47 research outputs found

    Scan registration for autonomous mining vehicles using 3D-NDT

    Get PDF
    Scan registration is an essential subtask when building maps based on range finder data from mobile robots. The problem is to deduce how the robot has moved between consecutive scans, based on the shape of overlapping portions of the scans. This paper presents a new algorithm for registration of 3D data. The algorithm is a generalization and improvement of the normal distributions transform (NDT) for 2D data developed by Biber and Strasser, which allows for accurate registration using a memory-efficient representation of the scan surface. A detailed quantitative and qualitative comparison of the new algorithm with the 3D version of the popular ICP (iterative closest point) algorithm is presented. Results with actual mine data, some of which were collected with a new prototype 3D laser scanner, show that the presented algorithm is faster and slightly more reliable than the standard ICP algorithm for 3D registration, while using a more memory efficient scan surface representation

    Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping

    Full text link
    Modern 3D laser-range scanners have a high data rate, making online simultaneous localization and mapping (SLAM) computationally challenging. Recursive state estimation techniques are efficient but commit to a state estimate immediately after a new scan is made, which may lead to misalignments of measurements. We present a 3D SLAM approach that allows for refining alignments during online mapping. Our method is based on efficient local mapping and a hierarchical optimization back-end. Measurements of a 3D laser scanner are aggregated in local multiresolution maps by means of surfel-based registration. The local maps are used in a multi-level graph for allocentric mapping and localization. In order to incorporate corrections when refining the alignment, the individual 3D scans in the local map are modeled as a sub-graph and graph optimization is performed to account for drift and misalignments in the local maps. Furthermore, in each sub-graph, a continuous-time representation of the sensor trajectory allows to correct measurements between scan poses. We evaluate our approach in multiple experiments by showing qualitative results. Furthermore, we quantify the map quality by an entropy-based measure.Comment: In: Proceedings of the International Conference on Robotics and Automation (ICRA) 201

    Automatic Building and Labeling of HD Maps with Deep Learning

    Full text link
    In a world where autonomous driving cars are becoming increasingly more common, creating an adequate infrastructure for this new technology is essential. This includes building and labeling high-definition (HD) maps accurately and efficiently. Today, the process of creating HD maps requires a lot of human input, which takes time and is prone to errors. In this paper, we propose a novel method capable of generating labelled HD maps from raw sensor data. We implemented and tested our methods on several urban scenarios using data collected from our test vehicle. The results show that the pro-posed deep learning based method can produce highly accurate HD maps. This approach speeds up the process of building and labeling HD maps, which can make meaningful contribution to the deployment of autonomous vehicle.Comment: Accepted by IAAI202

    DLL: Direct LIDAR Localization. A map-based localization approach for aerial robots

    Full text link
    This paper presents DLL, a fast direct map-based localization technique using 3D LIDAR for its application to aerial robots. DLL implements a point cloud to map registration based on non-linear optimization of the distance of the points and the map, thus not requiring features, neither point correspondences. Given an initial pose, the method is able to track the pose of the robot by refining the predicted pose from odometry. Through benchmarks using real datasets and simulations, we show how the method performs much better than Monte-Carlo localization methods and achieves comparable precision to other optimization-based approaches but running one order of magnitude faster. The method is also robust under odometric errors. The approach has been implemented under the Robot Operating System (ROS), and it is publicly available.Comment: Accepted for IROS2021. Associated code can be downloaded from https://github.com/robotics-upo/dl

    Milli-RIO: Ego-Motion Estimation with Low-Cost Millimetre-Wave Radar

    Full text link
    Robust indoor ego-motion estimation has attracted significant interest in the last decades due to the fast-growing demand for location-based services in indoor environments. Among various solutions, frequency-modulated continuous-wave (FMCW) radar sensors in millimeter-wave (MMWave) spectrum are gaining more prominence due to their intrinsic advantages such as penetration capability and high accuracy. Single-chip low-cost MMWave radar as an emerging technology provides an alternative and complementary solution for robust ego-motion estimation, making it feasible in resource-constrained platforms thanks to low-power consumption and easy system integration. In this paper, we introduce Milli-RIO, an MMWave radar-based solution making use of a single-chip low-cost radar and inertial measurement unit sensor to estimate six-degrees-of-freedom ego-motion of a moving radar. Detailed quantitative and qualitative evaluations prove that the proposed method achieves precisions on the order of few centimeters for indoor localization tasks.Comment: Submitted to IEEE Sensors, 9page

    Localization in highly dynamic environments using dual-timescale NDT-MCL

    Get PDF
    Industrial environments are rarely static and often their configuration is continuously changing due to the material transfer flow. This is a major challenge for infrastructure free localization systems. In this paper we address this challenge by introducing a localization approach that uses a dual- timescale approach. The proposed approach - Dual-Timescale Normal Distributions Transform Monte Carlo Localization (DT- NDT-MCL) - is a particle filter based localization method, which simultaneously keeps track of the pose using an apriori known static map and a short-term map. The short-term map is continuously updated and uses Normal Distributions Transform Occupancy maps to maintain the current state of the environment. A key novelty of this approach is that it does not have to select an entire timescale map but rather use the best timescale locally. The approach has real-time performance and is evaluated using three datasets with increasing levels of dynamics. We compare our approach against previously pro- posed NDT-MCL and commonly used SLAM algorithms and show that DT-NDT-MCL outperforms competing algorithms with regards to accuracy in all three test cases.Postprint (author’s final draft
    corecore