2,081 research outputs found

    Geometry-Aware Scattering Compensation for 3D Printing

    Get PDF
    Commercially available full-color 3D printing allows for detailed control of material deposition in a volume, but an exact reproduction of a target surface appearance is hampered by the strong subsurface scattering that causes nontrivial volumetric cross-talk at the print surface. Previous work showed how an iterative optimization scheme based on accumulating absorptive materials at the surface can be used to find a volumetric distribution of print materials that closely approximates a given target appearance. // In this work, we first revisit the assumption that pushing the absorptive materials to the surface results in minimal volumetric cross-talk. We design a full-fledged optimization on a small domain for this task and confirm this previously reported heuristic. Then, we extend the above approach that is critically limited to color reproduction on planar surfaces, to arbitrary 3D shapes. Our proposed method enables high-fidelity color texture reproduction on 3D prints by effectively compensating for internal light scattering within arbitrarily shaped objects. In addition, we propose a content-aware gamut mapping that significantly improves color reproduction for the pathological case of thin geometric features. Using a wide range of sample objects with complex textures and geometries, we demonstrate color reproduction whose fidelity is superior to state-of-the-art drivers for color 3D printers

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    Redefining A in RGBA: Towards a Standard for Graphical 3D Printing

    Full text link
    Advances in multimaterial 3D printing have the potential to reproduce various visual appearance attributes of an object in addition to its shape. Since many existing 3D file formats encode color and translucency by RGBA textures mapped to 3D shapes, RGBA information is particularly important for practical applications. In contrast to color (encoded by RGB), which is specified by the object's reflectance, selected viewing conditions and a standard observer, translucency (encoded by A) is neither linked to any measurable physical nor perceptual quantity. Thus, reproducing translucency encoded by A is open for interpretation. In this paper, we propose a rigorous definition for A suitable for use in graphical 3D printing, which is independent of the 3D printing hardware and software, and which links both optical material properties and perceptual uniformity for human observers. By deriving our definition from the absorption and scattering coefficients of virtual homogeneous reference materials with an isotropic phase function, we achieve two important properties. First, a simple adjustment of A is possible, which preserves the translucency appearance if an object is re-scaled for printing. Second, determining the value of A for a real (potentially non-homogeneous) material, can be achieved by minimizing a distance function between light transport measurements of this material and simulated measurements of the reference materials. Such measurements can be conducted by commercial spectrophotometers used in graphic arts. Finally, we conduct visual experiments employing the method of constant stimuli, and derive from them an embedding of A into a nearly perceptually uniform scale of translucency for the reference materials.Comment: 20 pages (incl. appendices), 20 figures. Version with higher quality images: https://cloud-ext.igd.fraunhofer.de/s/pAMH67XjstaNcrF (main article) and https://cloud-ext.igd.fraunhofer.de/s/4rR5bH3FMfNsS5q (appendix). Supplemental material including code: https://cloud-ext.igd.fraunhofer.de/s/9BrZaj5Uh5d0cOU/downloa

    Colored fused filament fabrication

    Full text link
    Fused filament fabrication is the method of choice for printing 3D models at low cost and is the de-facto standard for hobbyists, makers, and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating controlled gradients of varying sharpness. Our technique exploits off-the-shelves nozzles that are designed to mix multiple filaments in a small melting chamber, obtaining intermediate colors once the mix is stabilized. We apply this property to produce color gradients. We divide each input layer into a set of strata, each having a different constant color. By locally changing the thickness of the stratum, we change the perceived color at a given location. By optimizing the choice of colors of each stratum, we further improve quality and allow the use of different numbers of input filaments. We demonstrate our results by building a functional color printer using low cost, off-the-shelves components. Using our tool a user can paint a 3D model and directly produce its physical counterpart, using any material and color available for fused filament fabrication

    AirCode: Unobtrusive Physical Tags for Digital Fabrication

    Full text link
    We present AirCode, a technique that allows the user to tag physically fabricated objects with given information. An AirCode tag consists of a group of carefully designed air pockets placed beneath the object surface. These air pockets are easily produced during the fabrication process of the object, without any additional material or postprocessing. Meanwhile, the air pockets affect only the scattering light transport under the surface, and thus are hard to notice to our naked eyes. But, by using a computational imaging method, the tags become detectable. We present a tool that automates the design of air pockets for the user to encode information. AirCode system also allows the user to retrieve the information from captured images via a robust decoding algorithm. We demonstrate our tagging technique with applications for metadata embedding, robotic grasping, as well as conveying object affordances.Comment: ACM UIST 2017 Technical Paper

    Robust and practical measurement of volume transport parameters in solid photo-polymer materials for 3D printing

    Get PDF
    Volumetric light transport is a pervasive physical phenomenon, and therefore its accurate simulation is important for a broad array of disciplines. While suitable mathematical models for computing the transport are now available, obtaining the necessary material parameters needed to drive such simulations is a challenging task: direct measurements of these parameters from material samples are seldom possible. Building on the inverse scattering paradigm, we present a novel measurement approach which indirectly infers the transport parameters from extrinsic observations of multiple-scattered radiance. The novelty of the proposed approach lies in replacing structured illumination with a structured reflector bonded to the sample, and a robust fitting procedure that largely compensates for potential systematic errors in the calibration of the setup. We show the feasibility of our approach by validating simulations of complex 3D compositions of the measured materials against physical prints, using photo-polymer resins. As presented in this paper, our technique yields colorspace data suitable for accurate appearance reproduction in the area of 3D printing. Beyond that, and without fundamental changes to the basic measurement methodology, it could equally well be used to obtain spectral measurements that are useful for other application areas

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Accurate and Computational: A review of color reproduction in Full-color 3D printing

    Get PDF
    As functional 3D printing becomes more popular with industrial manufacturing applications, it is time to start discussing high-fidelity appearance reproduction of 3D objects, particularly in faithful colors. To date, there is only limited research on accurate color reproduction and on universal color reproduction method for different color 3D printing materials. To systematically understand colorization principles and color transmission in color 3D printing, an exhaustive literature review is stated to show the state of the art of color reproduction methods for full-color 3D printing, such as optical parameter modeling, colorimetric difference evaluation, computer aided colorization and voxel droplet jetting. Meanwhile, the challenges in developing an accurate color reproduction framework suitable for different printing materials are fully analyzed in this literature review. In full-color 3D printing, coloring, rendering and acquisition constitute the core issues for accurate color reproduction, and their specific concepts are explained in concrete examples. Finally, the future perspectives of a universal color reproduction framework for accurate full-color 3D printing are discussed, which can overcome the limitations of printing materials, combined with computational boundary contoning

    Affordable spectral measurements of translucent materials

    Get PDF
    We present a spectral measurement approach for the bulk optical properties of translucent materials using only low-cost components. We focus on the translucent inks used in full-color 3D printing, and develop a technique with a high spectral resolution, which is important for accurate color reproduction. We enable this by developing a new acquisition technique for the three unknown material parameters, namely, the absorption and scattering coefficients, and its phase function anisotropy factor, that only requires three point measurements with a spectrometer. In essence, our technique is based on us finding a three-dimensional appearance map, computed using Monte Carlo rendering, that allows the conversion between the three observables and the material parameters. Our measurement setup works without laboratory equipment or expensive optical components. We validate our results on a 3D printed color checker with various ink combinations. Our work paves a path for more accurate appearance modeling and fabrication even for low-budget environments or affordable embedding into other devices

    Luminance Prediction of Paper Model Surface Based on Non-Contact Measurement

    Get PDF
    The overall appearance perception is affected by luminance perception accuracy and efficiency mostly. The surface luminance prediction correlated with surface angle and surface tone value was performed by measuring and modeling the paper model surface luminance. First, we used a rotating bracket designed to facilitate to set the paper surface angle. Then, we set the surface angle from 5° to 85° at the interval of 5° using the designed rotating bracket. Additionally, the four primary color scales, cyan, magenta, yellow, and black, were printed and set at the designed angle. The angle-ware and tone-ware luminance was measured using spectroradiometer, CS-2000. Finally, we proposed and evaluated a mathematical model to reveal the relationship between luminance and surface angle and surface tone using the least squares method. The results indicated that the surface luminance of paper model could be predicted and obtained quickly and accurately for any surface angles and surface tone values by the proposed prediction model
    • …
    corecore