1,364 research outputs found

    Scalable eventually consistent counters over unreliable networks

    Get PDF
    Counters are an important abstraction in distributed computing, and play a central role in large scale geo-replicated systems, counting events such as web page impressions or social network “likes”. Classic distributed counters, strongly consistent via linearisability or sequential consistency, cannot be made both available and partition-tolerant, due to the CAP Theorem, being unsuitable to large scale scenarios. This paper defines Eventually Consistent Distributed Counters (ECDCs) and presents an implementation of the concept, Handoff Counters, that is scalable and works over unreliable networks. By giving up the total operation ordering in classic distributed counters, ECDC implementations can be made AP in the CAP design space, while retaining the essence of counting. Handoff Counters are the first Conflict-free Replicated Data Type (CRDT) based mechanism that overcomes the identity explosion problem in naive CRDTs, such as G-Counters (where state size is linear in the number of independent actors that ever incremented the counter), by managing identities towards avoiding global propagation and garbage collecting temporary entries. The approach used in Handoff Counters is not restricted to counters, being more generally applicable to other data types with associative and commutative operations.This work was partially supported by SMILES within project “TEC4Growth Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01- 0145-FEDER-000020” financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); EU FP7 SyncFree project (609551), and EU H2020 LightKone project (732505).info:eu-repo/semantics/publishedVersio

    Borrowing an identity for a distributed counter

    Get PDF
    Conflict-free Replicated Data Types (CRDTs) are data abstractions (registers, counters, sets, maps, among others) that provide a relaxed consistency model called Eventual Consistency. Current designs for CRDT counters do not scale, having a size linear with the number of both active and retired nodes (i.e., nodes that leave the system permanently after previously manipulating the value of the counter). In this paper we present a new counter design called Borrow-Counter, that provides a mechanism for the retirement of transient nodes, keeping the size of the counter linear with the number of active nodes.Project "TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF). The research leading to these results has received funding from the European Union’s Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement No. 732505, project LightKone.info:eu-repo/semantics/publishedVersio

    Exactly-once quantity transfer

    Get PDF
    Strongly consistent systems supporting distributed transactions can be prone to high latency and do not tolerate partitions. The present trend of using weaker forms of consistency, to achieve high availability, poses notable challenges in writing applications due to the lack of linearizability, e.g., to ensure global invariants, or perform mutator operations on a distributed datatype. This paper addresses a specific problem: the exactly-once transfer of a "quantity" from one node to another on an unreliable network (coping with message duplication, loss, or reordering) and without any form of global synchronization. This allows preserving a global property (the sum of quantities remains unchanged) without requiring global linearizability and only through using pairwise interactions between nodes, therefore allowing partitions in the system. We present the novel quantity-transfer algorithm while focusing on a specific use-case: a redistribution protocol to keep the quantities in a set of nodes balanced; in particular, averaging a shared real number across nodes. Since this is a work in progress, we briefly discuss the correctness of the protocol, and we leave potential extensions and empirical evaluations for future work.This work is financed by the FCT Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project UID/EEA/50014/2013; and by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement 609551, SyncFree project.info:eu-repo/semantics/publishedVersio

    LogSafe: Secure and Scalable Data Logger for IoT Devices

    Get PDF
    As devices in the Internet of Things (IoT) increase in number and integrate with everyday lives, large amounts of personal information will be generated. With multiple discovered vulnerabilities in current IoT networks, a malicious attacker might be able to get access to and misuse this personal data. Thus, a logger that stores this information securely would make it possible to perform forensic analysis in case of such attacks that target valuable data. In this paper, we propose LogSafe, a scalable, fault-tolerant logger that leverages the use of Intel Software Guard Extensions (SGX) to store logs from IoT devices efficiently and securely. Using the security guarantees of SGX, LogSafe is designed to run on an untrusted cloud infrastructure and satisfies Confidentiality, Integrity, and Availability (CIA) security properties. Finally, we provide an exhaustive evaluation of LogSafe in order to demonstrate that it is capable of handling logs from a large number of IoT devices and at a very high data transmission rate

    Conflict-Free Replicated Data Types in Dynamic Environments

    Get PDF
    Over the years, mobile devices have become increasingly popular and gained improved computation capabilities allowing them to perform more complex tasks such as collaborative applications. Given the weak characteristic properties of mobile networks, which represent highly dynamic environments where users may experience regular involuntary disconnection periods, the big question arises of how to maintain data consistency. This issue is most pronounced in collaborative environments where multiple users interact with each other, sharing a replicated state that may diverge due to concurrency conflicts and loss of updates. To maintain consistency, one of today’s best solutions is Conflict-Free Replicated Data Types (CRDTs), which ensure low latency values and automatic conflict resolution, guaranteeing eventual consistency of the shared data. However, a limitation often found on CRDTs and the systems that employ them is the need for the knowledge of the replicas whom the state changes must be disseminated to. This constitutes a problem since it is inconceivable to maintain said knowledge in an environment where clients may leave and join at any given time and consequently get disconnected due to mobile network communications unreliability. In this thesis, we present the study and extension of the CRDT concept to dynamic environments by introducing the developed P/S-CRDTs model, where CRDTs are coupled with the publisher/subscriber interaction scheme and additional mechanisms to ensure users are able to cooperate and maintain consistency whilst accounting for the consequent volatile behaviors of mobile networks. The experimental results show that in volatile scenarios of disconnection, mobile users in collaborative activity maintain consistency among themselves and when compared to other available CRDT models, the P/S-CRDTs model is able to decouple the required knowledge of whom the updates must be disseminated to, while ensuring appropriate network traffic values

    Achlys : Towards a framework for distributed storage and generic computing applications for wireless IoT edge networks with Lasp on GRiSP

    Full text link
    Internet of Things (IoT) has gained substantial attention over the past years. And the main discussion has been how to process the amount of data that it generates which has lead to the edge computing paradigm. Wether it is called fog1, edge or mist, the principle remains that cloud services must become available closer to clients. This documents presents ongoing work on future edge systems that are built to provide steadfast IoT services to users by bringing storage and processing power closer to peripheral parts of networks. Designing such infrastructures is becoming much more challenging as the number of IoT devices keeps growing. Production grade deployments have to meet very high performance requirements, and end-to-end solutions involve significant investments. In this paper, we aim at providing a solution to extend the range of the edge model to the very farthest nodes in the network. Specifically, we focus on providing reliable storage and computation capabilities immediately on wireless IoT sensor nodes. This extended edge model will allow end users to manage their IoT ecosystem without forcibly relying on gateways or Internet provider solutions. In this document, we introduce Achlys, a prototype implementation of an edge node that is a concrete port of the Lasp programming library on the GRiSP Erlang embedded system. This way, we aim at addressing the need for a general purpose edge that is both resilient and consistent in terms of storage and network. Finally, we study example use cases that could take advantage of integrating the Achlys framework and discuss future work for the latter.Comment: 7 page

    A replicated file system for Grid computing

    Full text link
    To meet the rigorous demands of large-scale data sharing in global collaborations, we present a replication scheme for NFSv4 that supports mutable replication without sacrificing strong consistency guarantees. Experimental evaluation indicates a substantial performance advantage over a single-server system. With the introduction of a hierarchical replication control protocol, the overhead of replication is negligible even when applications mostly write and replication servers are widely distributed. Evaluation with the NAS Grid Benchmarks demonstrates that our system provides comparable and often better performance than GridFTP, the de facto standard for Grid data sharing. Copyright © 2008 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60228/1/1286_ftp.pd

    Threats and Defenses in SDN Control Plane

    Get PDF
    abstract: Network Management is a critical process for an enterprise to configure and monitor the network devices using cost effective methods. It is imperative for it to be robust and free from adversarial or accidental security flaws. With the advent of cloud computing and increasing demands for centralized network control, conventional management protocols like Simple Network Management Protocol (SNMP) appear inadequate and newer techniques like Network Management Datastore Architecture (NMDA) design and Network Configuration (NETCONF) have been invented. However, unlike SNMP which underwent improvements concentrating on security, the new data management and storage techniques have not been scrutinized for the inherent security flaws. In this thesis, I identify several vulnerabilities in the widely used critical infrastructures which leverage the NMDA design. Software Defined Networking (SDN), a proponent of NMDA, heavily relies on its datastores to program and manage the network. I base my research on the security challenges put forth by the existing datastore’s design as implemented by the SDN controllers. The vulnerabilities identified in this work have a direct impact on the controllers like OpenDayLight, Open Network Operating System and their proprietary implementations (by CISCO, Ericsson, RedHat, Brocade, Juniper, etc). Using the threat detection methodology, I demonstrate how the NMDA-based implementations are vulnerable to attacks which compromise availability, integrity, and confidentiality of the network. I finally propose defense measures to address the security threats in the existing design and discuss the challenges faced while employing these countermeasures.Dissertation/ThesisMasters Thesis Computer Science 201
    corecore