10 research outputs found

    Analyse d'images SAR polarimétriques au moyen d'outils temps-fréquence

    Get PDF
    Cet article illustre l'intérêt des outils temps-fréquences en imagerie SAR au travers de deux applications. Une nouvelle méthode d'analyse des cibles mobiles est présentée. Elle s'appuie sur un algorithme de Matching-Pursuit bidimensionnel et l'utilisation d'un dictionnaire temps-fréquence. Une étude des zones urbaines dans le cadre temps-fréquence est proposée. Le comportement fréquentiel des réflecteurs est mis à profit pour effectuer une classification des zones urbaines à l'aide de deux indicateurs

    Feasibility of Time-Frequency urban area analysis on TerraSAR-X fully polarimetric dataset

    Get PDF
    The feasibility of azimuthal Time-Frequency (TF) analysis for urban area identification using TerraSAR-X (TX) fully polarimetric data has been investigated for the first time. Space-borne sensors, unlike airborne sensors, are characterized by a very small azimuth antenna aperture, which limits the Sub-Aperture (SA) decomposition in the azimuth direction. Due to this limitation, the usefulness of SA decomposition for space-borne sensors, has still not been explored. Pixel stationarity, which generally has lower values over urban areas, has been measured for TX data. It has been found that the full doppler spectrum has to be utilized for TX to generate a meaningful stationarity pixel map from SA coherency matrices. This analysis has been performed on TX fully polarimetric data acquired in April, 2009 over a site called Wallerfing in Germany

    Improved POLSAR Image Classification by the Use of Multi-Feature Combination

    Get PDF
    Polarimetric SAR (POLSAR) provides a rich set of information about objects on land surfaces. However, not all information works on land surface classification. This study proposes a new, integrated algorithm for optimal urban classification using POLSAR data. Both polarimetric decomposition and time-frequency (TF) decomposition were used to mine the hidden information of objects in POLSAR data, which was then applied in the C5.0 decision tree algorithm for optimal feature selection and classification. Using a NASA/JPL AIRSAR POLSAR scene as an example, the overall accuracy and kappa coefficient of the proposed method reached 91.17% and 0.90 in the L-band, much higher than those achieved by the commonly applied Wishart supervised classification that were 45.65% and 0.41. Meantime, the overall accuracy of the proposed method performed well in both C- and P-bands. Polarimetric decomposition and TF decomposition all proved useful in the process. TF information played a great role in delineation between urban/built-up areas and vegetation. Three polarimetric features (entropy, Shannon entropy, T11 Coherency Matrix element) and one TF feature (HH intensity of coherence) were found most helpful in urban areas classification. This study indicates that the integrated use of polarimetric decomposition and TF decomposition of POLSAR data may provide improved feature extraction in heterogeneous urban areas

    New SAR Target Imaging Algorithm based on Oblique Projection for Clutter Reduction

    Get PDF
    International audienceWe have developed a new Synthetic Aperture Radar (SAR) algorithm based on physical models for the detection of a Man-Made Target (MMT) embedded in strong clutter (trunks in a forest). The physical models for the MMT and the clutter are represented by low-rank subspaces and are based on scattering and polarimetric properties. Our SAR algorithm applies the oblique projection of the received signal along the clutter subspace onto the target subspace. We compute its statistical performance in terms of probabilities of detection and false alarms. The performances of the proposed SAR algorithm are improved compared to those obtained with existing SAR algorithms: the MMT detection is greatly improved and the clutter is rejected. We also studied the robustness of our new SAR algorithm to interference modeling errors. Results on real FoPen (Foliage Penetration) data showed the usefulness of this approach

    Technique-Based Exploitation Of Low Grazing Angle SAR Imagery Of Ship Wakes

    Get PDF
    The pursuit of the understanding of the effect a ship has on water is a field of study that is several hundreds of years old, accelerated during the years of the industrial revolution where the efficiency of a ship’s engine and hull determined the utility of the burgeoning globally important sea lines of communication. The dawn of radar sensing and electronic computation have expanding this field of study still further where new ground is still being broken. This thesis looks to address a niche area of synthetic aperture radar imagery of ship wakes, specifically the imaging geometry utilising a low grazing angle, where significant non-linear effects are often dominant in the environment. The nuances of the synthetic aperture radar processing techniques compounded with the low grazing angle geometry to produce unusual artefacts within the imagery. It is the understanding of these artefacts that is central to this thesis. A sub-aperture synthetic aperture radar technique is applied to real data alongside coarse modelling of a ship and its wake before finally developing a full hydrodynamic model for a ship’s wake from first principles. The model is validated through comparison with previously developed work. The analysis shows that the resultant artefacts are a culmination of individual synthetic aperture radar anomalies and the reaction of the radar energy to the ambient sea surface and spike events

    Scene Characterization using subaperture polarimetric sar data

    No full text
    International audienc

    Oil spill and ship detection using high resolution polarimetric X-band SAR data

    Get PDF
    Among illegal human activities, marine pollution and target detection are the key concern of Maritime Security and Safety. This thesis deals with oil spill and ship detection using high resolution X-band polarimetric SAR (PolSAR). Polarimetry aims at analysing the polarization state of a wave field, in order to obtain physical information from the observed object. In this dissertation PolSAR techniques are suggested as improvement of the current State-of-the-Art of SAR marine pollution and target detection, by examining in depth Near Real Time suitability

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version
    corecore