128 research outputs found

    A Survey on Sensor Networks from a Multiagent Perspective

    Get PDF
    Sensor networks (SNs) have arisen as one of the most promising technologies for the next decades. The recent emergence of small and inexpensive sensors based upon microelectromechanical systems ease the development and proliferation of this kind of networks in a wide range of actual-world applications. Multiagent systems (MAS) have been identified as one of the most suitable technologies to contribute to the deployment of SNs that exhibit flexibility, robustness and autonomy. The purpose of this survey is 2-fold. On the one hand, we review the most relevant contributions of agent technologies to this emerging application domain. On the other hand, we identify the challenges that researchers must address to establish MAS as the key enabling technology for SNs.This work has been funded by projects IEA(TIN2006-15662-C02-01), Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010), EVE (TIN2009-14702-C02-01,TIN2009-14702-C02-02) and Generalitat de Catalunya under the gran t2009-SGR-1434. Meritxell Vinyals is supported by the Spanish Ministry of Education (FPU grant AP2006-04636)Peer Reviewe

    Multi-objective Decentralised Coordination for Teams of Robotic Agents

    No full text
    This thesis introduces two novel coordination mechanisms for a team of multiple autonomous decision makers, represented as autonomous robotic agents. Such techniques aim to improve the capabilities of robotic agents, such as unmanned aerial or ground vehicles (UAVs and UGVs), when deployed in real world operations. In particular, the work reported in this thesis focuses on improving the decision making of teams of such robotic agents when deployed in an unknown, and dynamically changing, environment to perform search and rescue operations for lost targets. This problem is well known and studied within both academia and industry and coordination mechanisms for controlling such teams have been studied in both the robotics and the multi-agent systems communities. Within this setting, our first contribution aims at solves a canonical target search problem, in which a team of UAVs is deployed in an environment to search for a lost target. Specifically, we present a novel decentralised coordination approach for teams of UAVs, based on the max-sum algorithm. In more detail, we represent each agent as a UAV, and study the applicability of the max-sum algorithm, a decentralised approximate message passing algorithm, to coordinate a team of multiple UAVs for target search. We benchmark our approach against three state-of-the-art approaches within a simulation environment. The results show that coordination with the max-sum algorithm out-performs a best response algorithm, which represents the state of the art in the coordination of UAVs for search, by up to 26%, an implicitly coordinated approach, where the coordination arises from the agents making decisions based on a common belief, by up to 34% and finally a non-coordinated approach by up to 68%. These results indicate that the max-sum algorithm has the potential to be applied in complex systems operating in dynamic environments. We then move on to tackle coordination in which the team has more than one objective to achieve (e.g. maximise the covered space of the search area, whilst minimising the amount of energy consumed by each UAV). To achieve this shortcoming, we present, as our second contribution, an extension of the max-sum algorithm to compute bounded solutions for problems involving multiple objectives. More precisely, we develop the bounded multi-objective max-sum algorithm (B-MOMS), a novel decentralised coordination algorithm able to solve problems involving multiple objectives while providing guarantees on the solution it recovers. B-MOMS extends the standard max-sum algorithm to compute bounded approximate solutions to multi-objective decentralised constraint optimisation problems (MO-DCOPs). Moreover, we prove the optimality of B-MOMS in acyclic constraint graphs, and derive problem dependent bounds on its approximation ratio when these graphs contain cycles. Finally, we empirically evaluate its performance on a multi-objective extension of the canonical graph colouring problem. In so doing, we demonstrate that, for the settings we consider, the approximation ratio never exceeds 22, and is typically less than 1.51.5 for less-constrained graphs. Moreover, the runtime required by B-MOMS on the problem instances we considered never exceeds 3030 minutes, even for maximally constrained graphs with one hundred agents

    Context-Aware Sparse Deep Coordination Graphs

    Full text link
    Learning sparse coordination graphs adaptive to the coordination dynamics among agents is a long-standing problem in cooperative multi-agent learning. This paper studies this problem and proposes a novel method using the variance of payoff functions to construct context-aware sparse coordination topologies. We theoretically consolidate our method by proving that the smaller the variance of payoff functions is, the less likely action selection will change after removing the corresponding edge. Moreover, we propose to learn action representations to effectively reduce the influence of payoff functions' estimation errors on graph construction. To empirically evaluate our method, we present the Multi-Agent COordination (MACO) benchmark by collecting classic coordination problems in the literature, increasing their difficulty, and classifying them into different types. We carry out a case study and experiments on the MACO and StarCraft II micromanagement benchmark to demonstrate the dynamics of sparse graph learning, the influence of graph sparseness, and the learning performance of our method

    Coordinating decentralized learning and conflict resolution across agent boundaries

    Get PDF
    It is crucial for embedded systems to adapt to the dynamics of open environments. This adaptation process becomes especially challenging in the context of multiagent systems because of scalability, partial information accessibility and complex interaction of agents. It is a challenge for agents to learn good policies, when they need to plan and coordinate in uncertain, dynamic environments, especially when they have large state spaces. It is also critical for agents operating in a multiagent system (MAS) to resolve conflicts among the learned policies of different agents, since such conflicts may have detrimental influence on the overall performance. The focus of this research is to use a reinforcement learning based local optimization algorithm within each agent to learn multiagent policies in a decentralized fashion. These policies will allow each agent to adapt to changes in environmental conditions while reorganizing the underlying multiagent network when needed. The research takes an adaptive approach to resolving conflicts that can arise between locally optimal agent policies. First an algorithm that uses heuristic rules to locally resolve simple conflicts is presented. When the environment is more dynamic and uncertain, a mediator-based mechanism to resolve more complicated conflicts and selectively expand the agents' state space during the learning process is harnessed. For scenarios where mediator-based mechanisms with partially global views are ineffective, a more rigorous approach for global conflict resolution that synthesizes multiagent reinforcement learning (MARL) and distributed constraint optimization (DCOP) is developed. These mechanisms are evaluated in the context of a multiagent tornado tracking application called NetRads. Empirical results show that these mechanisms significantly improve the performance of the tornado tracking network for a variety of weather scenarios. The major contributions of this work are: a state of the art decentralized learning approach that supports agent interactions and reorganizes the underlying network when needed; the use of abstract classes of scenarios/states/actions that efficiently manages the exploration of the search space; novel conflict resolution algorithms of increasing complexity that use heuristic rules, sophisticated automated negotiation mechanisms and distributed constraint optimization methods respectively; and finally, a rigorous study of the interplay between two popular theories used to solve multiagent problems, namely decentralized Markov decision processes and distributed constraint optimization

    Distributed Gibbs: A memory-bounded sampling-based DCOP algorithm

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centres in Singapore Funding Initiativ

    A Bound-Independent Pruning Technique to Speeding up Tree-Based Complete Search Algorithms for Distributed Constraint Optimization Problems

    Get PDF
    Complete search algorithms are important methods for solving Distributed Constraint Optimization Problems (DCOPs), which generally utilize bounds to prune the search space. However, obtaining high-quality lower bounds is quite expensive since it requires each agent to collect more information aside from its local knowledge, which would cause tremendous traffic overheads. Instead of bothering for bounds, we propose a Bound-Independent Pruning (BIP) technique for existing tree-based complete search algorithms, which can independently reduce the search space only by exploiting local knowledge. Specifically, BIP enables each agent to determine a subspace containing the optimal solution only from its local constraints along with running contexts, which can be further exploited by any search strategies. Furthermore, we present an acceptability testing mechanism to tailor existing tree-based complete search algorithms to search the remaining space returned by BIP when they hold inconsistent contexts. Finally, we prove the correctness of our technique and the experimental results show that BIP can significantly speed up state-of-the-art tree-based complete search algorithms on various standard benchmarks

    Agent-Driven Representations, Algorithms, and Metrics for Automated Organizational Design.

    Full text link
    As cooperative multiagent systems (MASs) increase in interconnectivity, complexity, size, and longevity, coordinating the agents' reasoning and behaviors becomes increasingly difficult. One approach to address these issues is to use insights from human organizations to design structures within which the agents can more efficiently reason and interact. Generally speaking, an organization influences each agent such that, by following its respective influences, an agent can make globally-useful local decisions without having to explicitly reason about the complete joint coordination problem. For example, an organizational influence might constrain and/or inform which actions an agent performs. If these influences are well-constructed to be cohesive and correlated across the agents, then each agent is influenced into reasoning about and performing only the actions that are appropriate for its (organizationally-designated) portion of the joint coordination problem. In this dissertation, I develop an agent-driven approach to organizations, wherein the foundation for representing and reasoning about an organization stems from the needs of the agents in the MAS. I create an organizational specification language to express the possible ways in which an organization could influence the agents' decision making processes, and leverage details from those decision processes to establish quantitative, principled metrics for organizational performance based on the expected impact that an organization will have on the agents' reasoning and behaviors. Building upon my agent-driven organizational representations, I identify a strategy for automating the organizational design process~(ODP), wherein my ODP computes a quantitative description of organizational patterns and then searches through those possible patterns to identify an (approximately) optimal set of organizational influences for the MAS. Evaluating my ODP reveals that it can create organizations that both influence the MAS into effective patterns of joint policies and also streamline the agents' decision making in a coordinate manner. Finally, I use my agent-driven approach to identify characteristics of effective abstractions over organizational influences and a heuristic strategy for converging on a good abstraction.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113616/1/jsleight_1.pd
    • …
    corecore