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ABSTRACT
Researchers have used distributed constraint optimization
problems (DCOPs) to model various multi-agent coordina-
tion and resource allocation problems. Very recently, Ottens
et al. proposed a promising new approach to solve DCOPs
that is based on confidence bounds via their Distributed
UCT (DUCT) sampling-based algorithm. Unfortunately, its
memory requirement per agent is exponential in the num-
ber of agents in the problem, which prohibits it from scaling
up to large problems. Thus, in this paper, we introduce
a new sampling-based DCOP algorithm called Distributed
Gibbs, whose memory requirements per agent is linear in
the number of agents in the problem. Additionally, we show
empirically that our algorithm is able to find solutions that
are better than DUCT; and computationally, our algorithm
runs faster than DUCT as well as solve some large problems
that DUCT failed to solve due to memory limitations.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI

Keywords
DCOP; Sampling; Gibbs

1. INTRODUCTION
Distributed constraint optimization problems (DCOPs)

are problems where agents need to coordinate their value
assignments to maximize the sum of resulting constraint re-
wards [19, 22]. Researchers have used them to model various
multi-agent coordination and resource allocation problems
such as the distributed scheduling of meetings [32], the dis-
tributed allocation of targets to sensors in a network [5, 33],
the distributed allocation of resources in disaster evacuation
scenarios [14], the distributed management of power distri-
bution networks [12], the distributed generation of coalition
structures [26] and the distributed coordination of logistics
operations [15].

The field has matured considerably over the past decade
as researchers continue to develop better and better algo-
rithms. Most of these algorithms fall into one of the fol-
lowing two classes of algorithms: (1) search-based algo-
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rithms like ADOPT [19] and its variants [30, 8], AFB [7]
and MGM [17], where the agents enumerate through com-
binations of value assignments in a decentralized manner,
and (2) inference-based algorithms like DPOP [22], max-
sum [5] and Action GDL [27], where the agents use dynamic
programming to propagate aggregated information to other
agents.

More recently, Ottens et al. proposed a promising new
approach to solve DCOPs that is based on confidence
bounds [21]. They introduced a new sampling-based al-
gorithm called Distributed UCT, which is an extension of
UCB [1] and UCT [10]. While the algorithm is shown to out-
perform competing approximate and complete algorithms,1

its memory requirements per agent is exponential in the
number of agents in the problem, which prohibits it from
scaling up to large problems.

Thus, in this paper, we introduce a new sampling-based
DCOP algorithm called Distributed Gibbs (D-Gibbs), which
is a distributed extension of the Gibbs algorithm [6]. D-
Gibbs is memory-bounded – its memory requirement per
agent is linear in the number of agents in the problem. While
the Gibbs algorithm was designed to approximate joint prob-
ability distributions in Markov random fields and solve max-
imum a posteriori (MAP) problems, we show how one can
map such problems into DCOPs in order for Gibbs to oper-
ate directly on DCOPs. Our results show that D-Gibbs is
able to find solutions that are better than DUCT faster than
DUCT as well as solve some larger problems that DUCT
failed to solve due to memory limitations.

2. BACKGROUND: DCOP
A distributed constraint optimization problem

(DCOP) [19, 18, 22] is defined by 〈X ,D,F ,A,α〉, where
X = {x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn}
is a set of finite domains, where Di is the domain of
variable xi; F is a set of binary utility functions, where
each utility function Fij : Di × Dj 7→ N ∪ {0,∞} specifies
the utility of each combination of values of variables xi and
xj ; A = {a1, . . . , ap} is a set of agents and α : X → A maps
each variable to one agent. Although the general DCOP
definition allows one agent to own multiple variables as
well as the existence of n-ary constraints, we restrict our
definition here for simplification purposes. One can trans-
form a general DCOP to our DCOP using pre-processing

1DUCT finds better solutions compared to DSA and MGM
when they are all given the same amount of runtime, and
finds solutions for large problems that DPOP failed to solve
due to memory limitations [21].



Algorithm 1: Gibbs(z1, . . . , zn)

1 for i = 1 to n do
2 z0

i ← Initialize(zi)
3 end
4 for t = 1 to T do
5 for i = 1 to n do
6 zti ← Sample(P (zi | zt1, . . . , zti−1, z

t−1
i+1 , . . . , z

t−1
n ))

7 end

8 end

techniques [31, 4, 2]. A solution is a value assignment for a
subset of variables. Its utility is the evaluation of all utility
functions on that solution. A solution is complete iff it is
a value assignment for all variables. The goal is to find a
utility-maximal complete solution.

A constraint graph visualizes a DCOP instance, where
nodes in the graph correspond to variables in the DCOP
and edges connect pairs of variables appearing in the same
utility function. A DFS pseudo-tree arrangement has the
same nodes and edges as the constraint graph and satisfies
that (i) there is a subset of edges, called tree edges, that
form a rooted tree and (ii) two variables in a utility function
appear in the same branch of that tree. A DFS pseudo-tree
arrangement can be constructed using distributed DFS algo-
rithms [9]. In this paper, we will use Ni to refer to the set of
neighbors of variable xi in the constraint graph, Ci to refer
to the set of children of variable xi in the pseudo-tree, and
Pi to refer to the parent of variable xi in the pseudo-tree.

3. BACKGROUND: ALGORITHMS
In this section, we provide a brief overview of two rele-

vant sampling-based algorithms – the centralized Gibbs al-
gorithm and the Distributed UCT (DUCT) algorithm.

3.1 Gibbs
The Gibbs sampling algorithm [6] is a Markov chain

Monte Carlo algorithm that can be used to approximate
joint probability distributions. It generates a Markov chain
of samples, each of which is correlated with previous sam-
ples. Suppose we have a joint probability distribution
P (z1, z2, . . . , zn) over n variables, which we would like to
approximate. Algorithm 1 shows the pseudocode of the
Gibbs algorithm, where each variable zti represents the t-
th sample of variable zi. The algorithm first initializes z0

i

to any arbitrary value of variable zi (lines 1-3). Then, it
iteratively samples zti from the conditional probability dis-
tribution assuming that all the other n − 1 variables take
on their previously sampled values, respectively (lines 4-8).
This process continues for a fixed number of iterations or
until convergence, that is, the joint probability distribution
approximated by the samples do not change. It is also com-
mon practice to ignore a number of samples at the begin-
ning as it may not accurately represent the desired distribu-
tion. Once the joint probability distribution is found, one
can easily identify that a complete solution with the max-
imum likelihood. This problem is called the maximum a
posteriori (MAP) estimation problem, which is a common
problem in many applications such as image processing [3]
and bioinformatics [29, 23].

The Gibbs sampling algorithm is desirable as its approx-
imated joint probability distribution (formed using its sam-

ples) will converge to the true joint probability distribution
given a sufficiently large number of samples for most prob-
lems. While Gibbs cannot be used to solve DCOPs directly,
we will later show how one can slightly modify the problem
such that Gibbs can be used to find optimal solutions given
a sufficiently large number of samples.

3.2 Distributed UCT
The Upper Confidence Bound (UCB) [1] and UCB Ap-

plied to Trees (UCT) [10] algorithms are two Monte Carlo
algorithms that have been successfully applied to find near
optimal policies in large Markov Decision Processes (MDPs).
The Distributed UCT (DUCT) algorithm [21] is a dis-
tributed version of UCT that can be used to find near-
optimal cost-minimal complete DCOP solutions. We now
provide a brief introduction to the algorithm and refer read-
ers to the original article [21] for a more detailed treatment.

DUCT first constructs a pseudo-tree, after which each
agents knows its parent, pseudo-parents, children and
pseudo-children. Each agent xi maintains the following for
all possible contexts X and values d ∈ Di:

• Its current value di.

• Its current context Xi, which is initialized to null. It is
its assumption on the current values of its ancestors.

• Its cost yi, which is initialized to ∞. It is the sum of
the costs of all cost functions between itself and its an-
cestors given that they take on their respective values in
its context and it takes on its current value.

• Its counter τi(X, d), which is initialized to 0. It is the
number of times it has sampled value d under context X.

• Its counter τi(X), which is initialized to 0. It is the num-
ber of times it has received context X from its parent.

• Its cost µ̂i(X, d), which is initialized to∞. It is the small-
est cost found when it sampled d under context X so far
up to the current iteration.

• Its cost µ̂i(X), which is initialized to ∞. It is the small-
est cost found under context X so far up to the current
iteration.

At the start, the root agent chooses its value and sends it
down in a CONTEXT message to each of its children. When
an agent receives a CONTEXT message, it too chooses its
value, appends it to the context in the CONTEXT message,
and sends the appended context down in a CONTEXT mes-
sage to each of its children. Each agent xi chooses its value
di using:

di = argmin
d∈Di

Bi(d) (1)

Bi(d) = f(δi(d), µ̂i(Xi, d), τi(Xi, d), Bc) (2)

δi(d) =
∑

〈xj ,dj〉∈Xi

Fij(d, dj) (3)

where its bound Bi(d) is initialized with a heuristic function
f that balances exploration and exploitation. Additionally,
each agent xi increments the number of times it has chosen
its current value di under its current context Xi using:

τi(Xi, di) = τi(Xi, di) + 1 (4)

τi(Xi) = τi(Xi) + 1 (5)



This process continues until leaf agents receive CONTEXT
messages and choose their respective values. Then, each leaf
agent calculates its cost and sends it up in a COST message
to its parent. When an agent receives a COST message from
each of its children, it too calculates its cost, which includes
the costs received from its children, and sends it up to its
parent. Each agent xi calculates its costs yi, µ̂i(Xi, d) and
µ̂i(Xi) using:

yi = δi(di) +
∑
xc∈Ci

yc (6)

µ̂i(Xi, di) = min{µ̂i(Xi, di), yi} (7)

µ̂i(Xi) = min{µ̂i(Xi), µ̂i(Xi, di)} (8)

This process continues until the root agent receives a COST
message from each of its children and calculates its own cost.
Then, the root agent starts a new iteration, and the process
continues until all the agents terminate. An agent xi termi-
nates if its parent has terminated and the following condition
holds:

max
d∈Di

{
µ̂i(Xi)−

[
µ̂i(Xi, d)−

√
ln 2

∆

τi(Xi, di)

]}
≤ ε (9)

where ∆ and ε are parameters of the algorithm.

4. DISTRIBUTED GIBBS
While DUCT has been shown to be very promising,

its memory requirement per agent is O(D̂T ), where D̂ =
maxxi Di is the largest domain size over all agents and T
is the depth of the pseudo-tree. Each agent needs to store
a constant number of variables for all possible contexts and
values,2 and the number of possible contexts is exponen-
tial in the number of ancestors. Therefore, this high mem-
ory requirement might prohibit the use of DUCT in large
problems, especially if the agents have large domain sizes
as well. Therefore, we now introduce the Distributed Gibbs
algorithm, which is a distributed extension of the Gibbs al-
gorithm adapted to solve DCOPs. Additionally, its memory
requirement per agent is linear in the number of ancestors.

4.1 Mapping of MAP Estimation Problems to
DCOPs

Recall that the Gibbs algorithm approximates a joint
probability distribution over all the variables in a problem
when only marginal distributions are available. Once the
joint probability distribution is found, it finds the maximum
a posteriori (MAP) solution. If we can map a DCOP where
the goal is to find a complete solution with maximum util-
ity, to a problem where the goal is to find a complete solu-
tion with the maximum likelihood, and that a solution with
maximum utility is also a solution with maximum likelihood,
then we can use Gibbs to solve DCOPs.

We now describe how to do so.3 Consider a maximum a
posteriori (MAP) estimation problem on a pairwise Markov
random field (MRF).4 An MRF can be visualized by an
undirected graph 〈V,E〉 and is formally defined by

2This list of variables are listed in Section 3.2.
3We previously described this mapping in a workshop [13].
4We are describing pairwise MRFs so that the mapping to
binary DCOPs is clearer.

• A set of random variables X = {xi | ∀i ∈ V }, where each
random variable xi can be assigned a value di from a
finite domain Di. Each random variable xi is associated
with node i ∈ V .

• A set of potential functions θ = {θij(xi, xj) | ∀(i, j) ∈ E}.
Each potential function θij(xi, xj) is associated with edge
(i, j) ∈ E. Let the probability P (xi = di, xj = dj) be
defined as exp(θij(xi=di, xj =dj)). For convenience, we
will drop the values in the probabilities and use P (xi, xj)
to mean P (xi=di, xj =dj) from now on.

Therefore, a complete assignment x to all the random vari-
ables has the probability:

P (x) =
1

Z

∏
(i,j)∈E

exp[θij(xi, xj)] (10)

=
1

Z
exp

[ ∑
(i,j)∈E

θij(xi, xj)

]
(11)

where Z is the normalization constant. The objective of a
MAP estimation problem is to find the most probable as-
signment to all the variables under P (x). This objective is
equivalent to finding a complete assignment x that maxi-
mizes the function:

F (x) =
∑

(i,j)∈E

θij(xi, xj) (12)

Maximizing the function in Equation 12 is also the objective
of a DCOP if each potential function θij corresponds to a
utility function Fij . Therefore, if we use the Gibbs algorithm
to solve a MAP estimation problem, then the complete solu-
tion found for the MAP estimation problem is also a solution
to the corresponding DCOP.

4.2 Algorithm Description
We now describe the Distributed Gibbs algorithm. Algo-

rithm 2 shows the pseudo-code, where each agent xi main-
tains the following:

• Its values di and d̂i, which are both initialized to initial
value ValInit(xi). They are the agent’s value in the cur-
rent and previous iterations, respectively

• Its best value d∗i , which is also initialized to initial value
ValInit(xi). It is the agent’s value in the best solution
found so far. Note that each agent maintains its own best
value only and does not need to know the best values of
other agents. The best solution x∗ = (d∗1, . . . , d

∗
n) can

then be constructed upon termination.

• Its current context Xi, which is initialized with all the
tuples of neighbors and their initial values. It is its as-
sumption on the current values of its neighbors.

• Its time index ti, which is initialized to 0. It is the number
of iterations it has sampled.

• Its time index t∗i , which is initialized to 0. It indicates the
most recent iteration that a better solution was found.
The agents use it to know if they should update their
respective best values.

• Its value ∆i, which is initialized to 0. It is the difference
in solution quality between the current solution and the
best solution found in the previous iteration.

• Its value ∆∗i , which is initialized to 0. It is the difference
in solution quality between the best solution found in the



Algorithm 2: Distributed Gibbs()

1 Create pseudo-tree
2 Each agent xi calls Initialize()

Procedure Initialize()

3 d∗i ← d̂i ← di ← ValInit(xi)
4 Xi ← {〈xj , ValInit(xj)〉 | xj ∈ Ni}
5 ∆∗i ← ∆i ← 0
6 t∗i ← ti ← 0
7 if xi is root then
8 ti ← ti + 1
9 Sample()

10 end

current iteration and the best solution found so far up to
the previous iteration.

The algorithm starts by constructing a pseudo-tree (line 1)
and having each agent initialize their variables to their de-
fault values (lines 2-6). The root then starts by sampling,
that is, choosing its value di based on the probability:

P (xi | xj ∈ X \ {xi}) = P (xi | xj ∈ Ni)

=
1

Z

∏
〈xj ,dj〉∈Xi

exp[Fij(di, dj)]

=
1

Z
exp

[ ∑
〈xj ,dj〉∈Xi

Fij(di, dj)

]
(13)

where Z is the normalization constant (lines 9 and 12). It
then sends its value in a VALUE message to each of its
neighbors (line 19).

When an agent receives a VALUE message, it updates the
value of the sender in its context (line 20). If the message
is from its parent, then it too samples and sends its value
in a VALUE message to each of its neighbors (lines 32, 12
and 19). This process continues until all the leaf agents sam-
ple. Each leaf agent then sends a BACKTRACK message
to its parent (line 34). When an agent receives a BACK-
TRACK message from each child (line 38), it too sends a
BACKTRACK message to its parent (line 46). This pro-
cess continues until the root agent receives a BACKTRACK
message from each child, which concludes one iteration.

We now describe how the agents identify if they have
found a better solution than the best one found thus far
in a decentralized manner without having to know the val-
ues of every other agent in the problem. In order to do
so, the agents use delta variables ∆i and ∆∗i . These vari-
ables are sent down the pseudo-tree in VALUE messages
together with the current value of agents (line 19) and
up the pseudo-tree in BACKTRACK messages (lines 34
and 46). When an agent receives a VALUE message from
its parent, it updates its delta values to its parents’ delta
values prior to sampling (lines 29-30). After sampling,
each agent calculates its local difference in solution qual-
ity

∑
〈xj ,dj〉∈Xi [Fij(di, dj) − Fij(d̂i, dj)] and adds it to ∆i

(line 13). Thus, ∆i can be seen as a sum of local differences
from the root to the current agent as it is updated down the
pseudo-tree. If this difference ∆i is larger than the maxi-
mum difference ∆∗i , which means that the new solution is
better than the best solution found thus far, then the agent

Procedure Sample()

11 d̂i ← di
12 di ← Sample based on Equation 13

13 ∆i ← ∆i +
∑
〈xj ,dj〉∈Xi [Fij(di, dj)− Fij(d̂i, dj)]

14 if ∆i > ∆∗i then
15 ∆∗i ← ∆i

16 d∗i ← di
17 t∗i ← ti
18 end
19 Send VALUE (xi, di,∆i,∆

∗
i , t
∗
i ) to each xj ∈ Ni

Procedure When Received VALUE(xs, ds,∆s,∆
∗
s , t
∗
s)

20 Update 〈xs, d′s〉 ∈ Xi with (xs, ds)
21 if xs = Pi then
22 Wait until received VALUE message from all

pseudo-parents in this iteration
23 ti ← ti + 1
24 if t∗s = ti then
25 d∗i ← di
26 else if t∗s = ti − 1 and t∗s > t∗i then

27 d∗i ← d̂i
28 end
29 ∆i ← ∆s

30 ∆∗i ← ∆∗s
31 t∗i ← t∗s
32 Sample()
33 if xi is a leaf then
34 Send BACKTRACK (xi,∆i,∆

∗
i ) to Pi

35 end

36 end

updates the maximum difference ∆∗i to ∆i and its best value
d∗i to its current value di (lines 14-16).

After finding a better solution, the agent needs to inform
other agents to update their respective best values to their
current values since the best solution found thus far assumes
that the other agents take on their respective current values.
There are the following three types of agents that need to
be informed:

• Descendant agents: The agent that has found a better
solution updates its time index t∗i to the current iteration
(line 17) and sends this variable down to its children via
VALUE messages (line 19). If an agent xi receives a
VALUE message from its parent with a time index t∗s
that equals the current iteration ti, then it updates its
best value d∗i to its current value di (lines 24-25). It then
updates its time index t∗i to its parent’s time index t∗s
and sends it down to its children via VALUE messages
(lines 31, 32 and 19). This process continues until all
descendant agents update their best values.

• Ancestor agents: The agent that has found a better
solution sends its maximum difference ∆∗i up to its parent
via BACKTRACK messages (lines 34 and 46). In the
simplest case where an agent xi has only one child xc,
if the agent receives a BACKTRACK message with a
maximum difference ∆∗c larger than its own maximum
difference, then it updates its best value d∗i to its current
value di (lines 40, 41 and 43). In the case where an agent
has more than one child, then it compares the sum of



Procedure When Received BACKTRACK(xs,∆s,∆
∗
s)

37 Store ∆s and ∆∗s
38 if Received BACKTRACK message from all children in

this iteration then
39 ∆i ←

(∑
xc∈Ci ∆c

)
−
(
|Ci| − 1

)
·∆i

40 ∆∗Ci ←
(∑

xc∈Ci ∆∗c
)
−
(
|Ci| − 1

)
·∆∗i

41 if ∆∗Ci > ∆∗i then
42 ∆∗i ← ∆∗Ci
43 d∗i ← di
44 t∗i ← ti
45 end
46 Send BACKTRACK (xi,∆i,∆

∗
i ) to Pi

47 if xi is root then
48 ∆i ← ∆i −∆∗i
49 ∆∗i ← 0
50 ti ← ti + 1
51 Sample()

52 end

53 end

the maximum differences over all children xc subtracted
by the overlaps (∆∗i was added an extra |Ci| times) with
its own maximum difference ∆∗i . If the former is larger
than the latter, then it updates its best value d∗i to its
current value di (lines 40, 41 and 43). It then updates
its own maximum difference ∆∗i (line 42) and sends it to
its parent via BACKTRACK messages (line 46). This
process continues until all ancestor agents update their
best values.

• Sibling subtree agents: Agents in sibling subtrees do
not get VALUE or BACKTRACK messages from each
other. Thus, an agent xi cannot update its best value
using the above two methods if another agent in its sibling
subtree has found a better solution. However, in the next
iteration, the common ancestor of these two agents will
propagate its time index down to agent xi via VALUE
messages. If agent xi receives a time index t∗s that equals
the previous iteration ti−1 and is larger than its own time
index t∗i (indicating that it hasn’t found an even better
solution in the current iteration), then it updates its best

value d∗i to its previous value d̂i (lines 26-28). (It doesn’t
update its best value to its current value because the best
solution was found in the previous iteration.) Thus, all
agents in sibling subtrees also update their best values.

Therefore, when a better solution is found, all agents in
the Distributed Gibbs algorithm update their best values by
the end of the next iteration. The algorithm can either ter-
minate after a given number of iterations or when no better
solution is found for a given number of consecutive itera-
tions. We later show that by choosing at least 1

α·ε number
of samples, the probability that the best solution found is in
the top α-percentile is at least 1− ε (Theorem 2).5

4.3 Theoretical Properties
5One can slightly optimize the algorithm by having the
agents (1) send their current values in BACKTRACK mes-
sages instead of VALUE messages to their parents; and (2)
send smaller VALUE messages, which do not contain delta
values and time indices, to all pseudo-children. We describe
the unoptimized version here for ease of understanding.

Like Gibbs, the Distributed Gibbs algorithm also sam-
ples the values sequentially and samples based on the same
equation (Equation 13). The main difference is that Gibbs
samples down a pseudo-chain (a pseudo-tree without sibling
subtrees), while Distributed Gibbs exploits parallelism by
sampling down a pseudo-tree. However, this difference only
speeds up the sampling process and does not affect the cor-
rectness of the algorithm since agents in sibling subtrees are
independent of each other. Thus, we will show several prop-
erties that hold for centralized Gibbs and, thus, also hold for
Distributed Gibbs. Some of these properties are well-known
(we label them “properties”) and some are new properties
(we label them “theorems”) to the best of our knowledge.
We show the proofs for the new properties in the appendix.

Property 1. Gibbs is guaranteed to converge.

Property 2. Upon convergence, the probability P (x) of
any solution x equals its approximated probability PGibbs(x):

P (x) = PGibbs(x) =
exp[F (x)]∑

x′∈S exp[F (x′)]

where S is the set of all solutions sampled.

Property 3. The expected numbers of samples NGibbs to
get optimal solution x∗ is

E(NGibbs) ≤
1

PGibbs(x
∗)

+ L

where L is the number of samples needed before the estimated
joint probability converges to the true joint probability.

The process of repeated sampling to get an optimal so-
lution is equivalent to sampling Bernoulli trials with suc-
cess probability PGibbs(x

∗). Thus, the corresponding ge-
ometric variable for the number of samples needed to get
an optimal solution for the first time has an expectation
of 1/PGibbs(x

∗) [11]. In the following, we assume that
1/PGibbs(x

∗) >> L and we will thus ignore L.

Theorem 1. The expected number of samples to find an
optimal solution x∗ with Gibbs is no greater than with a
uniform sampling algorithm. In other words,

PGibbs(x
∗) ≥ Puniform(x∗)

Definition 1. A set of top α-percentile solutions Sα is a
set that contains solutions that are no worse than any solu-

tion in the supplementary set D \ S and |Sα||D| = α.

Theorem 2. After N = 1
α·ε number of samples with

Gibbs, the probability that the best solution found thus far
xN is in the top α-percentile is at least 1−ε. In other words,

PGibbs

(
xN ∈ Sα | N =

1

α · ε

)
≥ 1− ε

Corollary 1. The quality of the solution found by Gibbs
approaches optimal as the number of samples N approaches
infinity. In other words,

lim
ε→0

PGibbs

(
xN ∈ Sα | N =

1

α · ε

)
= 1
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Figure 1: Results for Graph Coloring Problems

While we have only described the above properties and
theorems for problems with discrete values, we believe that
they can be applied directly for DCOPs with continuous
values [24] by changing the summations to integrations.

4.4 Complexity Analysis
Each agent xi needs to store a context Xi, which contains

the agent-value pairs of all neighboring agents xj ∈ Ni. Ad-
ditionally agent xi needs to store the delta values ∆c and ∆∗c
for all children xc ∈ Ci. Thus, the memory complexity of
each agent is linear in the number of agents in the problem
(= O(|X |)).

Each agent xi needs to send a VALUE message to each
neighboring agent and a BACKTRACK message to its par-
ent in each iteration, and each message contains a constant
number of values (each VALUE message contains 5 values
and each BACKTRACK message contains 3 values). Thus,
the amount of information passed around in the network
per iteration is polynomial in the number of agents in the
problem (= O(|X |2).

5. EXPERIMENTAL RESULTS
We now compare Distributed Gibbs (D-Gibbs) to

DPOP [22] (an optimal algorithm) and MGM [17],
MGM2 [17] and DUCT [21] (sub-optimal algorithms). In
terms of network load, that is, the amount of information
passed around the network, DPOP sends an exponential
amount of information in total (= O(exp(|X |)) while MGM,
MGM2, DUCT and D-Gibbs send a polynomial amount of
information in each iteration (= O(|X |2).

To compare runtimes and solution qualities, we use
publicly-available implementations of MGM, MGM2, DUCT
and DPOP, which are all implemented on the FRODO

framework [16]. We run our experiments on a 64 core Linux
machine with 2GB of memory per run. We measure run-
time using the simulated time metric [25] and evaluate the
algorithms on two problem domains: graph coloring prob-
lems and sensor network problems. For all problems, we set
the DUCT parameters ∆ = ε = 0.05, similar to the settings
used in the original article [21] unless mentioned otherwise.
We also let MGM, MGM2 and D-Gibbs run for as long as
DUCT did for fair comparisons.6 Each data point is aver-
aged over 50 instances.

5.1 Graph Coloring Problems
We used the random graph coloring problem generator

provided in the FRODO framework [16] to generate our
problems. We varied the size of the problem by increasing
the number of agents |X | from 18 to 30, the graph den-
sity p1

7 from 0.2 to 1.0 and the domain size |Di| of each
agent xi from 5 to 20, and we chose the constraint utilities
uniformly from the range (0, 10) at random if the neigh-
boring agents have different values and 0 if they have the
same value. Figure 1 shows our results, where we varied the
number of agents |X | in Figure 1(a), the domain size |Di|
in Figure 1(b), the density p1 in Figure 1(c) and the DUCT
parameters ∆ and ε in Figure 1(d). DPOP ran out of mem-
ory for problems with 20 agents and above, and DUCT ran
out of memory for problems with domain sizes 18 and 19

6Exceptions are when DUCT failed to find a solution due
to insufficient memory. For domain size |Di| = 19 and 20 in
Figure 1(b), we let the other algorithms run for as long as
DUCT did for domain size |Di| = 18, and for density p1 = 1
in Figure 1(c), we let the other algorithms run for as long
as DUCT did for density p1 = 0.9.
7Defined as the ratio between the number of constraints and
the maximum number of constraints.



(a) Simulated Runtime (ms)
|X | 9 16 25 36

DPOP 124 374 51645 N/A
DUCT 1194 2100 6179 10213

(b) Solution Quality
|X | 9 16 25 36

DPOP 102 200 331 N/A
D-Gibbs 102 200 331 492
MGM 96 189 312 464
MGM2 96 187 310 466
DUCT 101 191 297 437

Table 1: Results for Sensor Network Problems

and for problems with a density of 1.
In all four figures, DPOP found better solutions (when

it did not run out of memory) than D-Gibbs, which found
better solutions than MGM, MGM2 and DUCT. The differ-
ence in solution quality increases as the number of agents,
domain size and density increases.

Additionally, in Figure 1(d), as ∆ and ε decreases, the
runtimes of DUCT (and thus of all the other algorithms
also since we let them run for as long as DUCT) increases
since the tolerance for error decreases. However, the qual-
ity of its solutions improves as a result. Interestingly, the
quality of solutions found by D-Gibbs, MGM and MGM2
remained relatively unchanged despite given more runtime,
which means that they found their solutions very early on.
Thus, D-Gibbs found close to optimal solutions faster (when
∆ = ε = 0.1) than DUCT (when ∆ = ε = 0.01).

5.2 Sensor Network Problems
We use the same sensor network coordination problem as

Nguyen et al. [20]. The sensors are arranged in a grid and
each sensor can move in the four cardinal directions or stay
stationary. Thus, each sensor has 5 possible values and is
constrained with all of its neighboring sensors. We varied the
size of the problem by increasing the number of sensors |X |
in the grid, and we chose the constraint utilities uniformly
from the range [0, 10] at random. Table 1 shows our results.
We make the following observations:

• Table 1(a) shows the runtimes of DPOP and DUCT,
where DPOP ran out of memory for the largest prob-
lem. DPOP is faster than DUCT when the problems
are small, and vice versa when the problems are large.
The reason is because DUCT requires a reasonably large
number of samples to have the confidence necessary to
terminate. Thus, when the problems are small, the com-
putation necessary for all the samples is larger than solv-
ing the problem exactly with DPOP. As the problems
become larger, the difference decreases.

• Table 1(b) shows the solution qualities of all the algo-
rithms. D-Gibbs performs better than competing sub-
optimal algorithms. In fact, it found optimal solutions
for problems that DPOP found optimal solutions for!

6. CONCLUSIONS
Researchers have not investigated sampling-based ap-

proaches to solve DCOPs until very recently, where Ottens
et al. introduced the Distributed UCT (DUCT) algorithm,
which uses confidence-based bounds. However, one of its
limitation is its memory requirement per agent, which is ex-
ponential in the number of agents in the problem. This large

requirement prohibits it from scaling up to large problems.
Examples include problems with domain sizes 19 and 20 or
problems with a density of 1, which we showed experimen-
tally. Therefore, in this paper, we introduce a new sampling-
based algorithm called Distributed Gibbs (D-Gibbs), whose
memory requirement per agent is linear in the number of
agents in the problem. It is a distributed extension of Gibbs,
which was originally designed to approximate joint proba-
bility distributions in Markov random fields. We experimen-
tally show that D-Gibbs finds better solutions compared to
competing local search algorithms like MGM and MGM2 in
addition to DUCT. Additionally, we also show how one can
choose the number of samples based on the desired a priori
approximation bound (using Theorem 2). While we have
described D-Gibbs for (discrete-valued) DCOPs, we believe
that it can easily be extended to solve continuous-valued
DCOPs [24] as well. Thus, we would like to compare this
approach with the Continuous-Valued Max-Sum [24, 28] in
the future.
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Appendix
Proof of Theorem 1: Let x∗ denote an optimal solution
and S denote the set of all solutions sampled. By definition,
the probability P (x∗) is no less than average probability.
Thus,

PGibbs(x
∗) = P (x∗) ≥

∑
x∈S P (x)

|S|
=

1

|S|
= Puniform(x∗)

where Puniform(x∗) is the probability of sampling the opti-
mal solution with a uniform sampling algorithm. Therefore,

E(NGibbs) =
1

PGibbs(x
∗)
≤

1

Puniform(x∗)
= E(Nuniform)

which concludes the proof. �

Proof of Theorem 2: We use the following Markov in-
equality [11]:

P (Na = λE(Na)) ≥ 1−
1

λ

where λ is a parameter, E(Na) is the expected number of
samples necessary with algorithm a to find a solution x ∈
Sα. We can substitute λ with 1/ε and E(Nuniform) with
1/α because the probability Puniform(x ∈ Sα) a solution x
is a top α-percentile solution is α and use the result from
Theorem 1 to get

PGibbs

(
xN ∈ Sα | N =

1

α · ε

)

= PGibbs

(
xN ∈ Sα | N =

E(Nuniform)

ε

)

≥ PGibbs

(
xN ∈ Sα | N =

E(NGibbs)

ε

)

= P

(
NGibbs =

E(NGibbs)

ε

)
≥ 1− ε

which concludes the proof. �
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