495 research outputs found

    Low Noise And Low Repetition Rate Semiconductor-based Mode-locked Lasers

    Get PDF
    The topic of this dissertation is the development of low repetition rate and low noise semiconductor-based laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analogto-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated chirped pulse laser sources. Moreover, the focus is shifted to a specific application of the linearly chirped pulses, timestretched photonic analog-to-digital conversion (TS ADC). The challenges of surpassing the speeds of current electronic converters are discussed, while the need for low noise linearly chirped pulse lasers becomes apparent for the realization of TS ADC. The experimental research addresses the topic of low noise chirped pulse generation in three distinct ways. First, a chirped pulse (Theta) laser with an intra-cavity Fabry-Pérot etalon and a long-term referencing mechanism is developed that results in the reduction of the pulse-topulse energy noise. Noise suppression of \u3e 15 times is demonstrated. Moreover, an optical frequency comb with spacing equal to the repetition rate (≈100 MHz) is generated using the etalon, resulting in the first reported demonstration of a system operating in the sub-GHz regime based on semiconductor gain. The path for the development of the Theta laser was laid by the precise characterization of the etalon used in this laser cavity design. A narrow linewidth laser is used in conjunction with an acousto-optic modulator externally swept for measuring the etalon\u27s iv free spectral range with a sub-Hz precision, or 10 parts per billion. Furthermore, the measurement of the etalon long-term drift and birefringence lead to the development of a modified intra-cavity Hänsch-Couillaud locking mechanism for the Theta laser. Moreover, an external feed-forward system was demonstrated that aimed at increasing the temporal/spectral uniformity of the optical pulses. A complete characterization of the system is demonstrated. On a different series of experiments, the pulses emitted by an ultra-low noise but high repetition rate mode-locked laser were demultiplexed resulting in a low repetition rate pulse train. Experimental investigation of the noise properties of the laser proved that they are preserved during the demultiplexing process. The noise of the electrical gate used in this experiment is also investigated which led into the development of a more profound understanding of the electrical noise of periodical pulses and a mechanism of measuring their noise. The appendices in this dissertation provide additional material used for the realization of the main research focus of the dissertation. Measurements of the group delay of the etalon used in the Theta laser are presented in order to demonstrate the limiting factors for the development of this cavity design. The description of a balancing routine is presented, that was used for expanding the dynamic range of intra-cavity active variable delay. At last, the appendix presents the calculations regarding the contribution of various parameters in the limitations of analog-todigital conversion

    Electro-optic frequency combs and their applications in high-precision metrology and high-speed communications

    Get PDF
    Optische Frequenzkämme haben sich in den letzten Jahren zu einem vielseitigen Werkzeug im Bereich der Optik und Photonik entwickelt. Sie ermöglichen den Zugang zu einer Vielzahl von schmalbandigen Spektrallinien, die einen breiten Spektralbereich abdecken und gleichzeitig hochgenau definierte Frequenzen aufweisen. Dadurch wurden Experimente in vielfältigen Anwendungsgebieten ermöglicht, zum Beispiel in den Bereichen optischer Atomuhren, der Präzisionsspektroskopie, der Frequenzmesstechnik, der Distanzmesstechnik und der optischen Telekommunikation. Allerdings umfassen übliche Frequenzkammquellen und die jeweiligen Laboraufbauten typischerweise komplexe opto-elektronische und opto-mechanische Anordnungen, welche aufgrund von Baugröße und fehlender Robustheit gegenüber Umwelteinflüssen wie Temperatur bislang kaum Einzug in breitere industrielle Anwendungen gefunden haben. Diese Arbeit legt deshalb ein besonderes Augenmerk auf die praktische Nutzbarkeit von frequenzkamm-basierten Systemen in industriellen Anwendungen. Im Fokus stehen dabei Robustheit, Kompaktheit und flexible Anpassungsmöglichkeiten an die jeweilige Anwendung. Das bezieht sich sowohl auf die Frequenzkammquellen selbst, als auch auf die zugehörigen anwendungsspezifischen optischen Systeme, in welchen die Frequenzkämme genutzt werden. In der vorliegenden Arbeit wird das Potential elektro-optischer Frequenzkämme in der optischen Messtechnik sowie der optischen Kommunikationstechnik anhand ausgewählter experimenteller Demonstrationen untersucht. Als Mittel zur Realisierung miniaturisierter optischer Systeme mit einem Flächenbedarf von wenigen Quadratmillimetern wird die photonische Integration in Silizium verfolgt. Ein integriertes System zur Frequenzkamm-basierten Distanzmessung sowie integriert-optische Frequenzkammquellen werden demonstriert. Die Erzeugung von Frequenzkämmen durch Dauerstrichlaser in Kombination mit elektro-optischen Modulatoren ist dabei ein besonders vielversprechender Ansatz. Zwar werden dabei üblicherweise kleinere optische Bandbreiten erzielt als bei der weitverbreiteten Frequenzkammerzeugung durch modengekoppelte Ultrakurzpulslaser oder durch Kerr-Nichtlinearitäten, aber es bieten sich andere wertvolle Vorteile an. So erlaubt die elektro-optische Kammerzeugung beispielsweise eine nahezu freie Wahl der Mittenfrequenz durch Auswahl oder Einstellung des Dauerstrichlasers. Durch den Einsatz verschiedener Laser können sogar gleichzeitig mehrere Frequenzkämme unterschiedlicher Mittenfrequenz erzeugt werden, was sich in verschiedenen Anwendungen vorteilhaft ausnutzen lässt. Dies wird in dieser Arbeit anhand zweier Beispiele aus der optischen Messtechnik demonstriert, siehe Kapitel 3 und Kapitel 5. Der Kammlinienabstand ist bei elektro-optisch erzeugten Kämmen definiert durch die elektronisch erzeugte Modulationsfrequenz. Das bietet mehrere Vorteile: Der Linienabstand ist frei einstellbar, sehr stabil, und einfach rückführbar auf einen Frequenzstandard. Der Verzicht auf einen optischen Resonator macht die Kammquelle robust gegenüber Umwelteinflüssen wie z.B. Vibration. Zudem machen Fortschritte bei der Entwicklung von hochintegrierten optischen Modulatoren auf Silizium eine Umsetzung der Frequenzkammquellen in Siliziumphotonik möglich. Die erste derartige Komponente und deren Anwendung in der optischen Telekommunikation wird in Kapitel 6 vorgestellt. Photonische Integration in Silizium bietet außerdem das Potential, miniaturisierte optische Systeme mit vielfältiger Funktionalität zu realisieren. Solche Systeme zeichnen sich durch extrem kleinen Platzbedarf, Kompatibilität mit hochentwickelten und massentauglichen Fertigungstechniken aus der CMOS-(Complementary Metal-Oxide-Semiconductor)-Mikroelektronik und durch die Möglichkeit zur Kointegration elektronischer Schaltungen auf demselben Chip aus. Die hohe Integrationsdichte eröffnet die Perspektive, optische Systeme z.B. für Sensorik tief in industriellen Maschinen zu integrieren. Kapitel 1 gibt eine kurze Einführung in optische Frequenzkämme und deren vielfältige Anwendungen in Wissenschaft und Technik. Der Stand der Technik zu unterschiedlichen Ansätzen zur Frequenzkammerzeugung und deren jeweiligen Eigenschaften werden diskutiert, und es werden die Vorzüge der in dieser Arbeit verwendeten elektro-optischen Frequenzkämme erläutert. Des Weiteren wird die Integration photonischer Systeme und Bauelemente auf Silizium vorgestellt. Schließlich werden die sich ergebenden Vorteile bei der Anwendung in optischer Messtechnik und optischer Telekommunikation diskutiert. Kapitel 2 fasst die physikalischen Grundlagen der Arbeit zusammen. Die Funktionsprinzipien elektro-optischer Modulatoren werden beschrieben sowie deren Anwendung zur Erzeugung von Frequenzkämmen. Zusätzlich wird das Konzept sogenannter synthetischer Wellenlängen eingeführt, welches in der optischen Distanzmesstechnik Anwendung findet. Kapitel 3 beschreibt ein Prinzip zur Distanzmessung mittels zweier elektro-optischer Frequenzkämme zur kontaktlosen Vermessung technischer Objekte. Die Leistungsfähigkeit des Ansatzes wird durch eine Erfassung von ausgedehnten Oberflächenprofilen in Form von Punktwolken demonstriert, wobei eine verhältnismäßig kurze Messzeit von 9.1 µs pro Punkt ausreichend ist. Dabei wird der faseroptisch angebundene Sensorkopf von einer Koordinatenmessmaschine über die Oberfläche bewegt. Durch Temperaturschwankungen im faser-optischen Aufbau ausgelöste Messabweichungen werden durch die Messung mit Lasern unterschiedlicher Emissionsfrequenz kompensiert. Kapitel 4 beschreibt ein integriert-optisches System auf Silizium zur frequenzkamm-basierten Distanzmessung. Das System beinhaltet das zum Heterodynempfang genutzte Interferometer inklusive eines einstellbaren Leistungsteilers sowie der Photodetektoren. Der Platzbedarf aller Komponenten auf dem Siliziumchip beträgt 0.25 mm2^{2}. Der Chip wird in dem in Kapitel 3 eingeführten Messverfahren eingesetzt, wobei Distanzmessungen mit Root-mean-square-Fehlern von 3.2 µm und 14 µs Erfassungszeit demonstriert werden. Kapitel 5 stellt ein Distanzmesssystem vor, bei welchem eine grobauflösende Phasenlaufzeitmessung mit großem Eindeutigkeitsbereich mit einer interferometrischen Distanzmessung mit synthetischen Wellenlängen zur Verfeinerung der Messgenauigkeit kombiniert wird. Die durch vier Laser erzeugten synthetischen Wellenlängen bzw. die Frequenzabstände der Laser werden zeitgleich zur Distanzmessung mittels eines auf elektro-optischer Modulation basierenden Verfahrens vermessen. Durch diese Referenzierung wird der Einsatz freilaufender Laser ohne Wellenlängenstabilisierung ermöglicht. Es werden Messraten von 300 Hz und Genauigkeiten im Mikrometerbereich erreicht. Kapitel 6 beschreibt die weltweit erste Demonstration elektro-optischer Frequenzkammquellen auf Silizium und die hierzu genutzte hybride Materialplattform aus Silizium und organischen Materialien (Silicon-Organic Hybrid, SOH). Spektral flache Frequenzkämme mit 7 Linien innerhalb von 2 dB und Linienabständen von 25 GHz und 40 GHz werden erzeugt. Die praktische Anwendbarkeit solcher Frequenzkämme wird durch eine Reihe von Datenübertragungexperimenten demonstriert. Die einzelnen Kammlinien dienen als Träger für Daten in einem Wellenlängenmultiplex-System, womit eine spektral effiziente Datenübertragung mit Datenraten von über 1 Tbit/s über Distanzen von bis zu 300 km demonstriert wird. Kapitel 7 fasst die Ergebnisse der vorliegenden Arbeit zusammen und gibt einen Ausblick auf die Möglichkeiten, die sich durch weiterentwickelte Kammquellen und fortschreitende Möglichkeiten in der photonischen Integration ergeben

    Infrared nanospectroscopy at cryogenic temperatures and on semiconductor nanowires

    Get PDF
    Die vorliegende Dissertation befasst sich mit der streuenden, infraroten Rasternahfeldmikroskopie (engl. s-SNIM) in Kombination mit dem Freie-Elektronen Laser (FEL) am Helmholtz-Zentrum Dresden-Rossendorf. Der FEL ist eine intensive,schmalbandige Strahlungsquelle, welche vom mittleren bis ferninfraroten Spektralbereich durchstimmbar ist (5 meV bis 250 meV). Die s-SNIM Technik ermöglicht Infrarotmikroskopie- und spektroskopie mit einer wellenlängenunabhängigen räumlichen Auflösung von etwa 10nm. Der erste Ergebnisteil demonstriert die Erweiterung eines FEL-basierten s- SNIM hinsichtlich der Möglichkeit, bei tiefen Temperaturen bis 5K messen zu können. So verdeutlichen wir die Funktionalität unseres Tieftemperatur-s-SNIM anhand verschiedener Proben wie Au, strukturiertem Si/SiO2 sowie Gallium-Vanadium-Sulfid (GaV4S8). Das letztgenannte Material erregt momentan ein hohes wissenschaftliches Interesse, da es sogenannte Skyrmionen des Néel-Typs – periodische angeordnete Spinwirbel – enthält. GaV4S8 hat einen strukturellen Phasenübergang bei T = 42K und beinhaltet bei niedrigeren Temperaturen ferroelektrische Domänen, die wir unter anderem mittels s-SNIM abbilden können. Hierbei beobachten wir einen beträchtlichen Einfluss der Infrarotstrahlung auf die Domänenstruktur. Dies nutzen wir, um den lokalen Hitzeeintrag der Infrarotstrahlung lokal unter der s-SNIM Sonde zu quantifizieren. Der zweite Teil der Ergebnisse beinhaltet s-SNIM Messungen an hochwertigen Halbleiter-Nanodrähten (ND), welche mittels Molekularstrahlepitaxie gewachsen wurden. Derartige ND sind, unter anderem aufgrund ihrer hohen Ladungsträgermobilität, vielversprechende Komponenten für schnelle optoelektronische Nanoelemente der Zukunft. So untersuchen wir beispielsweise hochdotierte GaAs/InGaAs Kern/Schale ND, bei denen wir – unter Verwendung eines Dauerstrich CO2 Lasers – eine spektral scharfe plasmonische Resonanz bei etwa 125 meV beobachten. Betrachten wir selbige ND mittels intensiver, gepulster FEL-Strahlung, ist eine signifikante Rotverschiebung zu Energien kleiner als 100 meV sowie eine Verbreiterung der Resonanz festzustellen. Dieses nichtlineare Verhalten wird zurückgeführt auf eine starke Erhitzung des Elektronengases unter dem Einfluss der intensiven FEL-Pulse. Unsere Erkenntnisse zeigen dahingehend die Möglichkeiten auf, Nichtgleichgewichtszustände im s-SNIM gezielt zu induzieren und zu beinflussen. Abgesehen von den Messungen der Nichtlinearität ist die Herstellung und Charakterisierung von ND-Querschnitten – sowohl der genannten homogen dotierten, als auch modulationsdotierten– Gegenstand des zweiten Ergebniskapitels.:Abstract iii Zusammenfassung v 1 Introduction 1 2 Fundamentals 3 2.1 Scanning probe techniques 3 2.1.1 Atomic force microscopy 4 2.1.2 Piezoresponse force microscopy 8 2.1.3 Kelvin-probe force microscopy 9 2.2 Infrared nanospectroscopy 10 2.2.1 The diffraction limit 10 2.2.2 Scattering scanning near-field infrared microscopy 11 2.2.3 Point-dipole model 12 2.2.4 Signal detection 17 2.2.5 Higher harmonic demodulation and contrast 19 2.2.6 Advantages and limitations of s-SNIM 22 2.3 Infrared light sources 24 2.3.1 Carbon dioxide laser 24 2.3.2 Free-electron laser 26 3 Infrared nanospectroscopy at cryogenic temperatures 31 3.1 Introduction 31 3.2 Samples 33 3.3 Experimental details 36 3.3.1 Low-temperature atomic force microscopy 36 3.3.2 Optical setup 38 3.3.3 Low-temperature scattering scanning near-field infrared microscopy 39 3.3.4 Measurement modes and data acquisition 42 3.4 Results and discussion 44 3.4.1 Performance and IR heating calibration 44 3.4.2 s-SNIM study of gallium vanadium sulfide 49 3.5 Conclusion 51 4 Infrared nanospectroscopy on semiconductor nanowires 53 4.1 Introduction 53 4.2 Samples 55 4.2.1 GaAs/InGaAs core/shell nanowires 55 4.2.2 Modulation doped nanowires 56 4.2.3 Nanowire cross sections 57 4.2.4 Infrared response of doped nanowires 59 4.3 Experimental details 61 4.3.1 Room-temperature atomic force microscopy 61 4.3.2 Room-temperature scattering scanning near-field infrared microscopy 63 4.3.3 Properties of the free-electron laser pulses 65 4.4 Results and discussion 68 4.4.1 GaAs/InGaAs core/shell nanowires 68 4.4.2 Nanowire cross sections 75 4.5 Conclusion 79 5 Summary and outlook 81 A Citation metrics 85 B Additional nanospectroscopic studies 87 B.1 Silicon carbide nanoparticle probes 87 B.2 Individual impurities in Si 91 B.3 Surface phonon polaritons in moybdenum disulfide 96 C Derivation of the nonparabolic effective mass and density of states 99 C.1 Effective mass 99 C.2 Density of states 100 D Comparison of self-homodyne and pseudo-heterodyne detection 103 Bibliography 105 List of Abbreviations 125 List of Symbols 132 List of Publications 133 Acknowledgments 137 Versicherung 139This PhD thesis concentrates on scattering scanning near-field infrared microscopy (s-SNIM) which utilizes the radiation from the free-electron laser (FEL) at the Helmholtz-Zentrum Dresden-Rossendorf. The FEL is an intense, narrow-band radiation source, tunable from the mid- to far-infrared spectral range (5 meV to 250 meV). The s-SNIM technique enables infrared microscopy and spectroscopy with a wavelength-independent spatial resolution of about 10nm. The first part demonstrates the extension of s-SNIM at the FEL towards cryogenic temperatures as low as 5K. To this end, we show the functionality of our low-temperature s-SNIM apparatus on different samples such as Au, structured Si/SiO2, as well as the multiferroic material gallium vanadium sulfide (GaV4S8). The latter material recently attracted a lot of interest since it hosts a Néel-type skyrmion lattice – a periodic array of spin vortices. Below T = 42K, GaV4S8 undergoes a structural phase transition and then forms ferroelectric domains, which we can map out by low-tempererature s-SNIM. Notably, we found a strong impact on the ferroelectric domains upon infrared irradiation, which we further utilize to calibrate the local heat contribution of the focused infrared beam beneath the s-SNIM probe. The second part of this thesis contains comprehensive s-SNIM investigations of high-quality semiconductor nanowires (NWs) grown by molecular beam epitaxy. Such NWs are promising building blocks for fast opto-)electronic nanodevices, amongst others due to their high carrier mobility. We have examined highly doped GaAs/InGaAs core/shell NWs and observed a strong and spectrally sharp plasmonic resonance at about 125 meV, using a continuous wave CO2 laser for probing. If we probe the same NWs utilizing the intense, pulsed FEL radiation, we observe a pronounced redshift to energies less than 100 meV and a broading of the plasmonic response. This nonlinear response is most likely induced by heating of the electron gas upon irradiation by the strong FEL pulses. Our observations open up the possibility to actively induce and observe non-equilibrium states in s-SNIM directly by the mid-infrared beam. Beside the nonlinear effect, we prepared and measured cross sections of both homogeneously-doped and modulation-doped core/shell NWs.:Abstract iii Zusammenfassung v 1 Introduction 1 2 Fundamentals 3 2.1 Scanning probe techniques 3 2.1.1 Atomic force microscopy 4 2.1.2 Piezoresponse force microscopy 8 2.1.3 Kelvin-probe force microscopy 9 2.2 Infrared nanospectroscopy 10 2.2.1 The diffraction limit 10 2.2.2 Scattering scanning near-field infrared microscopy 11 2.2.3 Point-dipole model 12 2.2.4 Signal detection 17 2.2.5 Higher harmonic demodulation and contrast 19 2.2.6 Advantages and limitations of s-SNIM 22 2.3 Infrared light sources 24 2.3.1 Carbon dioxide laser 24 2.3.2 Free-electron laser 26 3 Infrared nanospectroscopy at cryogenic temperatures 31 3.1 Introduction 31 3.2 Samples 33 3.3 Experimental details 36 3.3.1 Low-temperature atomic force microscopy 36 3.3.2 Optical setup 38 3.3.3 Low-temperature scattering scanning near-field infrared microscopy 39 3.3.4 Measurement modes and data acquisition 42 3.4 Results and discussion 44 3.4.1 Performance and IR heating calibration 44 3.4.2 s-SNIM study of gallium vanadium sulfide 49 3.5 Conclusion 51 4 Infrared nanospectroscopy on semiconductor nanowires 53 4.1 Introduction 53 4.2 Samples 55 4.2.1 GaAs/InGaAs core/shell nanowires 55 4.2.2 Modulation doped nanowires 56 4.2.3 Nanowire cross sections 57 4.2.4 Infrared response of doped nanowires 59 4.3 Experimental details 61 4.3.1 Room-temperature atomic force microscopy 61 4.3.2 Room-temperature scattering scanning near-field infrared microscopy 63 4.3.3 Properties of the free-electron laser pulses 65 4.4 Results and discussion 68 4.4.1 GaAs/InGaAs core/shell nanowires 68 4.4.2 Nanowire cross sections 75 4.5 Conclusion 79 5 Summary and outlook 81 A Citation metrics 85 B Additional nanospectroscopic studies 87 B.1 Silicon carbide nanoparticle probes 87 B.2 Individual impurities in Si 91 B.3 Surface phonon polaritons in moybdenum disulfide 96 C Derivation of the nonparabolic effective mass and density of states 99 C.1 Effective mass 99 C.2 Density of states 100 D Comparison of self-homodyne and pseudo-heterodyne detection 103 Bibliography 105 List of Abbreviations 125 List of Symbols 132 List of Publications 133 Acknowledgments 137 Versicherung 13

    Spectral Interferometry with Frequency Combs

    Get PDF
    In this review paper, we provide an overview of the state of the art in linear interferometric techniques using laser frequency comb sources. Diverse techniques including Fourier transform spectroscopy, linear spectral interferometry and swept-wavelength interferometry are covered in detail. The unique features brought by laser frequency comb sources are shown, and specific applications highlighted in molecular spectroscopy, optical coherence tomography and the characterization of photonic integrated devices and components. Finally, the possibilities enabled by advances in chip scale swept sources and frequency combs are discussed

    Development of terahertz photomixer technology at telecommunications wavelength

    Get PDF
    Terahertz (THz) region is one of the least developed regions of the electromagnetic spectrum. Lack of compact and high power sources and detectors in this wavelength range has limited its use for various key applications. In this thesis, three different approaches adopted for the generation of THz radiation are discussed, quantum cascade lasers (QCLs), photoconductive emitters and photomixers and emphasis is given to photomixing. Photomixers generate continuous wave THz radiation by beating two independent laser beams on a semiconductor material. Beat frequency between the laser beams determines the emission frequency. In this work, two different materials, iron (Fe)– doped indium gallium arsenide (Fe:InGaAs) and Fe–doped indium gallium arsenide phosphide (Fe:InGaAsP) is used for THz photomixing at telecommunications wavelength. Characterizing the materials gave an idea about its intrinsic properties. With a standard antenna design, exemplar performance in terms of bandwidth (>2.4 THz) and output power was obtained from these materials. In order to improve the THz power from photomixers, two different electrode designs with nanometre dimensions were attempted on Fe:InGaAsP wafer. The spectral bandwidth and power from the emitters were studied at different bias orientations and polarizations. Mapping the emitters gave an insight into the geometrical dependence of the emission mechanism. The design was tested in a THz time domain system to confirm the results. Using photomixers, a 2.0 THz QCL was injection locked to a heterodyne source. The emission frequency of the QCL was locked over ~20 MHz. QCL voltage modulation was monitored for different emitter modulation frequencies. Locking experiment was performed at different injected signal strengths and QCL biases. QCL emission frequency was monitored at the injection locked frequency and Fabry-Perot modes

    Infrared nanospectroscopy at cryogenic temperatures and on semiconductor nanowires

    Get PDF
    This PhD thesis concentrates on scattering scanning near-field infrared microscopy (s-SNIM) which utilizes the radiation from the free-electron laser (FEL) at the Helmholtz-Zentrum Dresden-Rossendorf. The FEL is an intense, narrow-band radiation source, tunable from the mid- to far-infrared spectral range (5 meV to 250 meV). The s-SNIM technique enables infrared microscopy and spectroscopy with a wavelength-independent spatial resolution of about 10nm. The first part demonstrates the extension of s-SNIM at the FEL towards cryogenic temperatures as low as 5K. To this end, we show the functionality of our low-temperature s-SNIM apparatus on different samples such as Au, structured Si/SiO2, as well as the multiferroic material gallium vanadium sulfide (GaV4S8). The latter material recently attracted a lot of interest since it hosts a Néel-type skyrmion lattice – a periodic array of spin vortices. Below T = 42K, GaV4S8 undergoes a structural phase transition and then forms ferroelectric domains, which we can map out by low-tempererature s-SNIM. Notably, we found a strong impact on the ferroelectric domains upon infrared irradiation, which we further utilize to calibrate the local heat contribution of the focused infrared beam beneath the s-SNIM probe.The second part of this thesis contains comprehensive s-SNIM investigations of high-quality semiconductor nanowires (NWs) rown by molecular beam epitaxy. Such NWs are promising building blocks for fast (opto-)electronic nanodevices, amongst thers due to their high carrier mobility. We have examined highly doped GaAs/InGaAs core/shell NWs and observed a strong and spectrally sharp plasmonic resonance at about hw = 125 meV, using a continuous wave CO2 laser for probing. If we probe the same NWs utilizing the intense, pulsed FEL radiation, we observe a pronounced redshift to hw < 100 meV and a broading of the plasmonic response. This nonlinear response is most likely induced by heating of the electron gas upon irradiation by the strong FEL pulses. Our observations open up the possibility to actively induce and observe non-equilibrium states in s-SNIM directly by the mid-infrared beam. Beside the nonlinear effect, we prepared and measured cross sections of both homogeneously-doped and modulation-doped core/shell NWs

    Organic molecular semiconductors

    Get PDF

    Photonic Technology for Precision Metrology

    Get PDF
    Photonics has had a decisive influence on recent scientific and technological achievements. It includes aspects of photon generation and photon–matter interaction. Although it finds many applications in the whole optical range of the wavelengths, most solutions operate in the visible and infrared range. Since the invention of the laser, a source of highly coherent optical radiation, optical measurements have become the perfect tool for highly precise and accurate measurements. Such measurements have the additional advantages of requiring no contact and a fast rate suitable for in-process metrology. However, their extreme precision is ultimately limited by, e.g., the noise of both lasers and photodetectors. The Special Issue of the Applied Science is devoted to the cutting-edge uses of optical sources, detectors, and optoelectronics systems in numerous fields of science and technology (e.g., industry, environment, healthcare, telecommunication, security, and space). The aim is to provide detail on state-of-the-art photonic technology for precision metrology and identify future developmental directions. This issue focuses on metrology principles and measurement instrumentation in optical technology to solve challenging engineering problems

    Development of terahertz systems using quantum cascade lasers and photomixers

    Get PDF
    The terahertz (THz) region of the electromagnetic spectrum lies between the more established bands of microwave and infrared radiation. In the past few decades, this region has seen huge growth in the development of both THz sources and detectors for a growing number of potential applications including security, wireless communications, medical diagnostics and astronomy. This thesis makes use of three different methods of generation of THz radiation, these being, THz quantum cascade lasers (QCLs), THz time-domain spectroscopy (TDS) and terahertz photomixing. In the first set of experiments, diffuse reflectance imaging of a range of powered samples has been demonstrated using a THz QCL. Imaging was done at four discrete frequencies in the range of 3–3.35 THz by electrically tuning the emission wavelength of the laser. Absorption coefficients of the samples was inferred using Kubelka–Munk model and was found to be in good agreement with the Beer–Lambert absorption coefficient obtained from broadband (0.3–6 THz) THz-TDS measurements. In the second part of the work, photomixers were designed and fabricated on low-temperature-grown (LTG) GaAs substrates. Ex-situ annealing temperature of LTG GaAs was optimised for maximum bandwidth of the photomixers and the impact on recombination lifetime and resistivity of LTG GaAs was also studied. The final set of experiments examined locking a THz QCL to an external stable source. This would allow access to both amplitude and phase information of the laser emission, which in turn would significantly improve the quality of the data obtained from QCL based imaging techniques, making them useful in many different applications. After investigates of various techniques to achieve this, photomixers driven at telecommunications wavelengths (~1550 nm) were successfully used to obtain injection locking a THz QCL
    corecore