocalp(q) is the information that peerp collected about
peerq during past interactions, whileremotep(q) is, on the
contrary, the information thatp gathers from other peers
who had interactions withq in the past. In other words, the
localp(q) is the trust thatp grants toq, while remotep(q) is the
recommendation thatp receives from trusted neighbours. The
factorα weights the two quantities, starting from small values
in the initial moments after the system starts, then rising to
higher and higher values as the history for each peer becomes
more and more populated. This mechanism fights the free-
riding problem: if many peers report about the free-rider, it
cannot earn a high reputation, thus the probability of being
helped is constantly kept low. There is still the possibility for
the peers to misreport in collusive scenarios: this problemis
discussed in what follows.

The second major problem which the authors try to address
is the collusion among peers, who may lie about the reputa-
tions they have collected about other peers. Collusion is a real
possibility in this system, because it is assumed that thereis
a network gain when giving and receiving help to/from a peer
(as can be observed by the simulation settings14). To limit this
problem, a peerp evaluates the trustworthiness of the other
peers’ reports about a peerq through a Bayesian estimation:
in a first step, the peers reporting aboutq are considered
trustworthy; then, the estimation ofp is updated with the
results of the actual interaction withq. The simulations show
that after an initial period (which is half of the simulation
length) the reciprocative agents correctly identify the selfish
colluding agents; unfortunately, the authors do not show which
schemes of collusion (e.g., in the sense of Despotovic and
Aberer [35]) have been used in the simulations, so it is hard
to give an opinion about this result.

The zero-cost identity problem is addressed by introducing
a threshold for the reputation that a peer must reach in order
to receive help from a server agent. The results show that the
reputation scheme is not effective for newcomers, because for
their short past interactions history they have few elements to
decide whether to help another peer or not. The simulation
results show that the scheme works effectively only when the
population of colluders is the minority in the system.

E. Reputation through trust

A way to build reputation can be based on the notion of
trust.

Kamvar, Schlosser and Garcia-Molina [39] present a de-
centralized algorithm to build reputation in a P2P system,
and analyze its effectiveness in several scenarios, including
collusive threats. The algorithm is based on the concept of
global reputation, which is computed aggregating the local
trust information of each node belonging to a subset of the
network. Nodes belong to regions of responsibility according
to the DHT system described in Ratnasamyet al. [42], known
as CAN. The reputation of a target peer is computed by a set

14A peer who helps another incurs a cost of 10, while getting help from a
peer gives a saving of 1000.

of M score managers, chosen by hashing the unique ID of
the target node through M different hash functions. A score
manager has to know the set of peers interacting with the
target node, known asdaughter, either receiving a service or
providing it15: in particular, the nodes that received service
from the daughter give the score manager the reputation values
about the daughter, which are used in turn by the manager
to compute a trust value. The authors show that this trust
can be obtained by an iterative computation of the principal
eigenvector of the normalized local trust values.

The study analyzes different collusive scenarios. The first
collusive threat model is based on the assumption that col-
luders can form a chain inside of which they assign high
trust values to each other. The algorithm effectively limits the
attack, but the pre-trusted peers play a key role in this result,
because they help the system keep the reputation of colluders
low enough to prevent them from being chosen as download
sources. However, without pre-trusted peers the algorithmhas
no means to combat the attack and the colluders irreversibly
take over the system.

A variation of this scenario is when malicious peers provide
malicious content with a probabilityf , behaving collabora-
tively for the rest of the time; at the same time, they form
a chain as described above. The simulation results show that
in this case colluders have an effective negative effect on the
service of the system as a whole, because they earn trust by
providing authentic content; specifically, iff = 50%, they
obtain the maximum result of diffusing a 30% of inauthentic
content. The authors argue that this scenario forces the collud-
ers to spend resources in the system to gain their advantage;
however, we believe that this threat model is sensible when we
consider a malicious peer whose goal is not the disruption of
the system, but a better service than he deserves (see section
II.

Collusion starts becoming effective when malicious peers
organize into separate groups. The authors suppose that collud-
ers split into two groups: a first group (the Infiltrators) behaves
collaboratively with every agent and earns high reputation,
but always assigns high trust values to a second group of
colluders, who never collaborate (the Parasites). The Parasites
earn high reputation for the scores assigned by the Infiltrators.
With the same effort spent in the previously described strategy,
malicious agents diffuse twice the polluted content. The results
compare a trust-based system with a system without trust-
based download source selection, showing better performances
int the first case. However this result was expected, and the fact
is that this kind of threat creates great damage with acceptable
effort, and is therefore one of the most effective collusion
schemes analyzed.

Another form of (virtual) collusion is the famous Sybil
attack. Although it may not be considered a collusive attack
(since there is usually only one attacker that creates many
ghost identities under his control), a natural variation may be
when a group of colluders takes control over a group of already

15The paper considers the exchange of files as the service.
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trusted peers. The EigenTrust algorithm does not deal directly
with the Sybil attack. The authors propose to assign a cost
to each identity to restrain malicious agents to create multiple
ghost identities that provide high trust values. The algorithm
itself performs poorly in this condition.

Eventually, the authors analyze a scenario when a single
peer provides with a given probability a malicious executable
to the peers requesting legitimate content. This is not, strictly
speaking, a form of collusion, but it would be interesting to
know how disruptive can be an attack of the same kind set by
many colluding agents.

An application of the EigenTrust algorithm is used to
perform an empirical study of an existing P2P application.

Lian et al. [4] describe the results of an empirical study
directed at defining the characteristics of colluding behaviours
in a peer-to-peer file-sharing system. The analysis is devoted
to prove the validity of four novel measures (detectors) by
applying them to one month of system logs to detect suspect
behaviours. The system analyzed is a file-sharing application
where incentives are designed in such a way that the users who
upload content are rewarded with, and the users who download
content are deprived of points. The key concept is that a user
with more points (i.e., with a better reputation) gets faster
downloads. This incentives mechanism, managed by a single,
central entity, assigns users more points per byte for uploads
rather than it takes away for downloads: this means that
uploading and downloading the same amount of data produces
a net gain. This property can be exploited by colluders to earn
fake reputation (that is, without actually providing any benefit
to the system) and use them to increase their own benefits (in
this case, the download speed). The assumptions made for the
definition of detectors are the following:

1) Colluders produce a large amount of traffic with the
same content to minimize the number of data uploaded
and maximize the number of points gained (repetition
detector). This approach is ineffective when the colluder
covers her traces by slightly changing the uploaded con-
tent, because the detector assumes the perfect identity of
the content of repeated transmission;

2) Pairs of colluders can upload to each other large amounts
of (any) data with respect to the amount of data provided
to the rest of the users (pair-wise detector);

3) Many identities on the same machine might be an
attempt of a colluder of gaining reputation by uploading
content to herself. This threat exploits the inexpensive-
ness of identity creation (like in the Sybil attack) and
the corresponding detector is known asspam account
detector16;

4) Colluders are likely to keep a facade behaviour by
uploading to many peers while at the same time mis-
behaving by directing most of the uploaded data to a
single partner. This behaviour is highlighted by a useful
indicator named Traffic concentration (TC), which pro-

16The authors find out that by combining the pair-wise and the spam account
collusion, users can deceive the detectors.

duces thetraffic concentration detector. One drawback
of this detector (as well as of the previous one) is that
it assumes that the identity of the user is univocally
determined, which may be actually hard in presence of
DHCP/NAT systems.

Even though the analysis provides interesting insights into
the collusive behaviour patterns, the authors do not know
whether the users detected as colluders are actually such, so
they cannot contrast their results against a known system.
However, in order to prove their detectors’ validity, they
compare their results with those of the EigenTrust algorithm
applied to the same logs. The different results are explained
as follows: the EigenTrust algorithm assigns low values (i.e.,
low reputations, also known asEigenRanks) to peers with
low-reputation clients. This means that the following relevant
scenario is misjudged: a LAN in which a server provides
content to the local network, where its clients download most
from the external network. The local server is detected as a
colluder by the algorithm. On the other hand, colluders may
raise their EigenRank by collaborating with the setP of pre-
trusted peers.

Eventually, the authors make two reflections:

1) There is a similarity between the collusion threats in
peer-to-peer systems and analogous scenarios in the web
page ranking research field;

2) The ideal solution would be the joint use of the
EigenTrust and the Maxflow[21] algorithm, though not
feasible due to the fact that Maxflow is expensive to
implement in a distributed environment;

One limitation of the approaches presented so far is that the
trust values are computed regardless of the context in which
the application runs. Moreover, all transactions receive the
same evaluation, without considering their relative importance.
In the following, we present a study that addresses these
limitations.

Xiong and Liu [43] evaluate a system calledPeerTrust
to build trust in an adversarial environment. Each peerp is
assigned a trust valueT (p) that measures its reputation in
the system, that depends on four intermediate measures. To
explain the way trust is computed, let’s consider two peersv
and w that exchange a service in a transaction; in particular,
let’s assumew provides the service tov. First, a peerv
expresses a feedback in terms of satisfaction he received from
the transaction, expressed asSat(v, w). The feedback ofv has
a certain degree of credibilityCr(v), which is the second value
influencing the trust computation and depends onv’s history.
Third, a transaction has a value, denoted as Transaction factor
(TF (v, w)), related to its importance: for example, a query-
response interaction to locate some content has a different
weight than the transmission of the content itself. Finally, the
single community can determine the weight of the trust itself
according to internal conventions. This value is expressedby
the Community factor,CF (p). If we call I(u) the set of peers
that had an interaction withp, then the trust of peerp has the
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following expression:

T (p) = α

I(p)
∑

i=1

Sat(p, i) × Cr(i) × TF (p, i) + βCF (p)

whereα andβ are further weights used to give more impor-
tance to one term or the other.

The simulation results use a simplified form of the equation,
dropping the second term and puttingα = TF (p, i) = 1,
while the credibilityCr(i) is evaluated in the two ways. First,
we can express the credibility of a peer recursively using his
trust value, dividing the trust value of peeri by the aggregated
trust of all the peers that had interactions withp. Alternatively,
suppose peerp and peeri have interactions with different sets
of peers,I(p) and I(i), whose intersection is obviously the
set of peers who interacted with both. If both store a vector
where each element is a rating of satisfaction received by a
peer, we can define a similarity between the two vectors and
measure the credibility ofi with respect to the distance of his
ratings fromp’s.

Given the metric for trust computation, we can describe
the system. A component installed on each peer serves two
purposes. First, an archive stores a subset of the trust values
of all the peers in the system; second, a trust manager submits
feedback and evaluates trust. Multiple replicas of the trust
values are stored distributedly, so to prevent data pollution by
coordinated voting. The authors describe a caching system to
speed up the aggregation of trust values. A PKI infrastructure
ensures the expensiveness of the creation of identities.

An interesting analysis of collusive behaviour is provided.
The simulation results show that the credibility computed as a
function of similarity between ratings vectors proves effective
in filtering out the distorted ratings of groups of colluders.
Moreover, the system is studied to rapidly adapt to changes
in peers’ behaviour, trying to counter the effects of peers
who accumulate trust and then abuse of it by misbehaving:
in fact, a peer’s trust grows up slowly, because only a large
number of successful transactions build a high trust value;
at the same time, however, trust decreases fast and few bad-
rated transactions are enough to drop it. A proper use of a
time window prevents peers from using long-time up-time
periods and past good behaviour to misbehave effectively in
the present: simulations show that oscillating behavioursare
chased by correct trust values that follow the behaviour of
peers by rising when they behave correctly and rapidly falling
down when they misbehave.

An interesting problem for which the authors suggest further
study is the one-time attack, where a peer builds a strong rep-
utation and then exploits it once: such attacks are impossible
to fight with current reputation systems.

Another way to get past the limitations of the reputation
systems is to combine different sources of reputations. Silaghi
et al.combine a direct and an indirect mechanisms to compute
the trust of peers in order to overcome the limitations of
the EigenTrust algorithm, explicitly addressing the collusion
problem in a peer-to-peer grid system used for distributed

computation. In the original system , volunteer nodes (work-
ers) provide their CPU power to run experiments over a
large amount of common data sets. A master node distributes
computation tasks for workers to run over the data sets, while
data sets themselves are distributed using BitTorrent. Collusion
is countered by using replication and consensus, that is, a result
is deemed valid when a majority of the workers agree upon
it. The original system always uses replication to validatethe
results, with large computation overhead.

To alleviate this load, the authors propose a weighted
voting system to assess the validity of results, using trust
values to compute a validity score for results. The setting is
the following: we haven workers that are assigned a work
replicatedn times. Then results are collected by the master,
who stores a table containing trust values for each worker.
Each resultrj is assigned a scoresj in the form:

sj =

∑

i φi,jti
∑

i ti

whereφi,j is 1 if peeri ran the workj, 0 otherwise; the value
ti is the trust for peeri, stored in the aforementioned table.
If we defines∗j = maxjsj , then the resultr∗j is accepted if
s∗j > θ, whereθ is a threshold properly chosen to guarantee
the coherence of results in the presence of low reputation
peers, but always greater than 0.5. Moreover, to avoid that
low reputation workers (maybe forming a malicious coalition)
undermine the correct result provided by a high-reputation
worker, authors require that the lowest reputation peer in a
pool delivering the resultrj , say,wl (pivot), has a trust value
tl > 0.5.

The major contribution of the study is the method to build
the reputation of the peers. Each peer has two roles in the
system: he is a worker, computing the result, and a peer
in a content distribution application. The master that assigns
the works can observe directly the behaviour of the peers as
workers, but not their behaviour in the distribution network.

The direct observation is based on the presence of compu-
tation quizzes, used as explained in the following. A new peer
starts with a reputation of 0. The master establishes an error
rate,ε, tolerable on the number of correct results over the total
number of results. The general result is that to obtain an error
ε, a worker has to solvemmax =

√

1/ε − 2 quizzes. In this
system, however, the authors do not use separate quizzes, but
rather, for each result of peeri validated by the master, the
peer’s reputation is increased by1/mmax. To avoid the clas-
sical front peer attack, the validated results are timestamped:
this means that a peer that does not produce results for a given
time gets his reputation decreased. Specifically, the master
discards the results after a timedt, subtracting1/mmax from
the worker that produced it.

The indirect observation is based on the application of the
EigenTrust algorithm to the local trust values computed by the
peers about their partners. The local reputation that peeri has
towards peerj is the ratiodi,j between whati downloaded
by j and what he uploaded toj. Moreover, a peer can ban a
partner when he discovers that the partner sends corrupt data
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or otherwise tries to damage the system. No explicit focus
is given to the problem of peers unfairly banning partners
(slandering). When the master needs the trust value for peer
i, he asksi’s partners about their local trust values. Ifi is in
a pool of n workers, and⌈n/e⌉ workers have him in their
blacklist, then the master deemsp malicious and discards his
result, halving his trust valueti. If no worker turns out to be
malicious through this phase, the master computes a matrix
D = di,j and applies the EigenTrust algorithm. At the end of
the process, the diagonal of the matrixD contains the trust
values for the peers examined, that are used to tune the trust
values obtained through direct observation.

IV. M ICROPAYMENT SYSTEMS

This Section introduces a completely different alternative
to incentive systems, based on micropayment systems, and
compares different implementations.

Yang and Garcia-Molina [13] propose a micropayment
system to regulate the interactions between peers. The system
is based on floating, self-managed currency (coins) under the
control of a central entity called broker. To be floating, the
coins are required to be taken and given by the same agent
without the involvement of a central authority, which is exactly
the case in P2P networks, where agents play the roles of
both the server and the client; the currency is said to be
self-managed because the security issues are managed by the
peers, still without intervention of the broker. If we denote by
PKb, SKb the pair of public and secret key of the brokerb,
a peerp requests a coin to the broker by paying a sum, and
the broker sends him a signed message in the form

C = p, snSKb

becoming theowner of the coin. Thesn parameter is the
unique serial number of the coin.

From this moment on, the owner is responsible for the
maintenance of the coin. The owner uses it to pay another
peerq in exchange for a service, thus grantingq the right to
become theholder of the coin through anassignmentthat has
the form

Apq = q, seq1, CSKp

The broker has no participation in the assignment phase. The
holder canreassignthe coin to a third peer, notifying the owner
and making the older assignment no longer valid. In every
moment, the owner is aware of who holds the coin and of the
history of exchanges, in order to have a proof of acceptance
or relinquishment in case of disputes with any peer that has
held or still holds the coin.

When any party but the broker happens to be in a downtime
phase, the remaining agent addresses the broker to require the
reassignment or the cashing of the coin. Since this creates
a load for the broker, he charges both the requester and the
owner (when it come on-line again) to perform the operation:
this encourages peers to stay on-line as long as they can.

The security analysis is based on three invariants:
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Fig. 4. Coin replication:h tries to reassignC to bothx andy

1) If h is the valid holder of coinC owned byp, thenp
cannot prove thath has relinquished his valid assignment

2) Successive assignments reflect successive sequence
numbers

3) The owner can refute any assignment made by an
unauthorized holder

The authors analyze how the system is resistant against
common attacks to a micro-payment system; in particular,
they focus on coin replication, malicious/wrongful denialof
an assignment, and double-spending. A brief analysis of these
attacks gives us a useful insight into the problems common
to most micropayment systems. The first threat described is
the coin replication: suppose the owner of a coin,p, assigns
it to a peerh, who thus becomes the holder of the coin.
Peerh can reassign the coin to a third peerx, and try to
reassign it again to another peery. The sequence is illustrated
in Fig. 4. Peerp can prove that the second assignment is invalid
because of invariant 3. Suppose now that the owner decides
maliciously or wrongfully that the current holder of a coin,h,
does not own a coin by valid assignment. Given invariant 1,
p cannot maliciously claim that a valid assignment is invalid:
it is his responsibility, as the owner, to prove that a holderis
using an invalid assignment. Finally, the possibility of double-
spending a coin exists. In this case, the owner assigns twicethe
same coin to two different peers. The broker knows the serial
number of each coin associated to each owner, the identity
of the owner and the identity of the holder that cashes the
coin. If two holders try to cash the same coin, the broker
asks the owner to refute one of the assignment: should he
be able to refutehi’s assignment,hi will be punished by the
broker; otherwise the owner will be punished. Invariants 1 and
3 ensure the punishment of the owner who double-spent the
coin assigned.

The system is extended by adding some features designed
to alleviate the load of the broker. First, peers are given the
possibility to print coins on their own, given the authorization
of the broker. Second, a shortcut mechanism is provided for
reassignment, which does not require anymore the involvement
of the owner in each reassignment and is based on the concept
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of layered coins (a coin gains a layer for each transfer to
account the identities of the peers involved). Finally, the
introduction of soft credit windows exploits the symmetry
of exchanges to avoid useless cashing operations: peers that
exchange queries pay each other, thus nullifying the balance
of the two transactions.

Collusive attacks against a system like PPay are limited if at
all possible. Colluders could, for example, act as ownero and
holderh of more coins. Peerh claims it received coins from
o and wants to reassign them, buto is offline17, so he asks the
broker to reassign the coins. The goal is to obtain the deposit
made byo at the entrance into the system. This strategy is
ineffective becauseh gets the coin reassigned, buto cannot
come on-line again, otherwise the broker would charge him
with the cost incurred for the reassignment. Even ifh gives the
sum too, no gain is obtained, because the recovered money
is the original deposit ofo, who already owned it.

Forgery of coins, however, can become a problem, because
the honest peers may start providing service without actually
being paid for it. Although the authors do not address this
threat explicitly, it is reasonable to assume that forgery is hard
to achieve under the control of the broker.

Based on the prototype developed for PPay, Weiet al. [14]
consider the anonymity issue WhoPay leverages on the system
architecture of PPay, but ensures anonymity of peers that
perform a transaction by using group signatures as discussed
by Chaum and Heyst[44]. For the sake of fairness, however,
the system requires the presence of a trusted entity, thejudge,
that, in conjunction with the broker, can identify the actors
of each transaction. By using group signatures, agents are
guaranteed to preserve their anonymity, unless they misbehave:
in this case, the judge (and only him) is ensured to have the
means to identify the peers involved in the transaction.

As an extension of PPay, WhoPay retains the basic structure
with a broker and coins that can be purchased, issued, and de-
posited, but adds the features that make the system anonymous
and fair. To highlight the key differences, let’s now examine
the coins life-cycle. When an agentp decides to buy a coin, he
generates a random pairPKCp

, SKCp
and asks the broker to

sign the public key. In response to such a request, the broker
sends a coin in the form:

C = {p, PKCp}SKb

As we can see, the coin is identified by the owner’s public
key rather than by a serial number. Given this difference, the
operations of transfer and issue are perfectly analogue to the
corresponding operations in PPay.

This system relies on the involvement of the broker only
when the coin has to be produced, deposited or issued, and
whenever the downtime protocol has to be executed. In this
case, however, the owner and the holder do not incur any
fee when the owner is offline and the broker has to operate
on his behalf. The authors argument that the operations that
are performed in the system are mostly transfer and renewal,

17The system prescribesh to ping the owner before contacting the broker.

that do not involve the broker unless the owner is offline,
so the system can be considered scalable. In fact, the other
operations’ load is evenly distributed among peers, and their
number increases as the number of peers themselves.

Basic collusive attacks are briefly discussed and proved
to be easy to neutralize by the security architecture. An
adversary can collude with the coin owner to force the holder
to relinquish the coin; however, the holder can challenge the
owner to prove the validity of the transaction, and, once proved
it is illegal, he can make the owner be punished for his
misbehaviour. The authors, however, do not address the basic
attacks based on whitewashing and misbehaviour followed by
change of identity. Furthermore, no particular attention is given
to systematic collusive attacks, e.g., like distributed denial of
service.

The solution presented by Catalano and Ruffo [45] is based
on the PPay mechanism and introduces some improvements
to further alleviate the load on the broker. In the described
system, each time a peer decides to buy copyrighted content,
he can do it directly from the author or by any peer who has
previously bought it, i.e., reselling is allowed. The original
author asks to the broker to issue a certificate that binds the
author himself to some content. The certificate is used to prove
the relationship author-content. Any time the item is sold,two
coins are paid by the buyer, of which one goes to the seller,
while the other goes to the author of the content (that may
coincide with the seller). Therefore, the interactions involve
always the seller, the buyer and the author of the content item.

As an improvement of the basic interaction system, in order
to avoid the involvement of the broker in every passage of
coin from one peer to another, delegation of accountabilityis
used. The accountability is the possibility of linking an item,
be it an object, an action or a right, to a responsible subject,
who thus becomes accountable for it. The authors propose a
mechanism to pass the accountability of a coin from one peer
to another: the first peer, the grantor, passes to the granteehis
right to delegate. To implement this mechanism, a second pair
of public, private keys is required in addition to the usual one
used to identify peers in front of a Certificate authority (the
broker). A delegation token is issued from grantor to grantee
for each passage, thus it is always possible to reconstruct the
chain of exchanges.. The responsibility of such a verification
is assigned to the grantee.

The study analyzes the effects of some collusive threats. As
an example, efficiency reasons suggest for each peer to verify
only the last step of delegation, thus allowing the chance for
collusive peers occupying the last two steps in the delegation
chain to provide counterfeit coins. Larger groups of colluders
may create longer sub-chains, making it harder (that is, more
demanding in terms of computation because more steps have
to be verified) to discover the misbehaviour. The forgery can
be detected from the broker at the end of the passing process
(i.e., when the coin has to be cashed), or by any peer that
examines the whole (in the worst case) delegation chain. The
authors, however, recognize that collusion is not in the scope
of the paper and suggest that the topic is an open research



25

field in the digital right management discussion.
The micropayment systems considered so far are based

on virtual currency, that is cashed cumulatively. A natural
alternative is the payment of real money for each transactions,
in the sense explained in the following. Nairet al. [46] propose
a system to incent agents in a BitTorrent-like system to favour
the download of content by other agents. Each peerp, at his
entrance in the system, generates a{PKp, SKp} pair and
contacts a central authority (the brokerb, managed by a content
provider), sending it thePK and the coordinates of a valid
credit account, used for the payments. As a second step,b
sends top the contact of a tracker, that in turn provides a
list of candidate peers to select from and download content.
In the same transaction, the brokerb also sendsp a pseudo-
random sequence of numbers, thetokens, that p will use
to pay the providers of the pieces in which the content is
divided. Specifically, one token will be given in exchange of
one piece of the content. After the download,p will send the
provider q the token, that in turn can decide to redeem it
immediately or after some time by contacting the broker. Upon
such request, the broker will take the corresponding money
from p’s account and transfer it toq’s. This system incents
the upload of content by peers who are paid for their service,
at the same time exploiting the resources of the network rather
than the resources of the content provider.

The system provides a good defense against the types of
collusion we propose at the beginning of the paper; besides,
identities are expensive, so whitewashing is not profitable.
Let’s consider the defenses the system puts against different
types of collusion. First, consider a peerx who tries to ask the
N pieces of the file toN distinct peers, receives the pieces and
then claims he did not actually receive them. If the providers
complain againstx, the broker can decide to punish him. A
colluder, however, can helpx by giving him a piece of the
content without payment and without complain withb, thus
giving x a way to fool the system. The authors study this
scenario and find a constraint that relates the number of pieces
of a file, the number of outstanding tokens (maximum number
of tokens accumulated without asking the broker the payment)
and the number of peers in the system, and then show that by
carefully selecting these parameters it is possible to reduce
this type of attack: conceptually, if the number of pieces is
far larger than the number of peers that can be contacted
simultaneously, then it is hard forx to find enough colluders
to provide him a way to gain his advantage.

While colluders can collaborate to attack the broker us-
ing DDoS attacks, the authors propose existing methods to
alleviate the problem. Colluders can, for example, try and
impersonate the broker by intercepting the requests of the
peers; this would, however, require to know the private key the
broker uses for any transaction in which it has to ensure about
his identity. Still, colluders could simply intercept requests
to block them and negating this way the chance for honest
peers to get paid for their contribution, making the system’s
reputation fall down.

Finally, isolating peers is hard to achieve. Suppose for

instance that a group of colluders decide to complain against
the broker about another honest peer. The system design
defines the number of complaints that must receive in order
to ban an agent from the working system, so the number of
colluders must be quite large (assuming the parameters are
wisely chosen by the designers) to fool the broker. In any
case, the possibility exists.

V. COLLUSION PREVENTION ENFORCED BY THE SYSTEM

In this section we provide some examples of collusion-
resilient systems that do not rely on incentives, be them
abstract or in the from of virtual currency. The system, in such
cases, can try to base its defense against colluders by checking
the location and existence of the content, or the location of
the peers in the overlay.

A way to counter collusion is to have a mechanism to
demonstrate that an agent owns a content. Specifically, if a
peerp declares he received some content from peerq, it is
desirable to have a proof that this exchange actually happened:
this would prevent the collusion betweenp (that does not own
the file or received it from another peer, e.g.,x) and q (that
does not own the file or did not upload it top). This idea is
studied by Reiter, Sekar and Zhang [5], who show preliminary
simulation results by applying their system to the Maze P2P
file-sharing application [47].

An entity, theverifier, wants to verify that a set of peers have
a resource (file): he sends to each peer a bandwidth puzzle, i.e.,
a question that can be easily and quickly answered only by the
peers who own the file. The question’s answer can be found by
hashing portions of the file’s content in bits; the hash function
is universally known by the peers and is modeled as a random
oracle18. A thresholdθ represents the time by which the peers
under trial have to solve the puzzle: if a peer exceeds it, then
he becomes suspect of misbehaviour. The threshold is chosen
in such a way that peers cannot collaborate: a peer that does
have the file has just the time to solve his puzzle and send the
response. A legitimate owner, however, can solve the puzzle
for another peer who lacks the file, at the expense of being
accused of misbehaving, thus the system can detect the number
of suspects, but not necessarily their identity. One difficulty
in choosing the value forθ is that if peers have strongly
heterogeneous computational resources, then the value to be
chosen should allow the slowest machine to solve the puzzle
within the threshold; this, however, means that a fast machine
can solve its and other peers’ puzzles.

The authors consider the Sybil attack [48], [49] a form of
collusion where the Sybil identities collude with their master to
boost his reputation. The system counters this kind of threat
as well. The mechanism of proof is based on the existence
of a hash primitive modeled as a random oracle. Under this
assumption, the article shows that a bound exists to the number
of puzzles a set of colluders can collectively solve. This
bound has a closed form but is hard to compute. To solve

18A random oracleis the abstraction of a function that can produce a truly
random output, and gives the same response to the same query.
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this problem, the authors prove the existence of a tighter
but computable bound, not in a closed form. The model of
collusion is based on the work by Lian et al.[4], especially
the collusion graphs.

Although in theory the scheme does not require a central
authority, in the sense that any peer can be the verifier, the
simulation provides results from the Maze system, which has
a central authority that is chosen to act the role of the verifier.
The results are encouraging and show that the bandwidth
puzzles prevent the colluders from:

1) degrading the performance of the legitimate users
2) obtaining an unfair advantage from fake transactions
An interesting approach is the separation of nodes into

classes: a class, less numerous, provides the message passing
services and is designed to be hard to pollute with the presence
of colluders; another class uses the former to look for content.
In this case, like in the systems analyzed so far, the global
welfare of the system and its participants is enforced through
design rather than by the user’s behaviour. Anceaumeet
al. [50] combine existing techniques, originally developed to
ensure the resilience of distributed systems against malicious
attacks, to design an architecture that limits the negativeeffects
of collusion. They describe a structured P2P system where
the management of the overlay is provided by a subclass of
the peers, calledcore members, where the other peers (spare
peers) do not participate directly to the routing operations. All
the peers are identified through a secure hash of their network
address, and those who share a prefix in the resulting ID form
a cluster. Each cluster contains both core and spare members,
with the former providing interconnection with other clusters.
Clusters together form a hypercube, which is a structure
proved to exhibit properties of easy management, because the
process of interconnection is recursive and easily automated.
Data are positioned in the overlay according to an identifier,
taken from the same address space of the peers’ IDs, called
key. All the peers in the same cluster are responsible for the
same data. The operations performed by the peers are designed
to be resistant to attacks by groups of peers, colluding or not.

Peers use three primitives to obtain service and interact with
the system. Peers looking for data perform alookup(key)
to locate a data item: spare members forward the lookup
query to a core member inside the same cluster, that for-
wards it to other clusters when needed. The path to the
destination is retrieved by consulting the routing tables of
core members. Core members use a broadcast primitive to
forward the duplicates of the message into more than one
path. The presence of multiple copies gives the possibilityof
using the following mechanism of consensus: The forwarding
of messages between clusters (on either way) is disciplined
through a quorum-based consensus algorithm: if the forwarder
receives at leastquorum identical messages, it can be proved
that with high probability the message has not been pollutedby
malicious peers. The number of malicious collectives tolerable
by such system is well defined and determines the probability
of pollution.

The join and leaveoperations are used by peers to access

or go away from the system. Thejoin operation prevents the
possibility for a malicious peer to put itself in the core set,
by broadcasting a request for all core members to form the
core setex novo, while newcomers are always inserted as
spare members. Theleaveoperation is performed by a leaving
peer, or automatically issued by a group of core members of
a cluster upon detection of a peer failure.

After a sufficient number ofjoin/leave operations, the
dimension of a cluster may become so small or so large that
the maintenance of the hypercube topology becomes no longer
possible. For this reason, two thresholds are established:Smax

is the number of members a cluster can contain before splitting
into two smaller clusters, whileSmin is the minimum number
of members under which the cluster is required to merge with
another. With this mechanism, a smart adversary can control
a number of malicious peers and make them leave or join
the system to make a cluster oscillate between a number of
merges and splits. This attack is countered by delaying the
formation and split of clusters in such a way that a predefined
number of colluders in a cluster can not cause them: namely,
if a fraction µ of the peers in a cluster tries to issue such an
attack, the mechanism can be designed in such a way that a
fraction x > µ of joins/leaves is required for the cluster to
actually change dimension by split/merge.

The way of choosing the members of the core set prevents
colluders from issuing an Eclipse attack, i.e., a pollutionof the
routing tables. The structure of the lookup primitive is based
on independent paths to ensure that more than one message
is forwarded and then more than one reply comes back, thus
making the consensus algorithm work.

Colluders can be isolated by leveraging techniques bor-
rowed from distributed systems, like majority consensus. The
impact of colluders can be effectively limited if proper voting
schemes are designed and colluders are not a majority of the
population. With this idea, Corman, Schachte and Teague [51]
describe a protocol (theSecure Group Agreementprotocol
or SGA) to form groups of peers with a majority of honest
agents with a predefined probability, on top of a structured
DHT-based P2P overlay. For this system, in theory no central
authority is required but to act as a public key infrastructure,
needed when the nodes first join the network and are assigned
a key pair19. Given the infrastructure, the authors make basic
assumptions about the characteristics of colluders. The study,
in fact, assumes the presence of a strong attacker, able to
create, delete or modify the network traffic, and a secure
routing infrastructure, such that the mappingkey-NodeIDis
reliable and secure.

Now we describe the basic functioning of the system. Hon-
est peers gather into groups sharing a purpose, that depends
on the application: for example, in an on-line game, a group
may want to share the state of a portion of the game. A group
is created by a group initiatorp, who is supposed to be able
to verify the membership of all the nodes inside the group. To

19We think, however, that the verification of signatures makes constant use
of a PKI, thus limiting the validity of this assumption.
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create it, he sends a message{content, hash(content)}SKp

to all the members of the group. Thecontent value of
the message is composed of five elements: a timestamp,p’s
unique identifierNodeID, the group’s purpose, the group’s
size, and a string of concatenated unique identifiers to help
members understand whether they are part of the group or
not, and optionally verify the membership rights of other group
members. The timestamp defines a time window inside which
the results of the hash are valid, to limit the number of guesses
an attacker can do at the output of the hash function. The group
size is explicitly given, so each member can know it, and no
attacker can make an honest peer believe that a minority of
colluders is the size of the group.

Once the message is received, all the peers reply to all the
other peers of the group. Two observations can be made on
the message passing mechanism: first, malicious peers have
no advantage in deleting messages because honest peers will
send them to any group member they have not received any
notification from; second, this kind of message flooding is
particularly expensive when the group size is large, because it
requiresO(m2) messages ifm is the size of the group.

Now that we have described the mechanism, let’s see how
the formation of groups is guaranteed to be safely ensured
against being subverted by colluders and corrupt peers. To
quantify the security of the group, the authors compute the
probability of forming a group with at leastt corrupt members
as a function of the number of peersn in the network, the
size of the groupsm, the number of guesses an attacker can
perform (g), and the number of corrupt nodes in the whole
network (c) and in the group (t):

Pr{t over m} = 1 −
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)

)g

According to the previous expression, the probability of suc-
cess for the attacker to correctly guessing the output of the
hash function increases asg increases, thus it is sensible to
endeavour and limit it. The value ofg is limited by the freedom
of the attacker in varying the parameters, his computational
power, and the width of the time window inside which the
guess is valid. It is a design trade-off to decide between large
timestamps that define large time windows, and the increased
possibility for the attackers to having more time to perform
their guesses. Another trade-off is the size of the group: small
groups have cheap communication overhead, but give greater
possibilities to colluders to pollute the majority. The size of
the group can, in turn, be influenced by the size of the whole
network: larger populations of peer increase the difficultyfor
colluders to effectively pollute the application.

Even a system designed by balancing the previous trade-
offs, however, does not completely defeat a collusive col-
lective. Attackers can in fact form groups of only colluders
with past timestamps, declaring the group existed before. This
problem is not explicitly addressed, because its danger is
related to the specific application. In general, we can conclude
that the work provides an interesting quantification of the

probability that a sufficient number of colluders can subvert a
system, where the notion of sufficient number varies according
to the specific application domain.

VI. CONCLUSION

In this work we analyze the problem of collusion among
autonomous agents by comparing several current solutions
designed to provide security and trust in P2P applications.Our
main contribution is the clarification of what can be meant as
collusion, the definition of the scenarios in which collusion can
show up, and the analysis of how well the current systems fit
to the purpose of countering colluders. We distinguish between
malicious collectives and selfish collectives, in that the former
want to create harm to the system or to its users or to both,
while the latter use their number to earn advantages (i.e., better
service).

Even though the literature about security in P2P systems is
vast, there are not so many solutions explicitly designed with
the purpose of limiting the collusion. We identify, however,
a number of relevant results from the recent literature that
help us to understanding the main issues related to the topic.
The lessons learned can guide the research effort in a more
defined direction and put the problem in more consideration
by the research community for further study.

APPENDIX

In this appendix we give a brief explanation of what we
mean by Nash equilibrium, and we will illustrate its appli-
cation in a famous setting, the Prisoner’s dilemma (PD). We
consider a particular class of games, the static games with
complete information, characterized by the simultaneity of the
moves played by the players, and by the knowledge that each
player does have about the utility functions of each other.

In the case of static games with complete information, a
game can be formally described innormal form when it is
possible to formally express three elements: first, the number
of players involved; second, the strategies they follow; third,
the utility functions which depend on those strategies and
that players want to maximize. We can indicate the generic
player by a numberi in a set ofN players. The strategies
are the possible actions the player can play. In this case, we
can express a game asG = {P, S, U}, whereP is the set
of players,S the set of strategy spacesS1, S2, . . . , SN from
which the players choose a strategysi ∈ Si, andU is the set
of utility functions (payoffs)u1(~s), u2(~s) . . . , uN (~s), ~s being
the vector defined as~s = (s1, s2, . . . , sN ).

A Nash equilibrium is a set of strategies~s∗ such that no
playeri can increase his utility by unilaterally (i.e., regardless
of all other players’ choice) deviating from the corresponding
strategys∗i . The Nash equilibrium is a strong state in which
players know that each player (who is rational) will abide by
the strategy described by the equilibrium formulation for his
own advantage.

Two-player games are a particular class of static games with
complete information, where the payoff of each player can be
described by a matrix. The element(i, j) of the matrix is the
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Betray Do Not Betray
Betray 1,1 0,5

Do Not Betray 5,0 4,4

TABLE V
THE PRISONER’ S DILEMMA

payoff that player 1 and 2 obtain by playing the strategiesi
andj, respectively. This said, let’s consider the payoff matrix
in Table V. This matrix describes a well-known game called
the prisoner’s dilemma(PD). Two players are supposed to be
arrested and put in separate cells, so neither knows what the
other player’s move. The players have to possible strategies:
they can stay silent, or they can betray the accomplice. As we
can see, if neither betrays, both are condemned to 4 years of
prison; on the other hand, if both betray, they obtain a discount.
The interesting thing is that if only one of them betrays, he is
set free, while the accomplice gets the maximum damage. It
is possible to demonstrate that the only Nash equilibrium of
the game is for both players to betray, without knowing what
the other player will do. Intuitively, we can see why this is
an equilibrium strategy by analyzing the perspective of player
1. This player can decide to play Betray or Not Betray. If he
chooses the first, then, depending on his accomplice’s choice,
he can get the minimum cost (0) or a cost of 1. If he plays
Not Betray, he can get 4 in the best case (the accomplice does
not betray either), but 5 in the worst case. By considering the
worst cases for both the strategies, the choice that minimize
the risk is the betrayal (the choice is between 1 and 5).
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