
Exactly-Once Quantity Transfer
Ali Shoker, Paulo Sérgio Almeida and Carlos Baquero

HASLab / INESC TEC & University of Minho
Braga, Portugal

Abstract—Strongly consistent systems supporting distributed
transactions can be prone to high latency and do not tolerate
partitions. The present trend of using weaker forms of consis-
tency, to achieve high availability, poses notable challenges in
writing applications due to the lack of linearizability, e.g., to
ensure global invariants, or perform mutator operations on a
distributed datatype. This paper addresses a specific problem: the
exactly-once transfer of a “quantity” from one node to another
on an unreliable network (coping with message duplication, loss,
or reordering) and without any form of global synchronization.
This allows preserving a global property (the sum of quantities
remains unchanged) without requiring global linearizability and
only through using pairwise interactions between nodes, therefore
allowing partitions in the system. We present the novel quantity-
transfer algorithm while focusing on a specific use-case: a
redistribution protocol to keep the quantities in a set of nodes
balanced; in particular, averaging a shared real number across
nodes. Since this is a work in progress, we briefly discuss the
correctness of the protocol, and we leave potential extensions
and empirical evaluations for future work.

Keywords-Distributed monoid-like data-types; exactly-once
quantity-transfer, idempotence.

I. INTRODUCTION

The trend of distributed storage systems nowadays is to use
relaxed forms of consistency to improve availability. This is
often established through delaying inter-replica synchroniza-
tion and offering the requesting client a fast (though stale)
response based on the local state, that is coordinated with
other replicas off the critical path in an asynchronous fashion.
In order to relax consistency in a way that is tolerated by
application semantics, that semantics needs to be considered.
In this paper, we focus on monoid-like datatypes that hold
partitionable quantities, that can be split and added back, such
as counters or multi-sets.

In the simplest formulation, we consider the distributed
datatype state to depict a quantity, say a collection of tickets,
that is partitioned among a set of nodes. Contrary to replicated
systems where the same total value is present at all replicas,
here the local quantity is a part of the whole, and can
be immediately operated upon, e.g., increased or decreased
by local requests, with no need for node synchronization,
resulting in high availability and low latency. Local operations
only depend on the quantity locally available and, by being
conservative, a global invariant can be preserved as a result
from a local invariant: if a decrease is limited to the local
quantity, it will remain non-negative, and therefore, so will
the sum of all quantities in the system.

Over time, the quantities can become unbalanced across
nodes: excess of tickets on some nodes and scarcity on

others. This motivates the asynchronous transfer of quantities
between nodes in order to balance them. The transfer can
be performed pairwise, opportunistically, without requiring
global connectivity, and therefore with part of the system
being partitioned. The challenge of this approach is how to
perform the transfer reliably, with an exactly-once guarantee,
to preserve the total quantity in the system.

Many redistribution protocols (e.g., [1], [2], [3], [4], [5],
[6]) have been proposed to redistribute quantities, however
none was immune to message duplication, i.e., the messages
involved were not idempotent. In this work, we propose
an new redistribution (a.k.a., quantity transfer) protocol with
idempotent messages.

Redistribution protocols in the 80’s suffered either from
latency issues due to resource locking and extensive use
of 2PC (two-phase commit) or from delivery ordering con-
straints [2], [1], [7]. The demarcation protocol [3], [4] was
then proposed as an alternative solution that is immune to
message delays and reception order: Whenever a node wishes
to perform an unsafe operation (e.g., may violate an invariant),
it requests that the other node perform a corresponding safe
operation and waits for notification. (The addressed problem
in this protocol was mainly redistributing limits by granting or
receiving a slack which is analogous to the quantity exchange
problem we address here.) This allowed the propagation of
any number of consecutive changes to be made without having
to wait for acknowledgments. For these reasons, in addition
to its simplicity, the demarcation protocol is still being used
nowadays [8], [9], [10], [11]. However, the authors themselves
admit that the protocol mis-behaves if no assumptions about
message delivery are made. Even though safety is not violated,
over time, under message duplication or loss, resources can
be “lost” or limits can become overly restrictive, as explained
in [6] and [8]. Krishnakumar and Jain tried to avoid these
problems in mobile inventory services [6]; however, they used
multiple 2PC phases and a third party server, which not only
it is very costly but also a single point of failure.

Addressing the problem of reliable communication between
two parties, in practice, requires retaining unique message
identifiers for the set of received, and delivered, messages
at the destination endpoint. Messages can be retransmitted
when not acknowledged for some time, and the identifier set
in the destination can always filter out received duplicates and
ensure exactly-once delivery. The filter set, however, will grow
linearly with the number of messages received. In settings that
aim for reliable FIFO communication, the long term space
requirements in the destination endpoint can be improved to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154274609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be linear with the number of sources, by storing for each
source the number that identifies the last message delivered.
Messages received out of order must still be buffered. (Notice
that quantity transfers do not necessarily require FIFO, since
adding received quantities is commutative.)

Transport layer protocols, such as TCP/IP, try to ensure
that only within a connection, data sent from one end-
point is delivered exactly-once to the other end-point, and
in FIFO order [12]. However, if a connection breaks while
non-acknowledged sent messages are present, those mes-
sages are only guaranteed to be delivered at-most-once. To
enforce exactly-once, the connection management protocol
would have to retain connection specific information between
different connection incarnations [13], something that TCP/IP
avoids [14]. Even weaker properties are provided by UDP,
where messages can be lost, duplicated or re-ordered.

Reducing storage requirements at the destination are only
possible at the expense of time. Attiya and Rappoport have
shown, in [13], that endpoints can retain counters that are not
connection specific if at least a three-way handshake is used
to establish a connection. This incurs a latency cost in the first
exactly-once transmission. Since its quite reasonable to expect
quantity transfers among geo-distributed data centers that aim
to keep local escrow for high-availability, and these will have
be connected by high latency links, the three-way handshake
is particularly taxing for short lived connections.

In this paper, we leverage the fact that we focus on specific
short lived task, quantity transfer, to make as much progress
as possible in the two initial communications of the three-
way handshake and use the third communication step to do
the exactly-once transfer. The extra information that is piggy-
backed in the initial steps, while important for progress, is not
required to be done exactly-once; and thus any undetected
duplications do not harm the correctness of the exchange
and the conservation of quantities. The protocol keeps extra
information during the exchange, but after the transfer occurs
the state in a node only stores a globally unique node identifier
and one counter (nodes that both send and receive store two
counters).

The original idea in this paper is inspired from Handoff
Counters [15] where the authors design scalable eventually
consistent counter CRDTs [16] that can work correctly despite
network partitions, and avoid the identity explosion problems
of previous CRDTs like G-Counters [16]. However, this paper
generalizes this idea to quantity transfers in any “splittable”
datatype and also expands the application spectrum of the idea
to new possible use-cases.

Given the limited paper space, we present our redistribution
protocol addressing a specific use-case: reliably moving quan-
tities from a source host to a destination host. A quantity is
a simple abstraction that represents a value that can be split
into two values that added back together produces the original
value. A simple example is that of money transfer between two
wallets. Money in origin wallet o in variable o. val is split into
o. val′ and m, with o. val = o. val′+m; then m is transferred,
exactly-once, to a destination wallet d that changes the stored

0
.
= 0

⊕ .
= +

needs(x, y)
.
=

y − x+ |y − x|
4

split(x, h)
.
= (

x− h+ |x− h|
2

,
x+ h− |x− h|

2
)

Fig. 1. R Data type example: Positive reals that ask for half difference (when
smaller) and give as much as possible.

amount to d. val′ = d. val +m. No money is lost or created,
since o. val+d. val = o. val′+d. val′. The same principle can
be applied to many applications: stock escrow, token transfers,
service handoffs, etc [17], [6], [18].

In the future, we plan to present this concept more formally,
including transfer policies discussions, protocol variants, and
empirical experimentation.

II. PROTOCOL

A. System Model

Consider a distributed system with nodes containing lo-
cal memory, with no shared memory between them. Any
node can send messages to any other node. The network is
asynchronous, there being no global clock, no bound on the
time it takes for a message to arrive, nor bounds on relative
processing speeds. The network is unreliable: messages can
be lost, duplicated or reordered (but are not corrupted). Some
messages will, however, eventually get through: if a node sends
infinitely many messages to another node, infinitely many of
these will be delivered. In particular, this means that there can
be arbitrarily long partitions, but these will eventually heal.

The system is composed of n nodes. Nodes have access
to stable storage. Nodes can crash but eventually will recover
with the content of the stable storage as at the time of the
crash. We assume no Byzantine or Rational behaviors.

B. Payload Data Types

Valid data values types T must be commutative monoids
with a generic sum operator ⊕, and identity element 0.
(Splittable data values in the related work history were called
partitionable, fragmentable, or even escrowable; in this paper
we choose to use commutative monoids as it captures the
essential mathematical properties that are actually required.)
Fragmenting a quantity is done via a user defined split func-
tion; it can be any function such that (x′, q) = split(x, h) ⇔
x′⊕ q = x. Some split functions can use the hint h to further
ensure that 0 ≤ q ≤ h, but this is not needed for correction.
Load-balancing is abstracted via a user defined needs function
that compares a local amount to a remote amount, deciding
how much to ask. It can be such that h = needs(x, y) creates
a hint h and that typically we will have 0 ≤ h ≤ y, with h
representing a value that is beneficial to split from y and move
to x.

Fig. 2. Basic fault-free communication scenario.

val data value reported by fetch;
sck source clock – logical clock incremented when cre-

ating tokens;
dck destination clock – logical clock incremented when

creating slots;
slots map from source ids to pairs ((sck, dck), D) con-

taining a pair of logical clocks and a data value;
tokens map from destination ids to pairs ((sck, dck), D)

containing a pair of logical clocks and a data value;

Fig. 3. Replica state (record fields)

C. Use-case and Redistribution Policy

Since discussing redistribution policies is not the focus of
this short article, we assume the following use-case: a quantity
(e.g., a real number) that needs to be evenly balanced over all
replicas, so that they try to keep similar fractions of the global
amount. Replicas periodically share their values; a replica that
owns more credits will split its value and transfer them to
another replica that needs it (i.e., has scarce resources). Fig. 1
shows how split and needs are performed over real numbers.
In addition, we assume that redistribution occurs in a periodic
fashion. We aim at supporting more policies in the future.

While Fig. 1 shows how these datatype-specific functions
can be implemented for positive reals, we have also built
and tested similar definitions for integers and for maps from
identifiers to integers, that would more directly represent
stock/inventory abstractions.

D. The Algorithm

Our protocol, running on each node, is depicted in Algo-
rithm 1, and makes use of auxiliary functions defined in Fig. 4..
Each node has access to a globally unique identifier i, a set of
neighbors ni, and an initial quantity v0 of a valid data type.
The algorithm shows operations that can be invoked locally, to
act on the local data type; how to handle messages received;
and triggers periodic transmissions to other nodes. The node
state is a record with fields shown in Fig. 3.

a) Overview: Fig. 2 depicts the basic fault-free com-
munication scenario of our algorithm. Node j receives a
(periodically sent) message from i. Node j notices that i has
more resources (a larger quantity) and asks for some quantity
by creating a slot (a receptor) for i. When i eventually receives
the message, it checks if it still has extra resources and splits
its local val, creating a token containing the split quantity, and
sends a message with the token to j. As soon as j receives
the token, it adds the quantity to its val, removing the slot

Algorithm 1: Distributed algorithm for a generic node i.

constants:
i, globally unique node id
ni, set of neighbors of node i
v0, initial data value of type T

state:
Ci = {val = v0, sck = 0, dck = 0,

slots = {}, tokens = {}}
local fetchi

return Ci. val

local plusi(q)
Ci := Ci{val = vali⊕q}

local minusi(q)
let (v, q′) = split(Ci. val, q)
Ci := Ci{val = v}
return q′

on receivej,i(Cj)
Ci := fillslots(Ci, Cj)
Ci := createslot(Ci, Cj)
Ci := GCtokens(Ci, Cj)
Ci := createtoken(Ci, Cj)

periodically
for j ∈ ni do

let m = Ci{
slots = {(k, s) ∈ slotsi | k = j},
tokens = {(k, s) ∈ tokensi | k = j}}

sendi,j(m)

(function fillslots) and replies back to i. Finally, i can safely
garbage collect the token (function GCtokens). We describe
the algorithm in more detail in the following.

b) Notation: We use mostly standard notation for sets
and maps/relations. A map is a set of (k, v) pairs (a relation),
where each k is associated with a single v; to emphasize the
functional relationship we also use k 7→ v for entries in a
map. We use M{. . .} for map update; M{x 7→ 3} maps x to
3 and behaves like M otherwise. For records we use similar
notations but with = instead of 7→, to emphasize a fixed set
of keys. We use �− for domain subtraction; S�−M is the map
obtained by removing from M all pairs (k, v) with k ∈ S.
We use set comprehension of the form {x ∈ S | P (x)}.
The domain of a relation R is denoted by dom(R), while
fst(T) and snd(T) denote the first and second component,
respectively, of a tuple T . To define a function or predicate by
cases, we use if X then Y else Z to mean “Y if X is true,
Z otherwise”.

c) Local functions: Function fetch returns the val field;
operation plus adds an amount to val; operation minus attempts
to subtract an amount from val, limited to the available
quantity, as val cannot go below zero, returning the amount

fillslots(Ci, Cj)
.
= if (i, (ck, q)) ∈ tokensj ∧ (j, (ck,)) ∈ slotsi

then Ci{val = vali⊕ q, slots = {j}�− slotsi}
else if (j, ((sck,),)) ∈ slotsi ∧ sckj > sck

then Ci{slots = {j}�− slotsi}
else Ci

createslot(Ci, Cj)
.
= let h = needs(vali, valj)

if j 6∈ dom(slotsi) ∧ h 6= 0

then Ci{slots = slotsi{j 7→ ((sckj , dcki), h)}, dck = dcki +1}
else Ci

GCtokens(Ci, Cj)
.
= if j ∈ dom(tokensi) ∧ (i ∈ dom(slotsj) ∧ snd(fst(tokensi(j))) < snd(fst(slotsj(i)))

∨ i 6∈ dom(slotsj) ∧ snd(fst(tokensi(j))) < dckj)

then Ci{tokens = {j}�− tokensi}
else Ci

createtoken(Ci, Cj)
.
= if i ∈ dom(slotsj) ∧ fst(fst(slotsj(i))) = scki

then let (v, q) = split(vali, snd(slotsj(i)))
Ci{tokens = tokensi{j 7→ (fst(slotsj(i)), q)},

val = v,
sck = scki +1}

else Ci

Fig. 4. Auxiliary functions in receive.

actually subtracted. It makes use of function split that splits
val into two amounts.

d) Sending: Periodically, each node i sends a message
to each neighbor j, containing the view of its state, con-
taining only the information that is relevant to the specific
receiver j. Notice that while the connection between two
nodes is unreliable, as sending is done periodically, eventually
a message will be received. We do not specify a specific
network topology, but the algorithm will balance values in each
connected component. For simplicity the reader can picture a
simple topology with a single connected component, such as
a ring or a complete graph.

e) Receiving: Once i receives a new message from
another node j, it incorporates it into its state by performing
four steps, using the functions from Fig. 4. These functions
receive as argument two state records and return the new state,
possibly with some of its fields updated.

Node i starts by checking if it has open slots for j and
tries to fill them if so (fillslots); it first verifies if j has a
token for i (that must have been previously created) and if
that very token has a locally opened slot on i (a matching
ck). In this case, i adds the received amount q to its val and
removes the corresponding slot. On the contrary, if a slot for
j exists on i but ck is not matching, i tries to garbage collect
the slot if the source clock of j is ahead the clock registered
in the designated local slot. This basically means that j has
already created a token to another node (and incremented it
local clock sckj) to acquire lacking amounts and discarded
creating a token corresponding to a previously sent slot by i.

Then it decides whether it should create a slot for j
(createslot); if i has no open slot for j, it opens a correspond-
ing slot only if h 6= 0 using the needs function (meaning that
j has excess amount to offer to i). Thus, i stores the newly
created slot that corresponds to (sckj , dcki) and advances its
sending clock dcki. Notice that since this is only done if i has
no open slots for j, this guarantees that no slots are created
for duplicate messages if sckj has not been incremented
(otherwise garbage collection would have occurred and a new
slot creation is allowed).

The next step is to check if node i has a token for j due
to a previous contact. In this case, the token may have been
successfully merged by j, and thus this token has to be garbage
collected GCtokens if: j has no open slots for i and its slots
clock dckj is ahead the said clock of the stored token. The
last step is to create a token if j has an open slot for i such
that the clock of the slot and node i are matching. In this case,
i splits its val using split to hand it off to j. Recall that, split
shall not return the exact amount needed by j if val is not
large enough according to the policy in Fig. 1).

III. CORRECTNESS

We provide an informal proof for the correctness (safety
and liveness) of our protocol. We postpone formal proofs to
an extended version due to page limits.

A. Safety

We explain safety by focusing on duplicated messages, re-
ordering, and “lost resources” problems since this is the aim of

the protocol. We omit the cases of lost message as we assume
eventual delivery and we explain re-ordering when needed.

Consider phase 1 in Fig. 2; this phase is safe under message
duplication since a duplicate slot will never be created as per
the conditions in createslot. In phase 2, upon receiving an open
slot, i creates a corresponding token and advances its clock
scki. Receiving a duplicate slot will have no effect since the
slot’s clock will not be matching anymore with scki. In phase
3, once j receives a token from i it fills the corresponding
slot (and deletes it); receiving another duplicate of the same
token will have no effect since there is no receptor slot at j.
The final phase 4 is also duplication-safe since a token will
be garbage collected only once.

The algorithm is also safe against message re-ordering. As
depicted on Fig. 2, there are only two re-ordering possibilities:
(1) Phase 1 and 3 are re-ordered. This is impossible to occur
since there is no way that j creates a slot (and consequently
i creates the corresponding token) unless if j received a prior
message, i.e., in phase 1. (2) Phase 2 and 4 are re-ordered.
This case is safe as i would simply discard the message since
it has no matching token for j.

As for “lost resources”, the only way for offering resources
is to createtoken (in which split is called); but as explained
above, this can only occur if the other node, j, has already a
corresponding open slot. In addition, j could not delete a slot
unless i’s sck is ahead the slot’s clock (else if in fillslots),
which means that i has already sent a token to another node
and it could not offer j a quantity; thus j must eventually
add (in fillslots) the split quantity (in createtoken) sent in the
token from i (phase 3).

B. Liveness

As for liveness, we first recall that we assume eventual
delivery of messages across all system nodes. Therefore,
network partitions, though possible, are considered transient
and messages will eventually go through. Now, we informally
demonstrate the liveness of the algorithm using Fig. 2.

First, notice in Fig. 2 that node j can createslot and fillslots
without blocking. In fact, j can always run createslot to create
a slot for i if its quantity is less than that of i. (An existing
slot would have been removed in fillslots.) In addition, j does
not have to wait until a token is received from i; however, it
could create other slots to other nodes too. Node j can thus
remove a created slot only when it receives a matching token
as shown in fillslots function in Fig. 4; otherwise, the slot is
kept (until it is eventually garbage collected), which has no
impact on progress.

As for node i, it only creates a token in createtoken if
an open slot is received and it still has larger quantity (as it
could have transferred some to another node by sending a prior
token). This is okay since j will eventually garbage collect the
corresponding slot. After creating the token, i will increment
its clock scki; this prevents it from creating any other token to
j unless it has received an ACK (i.e., a new slot with matching
scki) from it, since the condition fst(fst(slotsj(i))) = scki will
not be satisfied in createtoken. However, in all cases, i will be

able to create tokens to other nodes in the system if a matching
slot (holding the new incremented scki) is received and i has
extra quantity to transfer. Node i can then send new tokens to
j once an ACK from j is received and GCtokens is applied
(which will eventually occur).

Finally, the protocol will not block due to the transfer policy
since nodes with larger quantities will always offer quantities
to other nodes. This is guaranteed as we assume all nodes are
periodically exchanging states even if no local events occurred.
This can obviously be done in more efficient ways according
to the policy chosen (which we do not discuss here).

IV. DISCUSSION AND FUTURE WORK

In this paper, we focused on presenting the idea of the algo-
rithm on a simple real number averaging example. However,
the reader can easily notice that this algorithm can be used
in other cases of similar split/merge nature, as in [17], [5],
[19], [8], etc. We described our algorithm keeping in mind an
averaging policy whereas multiple policies could by addressed.
In this specific policy we did not address if averaging occurs
or not, but we rather focused on the correctness of the algo-
rithm. We conducted preliminary empirical evaluations to this
averaging problem on up to 1000 nodes and the results seem
promising: all nodes started with high variance of quantities
and came to an average value, while all meta-data (tokens
and slots) were garbage collected. We aim to provide more
evaluation and comparison results in the future.

In addition, we assumed that messages are simply dissem-
inated in a periodic fashion (e.g., through gossiping); clearly,
other options can be of interest too like having the node with
scarce resources ask other nodes (avoiding periodic dissemina-
tion). We have also assumed that no transitive sending occurs
between nodes, meaning that a third-party node could not
deliver a message on behalf of another node. We think that
this case is worth more focus in the future.

V. RELATED WORK

The problem of quantity transfer or redistribution (some-
times called repartitioning or reconfiguration) first appeared
in the context of database transactions by Carvalho et al. [2]
to maintain the invariants (or limits) on different servers as in
the Escrow Transactional method [20], [17]. The aim was to
redistribute an “escrowable” (or fragmentable) value (a limit)
over multiple partitions in a distributed storage by “splitting”
an amount on one replica and adding it to another. This idea
of “splitting” was first proposed by Davidson et al., in [21],
inspired by [22] in the context of reliable networks. Another
protocol was later proposed in [1] where a node can “borrow”
elements from neighbors (and waits) until acknowledged. They
used “partitionable operators” (similar to the ⊕ operator we
use in our paper); however, this protocol had impractical
weaknesses like blocking, re-ordering, and duplication.

The famous “demarcation” protocol was then introduced
by Barbara et al. in [3], [4]. This protocol aimed at main-
taining invariants in distributed databases using escrow-like
method [20], [17]. The demarcation protocol was immune to

message delays and the order of reception and would allow
the propagation of any number of consecutive changes to
be made without having to wait for acknowledgments. This
was a substantial improvement over its predecessors as it
could tolerate network partitions. The protocol however is
not immune to network problems like message dropping and
duplication which can lead to incorrect behaviors like more
conservative limits (in case of limit management) or “lost
resources” (in case of quantity transfer as in our work). Several
protocols were then proposed by Krishnakumar et al., in [7],
[23], [6], in the context of mobile services and inventory
to overcome these problems; however, they used many 2PC
phases which was not practical for systems that focus on low
latency and high availability.

To the best of our knowledge, no further improvements were
made to the demarcation protocol, and it is still being used by
current systems despite its aforementioned caveats [8], [9],
[10], [11].

VI. CONCLUSION

We introduced a new redistribution protocol to perform an
exactly-once transfer of a “quantity” from one node to another
in a distributed system. The protocol is immune to delivery
problems like message dropping, duplication, and re-ordering.
Although this protocol addressed a single “averaging” problem
of a distributed real number, it is easy to adapt to other
contexts, use-cases, and applications. The paper focused on
presenting the algorithm and showing its correctness properties
leaving other details to a future work, like distribution and
splitting policies and other variants of the protocol. Since this
is a work in progress, we aim at presenting more formal
presentation accompanied with experimentations in a longer
version. We already had some promising results showing that
the protocol brings all replicas (up to one thousand) to an
average value without leaving any garbage traces or meta-data.

VII. ACKNOWLEDGMENT

This work is financed by the FCT Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Tech-
nology) within project UID/EEA/50014/2013; and by the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement 609551, SyncFree project.

REFERENCES

[1] N. Soparkar and A. Silberschatz, “Data-value partitioning and virtual
messages,” Austin, TX, USA, Tech. Rep., 1989.

[2] O. S. Carvalho and G. Roucairol, “On the distribution of an assertion,”
in Proceedings of the First ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, ser. PODC ’82. New
York, NY, USA: ACM, 1982, pp. 121–131. [Online]. Available:
http://doi.acm.org/10.1145/800220.806689

[3] D. Barbará and H. Garcia-Molina, “The demarcation protocol: A
technique for maintaining linear arithmetic constraints in distributed
database systems,” in Proceedings of the 3rd International Conference
on Extending Database Technology: Advances in Database Technology,
ser. EDBT ’92. London, UK, UK: Springer-Verlag, 1992, pp. 373–388.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645336.649877

[4] D. Barbará-Millá and H. Garcia-Molina, “The demarcation protocol: A
technique for maintaining constraints in distributed database systems,”
The VLDB Journal, vol. 3, no. 3, pp. 325–353, Jul. 1994. [Online].
Available: http://dx.doi.org/10.1007/BF01232643

[5] R. Jain and N. Krishnakumar, “Network support for personal information
services to pcs users,” in Networks for Personal Communications, 1994.
Conference Proceedings., 1994, Mar 1994, pp. 1–7.

[6] N. Krishnakumar and R. Jain, “Escrow techniques for mobile sales and
inventory applications,” Wirel. Netw., vol. 3, no. 3, pp. 235–246, Aug.
1997. [Online]. Available: http://dx.doi.org/10.1023/A:1019161318592

[7] N. Krishnakumar and A. J. Bernstein, “High throughput
escrow algorithms for replicated databases,” in Proceedings
of the 18th International Conference on Very Large Data
Bases, ser. VLDB ’92. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1992, pp. 175–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645918.672481

[8] V. Balegas, D. Serra, S. Duarte, C. Ferreira, R. Rodrigues,
N. M. Preguiça, M. Shapiro, and M. Najafzadeh, “Extending
eventually consistent cloud databases for enforcing numeric
invariants,” CoRR, vol. abs/1503.09052, 2015. [Online]. Available:
http://arxiv.org/abs/1503.09052

[9] A. Elmagarmid, J. Jing, and O. Bukhres, “An efficient and reliable
reservation algorithm for mobile transactions,” in Proceedings of
the Fourth International Conference on Information and Knowledge
Management, ser. CIKM ’95. New York, NY, USA: ACM, 1995, pp.
90–95. [Online]. Available: http://doi.acm.org/10.1145/221270.221338

[10] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
rationing in the cloud: Pay only when it matters,” Proc. VLDB
Endow., vol. 2, no. 1, pp. 253–264, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.14778/1687627.1687657

[11] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete,
“Mdcc: Multi-data center consistency,” in Proceedings of the 8th
ACM European Conference on Computer Systems, ser. EuroSys ’13.
New York, NY, USA: ACM, 2013, pp. 113–126. [Online]. Available:
http://doi.acm.org/10.1145/2465351.2465363

[12] P. Helland, “Idempotence is not a medical condition,” Queue,
vol. 10, no. 4, pp. 30:30–30:46, Apr. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2181796.2187821

[13] H. Attiya and R. Rappoport, “The level of handshake required for
establishing a connection,” in Distributed Algorithms, ser. Lecture
Notes in Computer Science, G. Tel and P. Vitnyi, Eds. Springer
Berlin Heidelberg, 1994, vol. 857, pp. 179–193. [Online]. Available:
http://dx.doi.org/10.1007/BFb0020433

[14] R.Braden, “Tcp extensions for transactions,” RFC, Jul. 1994. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1644.txt

[15] P. S. Almeida and C. Baquero, “Scalable eventually consistent counters
over unreliable networks,” CoRR, vol. abs/1307.3207, 2013. [Online].
Available: http://arxiv.org/abs/1307.3207

[16] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems,
ser. SSS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 386–400.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2050613.2050642

[17] A. Kumar and M. Stonebraker, “Semantics based transaction
management techniques for replicated data,” SIGMOD Rec.,
vol. 17, no. 3, pp. 117–125, Jun. 1988. [Online]. Available:
http://doi.acm.org/10.1145/971701.50215

[18] Paulo S’ergio Almeida and Ali Shoker and Carlos Baquero., “Efficient
State-based CRDTs by Delta-Mutation,” in Proceedings of the Interna-
tional Conference of Networked sYStems, ser. NETYS’15. Springer,
May 2015.

[19] M. Mouly and M.-B. Pautet, The GSM System for Mobile Communica-
tions. Telecom Publishing, 1992.

[20] P. E. O’Neil, “The escrow transactional method,” ACM Trans. Database
Syst., vol. 11, no. 4, pp. 405–430, Dec. 1986. [Online]. Available:
http://doi.acm.org/10.1145/7239.7265

[21] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency
in a partitioned network: A survey,” ACM Comput. Surv.,
vol. 17, no. 3, pp. 341–370, Sep. 1985. [Online]. Available:
http://doi.acm.org/10.1145/5505.5508

[22] M. Hammer and D. Shipman, “Reliability mechanisms for sdd-
1: A system for distributed databases,” ACM Trans. Database
Syst., vol. 5, no. 4, pp. 431–466, Dec. 1980. [Online]. Available:
http://doi.acm.org/10.1145/320610.320621

[23] N. Krishnakumar and R. Jain, “High throughput escrow algorithms for
replicated databases,” in Proceedings of the MOBIDATA Workshop, ser.
MOBIDATA ’94. Rutgers Univ., 1994.

