
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

ROSES: Renaming Operations for
Scalable Eventually-Consistent Sets

Juliane Marubayashi

Mestrado em Engenharia Informática e Computação

Supervisor: Prof. Carlos Baquero

September 26, 2023

ROSES: Renaming Operations for Scalable
Eventually-Consistent Sets

Juliane Marubayashi

Mestrado em Engenharia Informática e Computação

Aprovado em provas públicas pelo Júri:

Presidente: Prof. Pedro Souto
Arguente: Prof. João Leitão

September 26, 2023

Resumo

Criar sistemas altamente disponíveis, como o e-mail, num sistema distribuído, requer repli-
cação de dados, já que um único ponto de falha pode comprometer a sua disponibilidade. Para
isto, dispositivos necessitam replicar os seus dados na rede para que utilizadores possam ter acesso
ao serviço mesmo em cenários de interrupção de conexão e outros tipos de falha.

Com o tempo, coerência eventual (CE) tornou-se cada vez mais popular entre empresas.
Tratando-se de uma replicação otimista, CE possibilita a divergência de estados entre réplicas.
No entanto, se nenhuma atualização for efetuada, e estado continuar a propagar-se, todos os aces-
sos a um registo eventualmente irão convergir e retornar o mesmo valor. Em outras palavras, a
rede irá chegar a um estado consistente.

Não menos importante, utilizar uma estratégia de replicação otimista arbitrária não neces-
sariamente implica na convergência dos estados da rede. Nesse contexto, Conflict-Free Replicated
Data Type (CRDT) foi formalmente definido em 2011 sendo utilizado em abundância em sistemas
de jogos, apostas ‘online’, salas de conversação ‘online’ e outros tipos de sistemas. CRDT é uma
estrutura de dados partilhada entre réplicas de um sistema distribuído, assegurando a resolução de
conflitos por meio da junção de dois estados: o estado local e o que foi recebido.

CRDTs asseguram coerência eventual e possibilitam a resolução automática de conflitos entre
estados. Porém, uma réplica necessita disseminar o seu estado por meio da rede para tornar isto
possível. Assim como outras réplicas fazem o mesmo, o estado de uma réplica irá se tornar
significativamente grande, já que uma entrada irá ser criada no estado local para cada estado
recebido de uma réplica desconhecida.

Apesar deste problema, Almeida e Baquero propuseram mudanças na topologia da rede para
que apenas um pequeno número de nós contenham informação das réplicas. Esta abordagem,
no entanto, foi apenas formalizada para CRDTs baseados em contadores. Neste sentido, esta
dissertação possui como intuito generalizar a solução apresentada por eles para CRDTs baseados
em causalidade.

i

Abstract

Providing highly available systems, such as e-mail, in a distributed system requires data repli-
cation since a single point of failure might compromise availability. To this end, replicas must
synchronize their data across the network to deliver the promised service despite network outages
and general failures. There are many ways to provide consistency, and one is ensuring that each
replica receives information in the same order, which is an expensive approach.

Throughout history, eventual consistency has made its way to popularization among enterprise
systems. As a lazy replication strategy, EC allows replicas to diverge. Still, if no new updates are
made, and the state keeps propagating, all accesses to a specific resource will eventually return the
same value. In other words, the network will cost-effectively reach a shared state.

Nevertheless, an arbitrary lazy replication strategy does not entail a common state in the net-
work: convergence might never happen. In this context, the Conflict-Free Replicated Data Type
(CRDT) was defined in 2011 and is widely used in games, online gambling, online chats, and
other systems. CRDTs are a data structure shared among replicas in a distributed system, assuring
the resolution of conflicts by “merging” two states: the local and the received one.

The CRDTs ensure eventual consistency and automatically resolves possible conflicts between
states. However, a replica must disseminate its state through the network to make it possible. As
other replicas do the same, the state of a peer will become significantly large since a new entry in
the local state will be created for every state received from an unknown peer.

Regarding this problem, Almeida and Baquero proposed changing the network topology so
that only a small number of nodes contain the information of the replicas for CRDT counters.
This dissertation contributes to their previous work by applying the developed protocol for other
causal based CRDTs and implementing it in Rust language.

ii

Acknowledgements

I want to express my sincere gratitude to my supervisor, Professor Baquero, for his invalu-
able guidance, support, and stimulating discussions throughout my academic journey. Professor
Baquero not only provided me with insightful ideas but also motivated me to understand more
about distributed systems. I am truly fortunate to have had such an exceptional supervisor, and I
sincerely appreciate his contributions to my success.

To my boyfriend, Franciso Andrade, who patiently heard and supported me. Thank you for
being by my side and for making me a better person. I also would like to thank my friends,
especially Diana Freitas and Diogo Samuel Fernandes, for the laughs, random insights and for
making academic life more colorful.

I also would like to thank my brother, who always stood up for me and supported me. And
also my parents, who always gave their best to give me a better education. A special thanks to
my mother, who advised me to study abroad and took care of me in my worst moments. Being a
mother is hard, and I’ll never be able to express how grateful I am.

Juliane Marubayashi

iii

iv

"Father laughed, which upset Bruno even more;
there was nothing that made him more angry than
when a grown-up laughed at him for not knowing
something, especially when he was trying to find

out the answer by asking questions"

John Boyne, The Boy in the Striped Pajamas

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Problem . 2
1.4 General Goals . 3
1.5 Document Structure . 3

2 Background 4
2.1 An overview about consistency . 4

2.1.1 Strong Consistency . 5
2.1.2 Eventual Consistency . 5
2.1.3 Causal Consistency . 5

2.2 CAP Theorem and SEC . 5
2.2.1 CAP theorem . 5
2.2.2 SEC . 6

2.3 Join-semilattice . 6
2.4 State-Based CRDTs . 7

2.4.1 Grow-Only Counter . 8
2.4.2 Discussion . 10

2.5 Delta-State CRDTs . 10
2.5.1 Dots . 10
2.5.2 State-Based Add-Wins OR-Set . 11
2.5.3 Delta-Based Add-Wins OR-Set . 14
2.5.4 Causal Consistent Anti-Entropy Algorithm 15
2.5.5 Discussion . 17

2.6 Summary . 18

3 Problem Statement 19
3.1 Open problems . 19
3.2 Main Hypothesis . 19
3.3 Research Questions . 20
3.4 Development methodology . 20
3.5 Summary . 21

4 State of the Art 22
4.1 Methodology . 22

4.1.1 Database . 22
4.1.2 Queries . 22

4.2 KaZaA . 23

v

CONTENTS vi

4.2.1 Topology . 23
4.2.2 Operations . 24
4.2.3 Discussion . 24

4.3 Handoff Counters . 25
4.3.1 Distributed Algorithms . 25
4.3.2 Handoff Counter Data Type . 26
4.3.3 Notation . 27
4.3.4 Operations . 28
4.3.5 Merge operation . 28
4.3.6 Discussion . 30

4.4 Topolotrees . 31
4.4.1 Algorithm . 31
4.4.2 Discussion . 32

5 ROSES Protocol 33
5.1 System Model . 33
5.2 Notation . 34
5.3 State . 34
5.4 Operations . 35
5.5 Algorithm . 36

5.5.1 Remove and Translations . 38
5.5.2 Caching . 42

5.6 Formalization . 43

6 Evaluation 48
6.1 Tests . 48

6.1.1 Sequential tests . 49
6.1.2 Non-sequential tests . 50
6.1.3 Logs . 53

6.2 Results . 53

7 Conclusion 58

References 59

List of Figures

2.1 A join-semilattice example . 7
2.2 A Hasse Diagram that is not a join-semilattice 7
2.3 GCounter definition [7] . 9
2.4 GCounter flow example . 9
2.5 State-Based AWORSet definition . 12
2.6 AWORSet State-Based example on merging operation 13
2.7 Delta-Based Aworset definition [9] . 15

4.1 KaZaA topology . 23
4.2 Handoff Counters network topology . 25
4.3 Handoff Counters protocol example . 27
4.4 Handoff Counter data type operations . 28
4.5 Merge operation functions . 29
4.6 Merge operation functions . 30

5.1 Node operations . 36
5.2 Example of ROSES protocol . 38
5.3 Remove element from token . 39
5.4 Example of state in a node B . 39
5.5 Example of state in a node A . 40
5.6 Third case when removing elements in ROSES 41
5.7 Translation in ROSES . 42
5.8 Caching in ROSES . 43
5.9 fillslot functon . 44
5.10 discardslot function . 44
5.11 createslot function . 44
5.12 discardtransl function . 45
5.13 translate function . 45
5.14 cachetransl function . 46
5.15 mergevectors function . 46
5.16 dicardtokens function . 46
5.17 createtoken function . 47
5.18 cachetoken function . 47

6.1 Example of unordered operations . 51
6.2 Mermaid graph flow . 53
6.3 Simulations with 16 clients . 55
6.4 Simulations with 64 clients . 56
6.5 Simulations with 64 clients . 57

vii

List of Algorithms

1 Anti-Entropy algorithm for causal consistency 15
2 TopoloTree-Replica . 31

viii

Abreviaturas e Símbolos

CRDT Conflict Free Replicated Data Types
SEC Strong Eventual Consistency
δ -CRDT Delta-Based Conflict Free Replicated Data Types
AWOR-SET Add-Wins OR-Set
GCounter Grow-only Counter

ix

Chapter 1

Introduction

1.1 Context . 1

1.2 Motivation . 2

1.3 Problem . 2

1.4 General Goals . 3

1.5 Document Structure . 3

This chapter introduces the problem at hand and outlines its motivation, context, and gen-

eral goals. Section 1 provides the context of the work, Section 1.1 details the motivation behind

the study, and Section 1.3 elaborates on the problem and enumerates the goals. The document

structure is described in Section 1.4

1.1 Context

An essential feature of modern distributed systems is consistency across the network. A naive

way of ensuring this condition would be forcing all the players in a network to receive the informa-

tion in the same order. Unfortunately, this strong consistency model is unsuitable for a large-scale

distributed system as it sacrifices performance and availability in favor of consistency [39].

Eventual consistency [40] promises to be a better solution for high availability in large-scale

distributed systems against strong consistency. It allows the presence of inconsistencies and af-

firms that if no new updates are performed in a network, all the nodes will eventually return the

same value. However, the difficulty of resolving conflicts is the main drawback of this approach

since the system must anticipate all kinds of conflicts between divergent states and fix the possible

output. In this context, the Conflict-Free Replicated Data Types (CRDTs) [32] were formally de-

fined in 2011 to provide a non-ad-hoc solution for ensuring the convergence of propagated states

in a network.

The idea relies upon a node abdicating consistency to allow users to apply operations (e.g.,

add, delete, update) in a scenario of network partitioning or delay. CRDT-based networks also

1

Introduction 2

tolerate message loss, reordering and duplication as the procedures are idempotent. The state will

eventually converge to a correct value as messages are propagated through the network.

Nowadays, CRDTs play a significant role in the industry, such as online game systems [3],

online gambling platforms [4], and text editors [2]. It provides a systematic way to ensure that

if no more updates are made in the network, the whole system will eventually contain the same

information (i.e., eventual consistency).

1.2 Motivation

Low latency and available systems are prerequisites for successful digital-driven business [16].

Datacenter systems such as Facebook support billions of users, and the "always connected and

anywhere" trend became a rule with the use of mobiles.

Regarding performance, businesses have strong investments to ensure latency within millisec-

onds. As users prefer fast systems [5], for an enterprise to keep growing, it needs to ensure that

the system is scalable. Otherwise, it might compromise the quality of the product or lose to the

competition.

The adoption of distributed architectures has risen in both technical and socio-technical sys-

tems, such as Open Source Software Development, due to its benefits of scalability, flexibility,

and improved responsiveness. However, there is still room for improvement in this field, as these

benefits do not come without challenges [30].

As the CAP theorem [24] explains, it’s not possible to assure consistency, availability, and

partition tolerance at the same time. As explained in the previous section, CRDTs approach this

paradigm by promoting an abstraction for eventual consistency and conflict resolution. Although

powerful, CRDTs aren’t a silver bullet: a problem still to be solved is scalability.

1.3 Problem

Consider a well-known social network with more than 1 billion users. If the system were to

be implemented using CRDTs, each device would have to store in a map the id of every device in

the network. In other words, a mobile phone would have to keep billions of entries in its state, to

support a simple "like" feature. For this reason, many systems do not use client-side CRDTs, but

server-side only, as it has fewer nodes and is prepared to support a huge amount of data.

With the absence of CRDTs, on the client-side, the problem of unreliable network communi-

cation comes into discussion again. Even with more reliable network protocols (e.g., TCP), the

exactly-once constraint remains. As a message of increment acknowledgment fails to be deliv-

ered or the connection times out, there will never be certainty whether an increment message was

delivered. This implies a permanent inconsistent state across the network. There are solutions to

solve the inconsistency, but as the CAP theorem [24] describes, this would sacrifice availability.

1.4 General Goals 3

1.4 General Goals

This research aims to enhance scalability in causal CRDTs (sets, registers) by generalizing

an existing solution limited to specific CRDT types. We discuss the design and the theoretical

implementation behind the proposed mechanism by first walking through the background and

state-of-the-art and then exposing and discussing the solution.

This work outputs a reference code library. Using this library, we created a simulation that

analyzes the memory consumption of our protocol against a specific CRDT: Add-Wins Observed

Remove Set (AWORSet).

1.5 Document Structure

The dissertation is organized as follows:

• Chapter 2, Background, prepares the stage for the rest of this work and provides the reader

with the necessary information to understand the research being conducted;

• Chapter 3, Problem Statement, exposes the open problems of the current state of the art

and explains the dissertation’s hypothesis. We also go through some research questions to

guide the investigation process;

• Chapter 4, State Of the Art, reviews the current knowledge related to the research topic

being studied, in particular, Handoff Counters;

• Chapter 5, ROSES Protocol, we briefly explain the protocol and then discuss the results

obtained by the tests;

• Chapter 6, Evaluation, discusses tests created to improve correctness confidence on the

protocol, and analysis made to compare its effectiveness against a typical CRDT;

• Chapter 7, Conclusion, highlights the conclusions of this work and the future work;

Chapter 2

Background

2.1 An overview about consistency . 4

2.2 CAP Theorem and SEC . 5

2.3 Join-semilattice . 6

2.4 State-Based CRDTs . 7

2.5 Delta-State CRDTs . 10

2.6 Summary . 18

In the previous chapter, we introduced the thesis and the problem under study. This chapter

reviews key concepts to understand this work. Section 2.1 overviews consistency and discusses

the differences between strong and eventual consistency. Section 2.2 explains the CAP theorem

and its relation with the research topic. Section 2.3 explains what are lattices and why they are

important. Section 2.4 introduces State-Based CRDTs and their problems, whereas Section 2.5

introduces the Delta-Based CRDTs. At the end of this chapter, in Section 2.6, we make a brief

summary of what was discussed.

2.1 An overview about consistency

Storing data on distinct nodes in the network allows for better reliability and availability in case

of any network failure. When a node fails, for instance, data can still be recovered by requesting

information from another node. This replica, however, must be up to date with the faulty one so

that the information is consistent. By replicas, we mean nodes that store replicated information.

Consistency is reached when all the replicas have the same state. Therefore, when a client

requests information from a node, the returned value should be the same regardless of which

replica is processing the request.

Although this is a simple contract, consistency has many models. The most relevant models

to understand this thesis are strong, eventual, and causal consistency.

4

2.2 CAP Theorem and SEC 5

2.1.1 Strong Consistency

Strong consistency [40], [1], enunciates that after an update, all the replicas in the network

will report the same value if the client requests. In other words, the network is always consistent.

It behaves as if it had a centralized server handling all the operations.

Although consistent, it sacrifices performance as it requires synchronization among replicas

and adds a layer of latency. This results in higher response times, making it less suitable for

applications with strict time constraints.

2.1.2 Eventual Consistency

Eventual consistency, also known as optimistic replication [34], allows temporary inconsis-

tencies in a system, and if no new updates are made, all the nodes will eventually converge to the

same state. There is no way to predict how long it will take to achieve a consistent state.

A distributed system, for instance, may allow a user to update their profile in one place, but it

may take some time for that update to be replicated across all the nodes in the system. This makes

it difficult to ensure correctness in the system, as it is hard to guarantee that the data is consistent

across all nodes. As a result, eventual consistency is unsuitable for applications where correctness

is paramount.

2.1.3 Causal Consistency

Causal consistency ensures that if an operation A happened before another operation B in

another node, then B can only be observed after A [11]. This concept is crucial in delta-based

CRDTs, as join operations can only occur if there are no missing causal dependencies when joining

an incoming state.

It guarantees that the order of operations is preserved, allowing the system to be eventually

consistent without sacrificing correctness. As a result, CRDTs can provide strong guarantees of

data integrity and correctness, even when the system is distributed across several nodes.

2.2 CAP Theorem and SEC

2.2.1 CAP theorem

According to the CAP theorem [24], "It is impossible for a replicated web service to pro-

vide the following three guarantees: Consistency, Availability, and Partition-Tolerance. All three

properties are desirable - and expected - from a real-world web service". However, different com-

binations of these three provisions can be achieved depending on the system’s requirements. For

example, a system that prioritizes availability will have different guarantees than one that priori-

tizes consistency over availability.

Background 6

Many interpretations have been published in the academic society explaining what each of

these guarantees precisely means [28]. In this dissertation, we are going to stick with the following

definitions:

• Availability means that "a system always provides a response to every request." [25];

• Consistency means that "all copies of data in the system appear the same to the outside

observer at all times." [22].

• Partition Tolerance means that "a given system continues to operate even with data loss or

system failure. A single node failure should not cause the entire system to collapse." [17]

Partition tolerance in distributed systems is a must, which leaves developers to decide and

analyze the trade-offs between Availability + Partition Tolerance (AP) and Consistency + Partition

Tolerance (CP). However, as explained in Section 1.1, many modern systems (e.g., Cassandra [29]

and Dynamo [20]) implement AP design prioritizing availability over consistency.

2.2.2 SEC

However, as Shapiro et al. [35] explain, one does not necessarily need to give up on all the

consistency guarantees. It can opt for lower levels of consistency. It presented Strong Eventual

Consistency (SEC) as a solution for this issue, as it provides a series of rules that guarantees

convergency to a predictable state.

The most significant difference between SEC and EC (Eventual Consistency) is that states

generated by EC are challenging to predict and reason about, as they may lead to an arbitrary state

[6]. However, by defining a set of rules, predictability increases.

2.3 Join-semilattice

This section provides a brief overview about join-semilattices [10], a partially ordered set.

Understanding join-semilattices is crucial for proper CRDT understandment.

If every two elements in a set have a non-empty least upper bound (LUB), then the set is a

join-semilattice. In the context of CRDTs, the least upper bound results from a join operation ⊔.

Definition 1 (join-semilattice) If a poset (S,≤) is a join-semilattice then {∀x,y ∈ S | LUB(x,y)

̸= /0}

2.4 State-Based CRDTs 7

f

e

d c

b

a

Figure 2.1: A join-semilattice example

In Figure 2.1 we show a Hasse Diagram [12] as an example of a join-semilattice. Every pair

of elements have a least upper bound, some examples are:

• LUB(b,a) = b

• LUB(d,c) = e

• LUB(f ,e) = f

d c

b

a

Figure 2.2: A Hasse Diagram that is not a join-semilattice

Figure 2.2 depicts a Hasse Diagram that is not a join-semilattice due to the absence of a least

upper bound (LUB) between elements d and c, LUB(d,c) = /0.

2.4 State-Based CRDTs

Section 1 introduces Conflict-Free Replicated Data Types (CRDTs) as a solution for achieving

strong eventual consistency (SEC) in distributed systems. With CRDTs, nodes that receive the

same set of operations will reach the same state deterministically [35].

This section focuses on the State-Based CRDT, a specific type of CRDT. We first present the

basic concepts of this variant, then we dig into details, exploring the example of the GCounter

CRDT.

According to Kleppmann et. al [27], State-Based CRDT is:

"A CRDT in which replicas synchronize by sending each other their entire state over

the network; when one replica receives such a state from another replica, it uses a

merge function to combine the two states. This merge function is defined in such a

Background 8

way that it is commutative (i.e., merge(a,b) = merge(b, a)), associative (i.e., merge(a,

merge(b,c)) = merge(merge(a,b),c)), and idempotent (i.e., merge(a, a)=a)."

The size of a CRDT causal context never diminishes. It keeps storing metadata to decide how

to solve conflicts when merging states (Eq. 2.1, join operation). This allows the CRDT to establish

a partial order ⊑ between states and identify the most recent modification on an element.

σ
′
i = σi⊔σ j (2.1)

To perform updates, CRDTs use operations called mutators. Mutators (m) accept a state as

input and produce a new state, as defined by equation (Eq. 2.2). To ensure the partial order

relationship, the CRDT establishes rules to tag states. In this way, it knows σ precedes σ ′ as

depicted in equation (Eq. 2.3).

σ
′ = m(σ) (2.2)

σ ⊑ σ
′ (2.3)

2.4.1 Grow-Only Counter

Grow-Only Counter (GCounter) is a CRDT that implements a distributed counter. Single-

threaded counters have two trivial operations: increment and read. Similarly, a GCounter provides

the same services, which allows a user to increment a value and retrieve it for consulting.

Multi-threaded applications, however, must handle multiple updates simultaneously and share

these updates with other replicas in the network to reach consistency. But how can we solve

possible conflicts when a node shares a state with other replicas? And what is a conflict?

Consider two nodes, M and N. Node M incremented its local counter in 10, and N incremented

in 3. When M shares its state with N, what should be the final state of N? One approach would

sum the values 10 and 3, then N’s state becomes 13. But if we follow this strategy and M shares

its state once again, N’s state will become 23 wrongly, and in the given conditions, N can’t verify

a duplicated message. We could also consider the final state as the maximum value between two

nodes. However, this ignores inputs from one of the nodes, which might not be the best approach

in some situations. Imagine that the nodes stored the number of times users clicked a button. If

we select 10 as the final result, we will ignore the other 3 times the user incremented the counter.

This is the type of conflict a GCounter solves.

GCounter implements its state as a map id 7→ value, and a node is limited to increment a

particular entry: the one with a key equals its ID. The current value of the counter is the sum of

all values in the map. To solve the earlier question, GCounter defines a join operation to solve

eventual conflicts between replicas. The join performs the union between the states, but the node

selects the maximum value when both states share the same key.

2.4 State-Based CRDTs 9

∑ = I ↪→ N
σ

0
i = {}

inci(m) = m{i 7→ m(i)+1}
readi(m) = ∑

i∈I
m(i)

m⊔m′ = {k 7→max(m(k),m′(k) | k ∈ l}
where l = dom(m)∪dom(m′)

Figure 2.3: GCounter definition [7]

To better visualize how the join operation works, consider Figure 2.4. A and B are two nodes

in a network, and both start with an empty initial state. Initially, node A increments its local value

in 5 and B in 6. Consequently, both replicas created a single entry in their state where the keys are

equal to their ID (i.e., A 7→ 5 and B 7→ 6).

After that, A shares its state with B, which performs a join, equivalent to a union, as there are

no conflicts between the states. Then, A increments its value in more 3 units creating σA′, and

B shares its state with A. Upon receiving σB′, A notices that both σB′ and σA′ have a key in

common A. This is a conflict. As a solution, node A assigns the maximum value between the two

given (i.e., mA(A) 7→max(8,5)). Thus, the A’s final state becomes σA′′. Finally, when A shares its

state back to B, the same strategy is applied, and the network reaches convergence.

inc: 5 inc: 6

mB: {B→6}
mA: {A→5}

σA

mB: {A→5, B→6}

inc: 3

mA: {A→8}

mA: {A→8, B→6}

σB'

σA''
mB: {A→8, B→6}

σA

σA'

σA''

σB

σB'

σB''

mA: {} mB: {}

Node A Node B

Figure 2.4: GCounter flow example

Background 10

2.4.2 Discussion

State-Based Conflict-Free Replicated Data Types (CRDTs) provide robust data structures for

distributed systems. However, performance issues may arise due to the internal state growth,

which increases network overhead. In particular, the GCounter may experience this issue when

the number of nodes in the network increases because the state’s map size grows, making message

transfer more costly. In other words, if a network has one million nodes, the internal state of

each node would eventually reach one million entries. Therefore, sending a huge state through the

network will increase the traffic flow and cause an overhead.

2.5 Delta-State CRDTs

Delta-State CRDT (∆-CRDT) [7] is another kind of CRDT, where a node does not need to

ship its entire state to propagate modifications. Like operation-based CRDTs [13], a Delta-State

CRDT transmits a set of applied operations since the last exchange. This method reduces the size

of the message the node shares.

To achieve this, ∆-CRDT have delta-mutators (mδ). It takes a state σ as an argument and

returns a smaller state, a delta mutation mδ (σ). Like traditional mutators, defined in section 2.4,

the merge between a delta mutation and a state creates a new state (Eq. 2.4) that is subsequent to

the current one (Eq. 2.5).

σ
′ = σ ⊔mδ (σ) (2.4)

σ ⊑ σ
′ (2.5)

As well as in State-Based CRDTs, ∆-CRDTs do not require reliable network communication.

The incremental updates and the join operation hold the same properties discussed in section 2.4:

commutativity, associativity, and idempotency.

The next subsections will approach AWORSets as an example of ∆-CRDTs. We will first

examine the concept of dots. Then we will explore AWORSets as a State-Based CRDT, followed

by the modifications necessary to convert this CRDT into a Delta-Based CRDT.

2.5.1 Dots

CRDTs can distinguish the order of operations issued in a node. As using a global sequence

number is not feasible (the replicas would have to coordinate at every write) CRDTs use a local

sequence counter as a timestamp: (replica_id, sequence_value).

Dots are essential to solving conflicts between nodes due to some properties [38]:

• They uniquely identify operations in a replica;

2.5 Delta-State CRDTs 11

• As the sequence number increases by one after every operation and dots are never deleted,

it becomes easier to track missing operations.;

2.5.2 State-Based Add-Wins OR-Set

An Add-Win Observed-Removed Set (AWORSet) is a CRDT that solves conflicts between

concurrent operations of add and remove over a set [9]. In other words, AWORSet implements a

distributed set where a client can add and remove the elements that were previously added.

An AWORSet’s state comprises a causal context (c) and a set (s) containing tagged elements.

The causal context keeps track of the order of events and comprises dots. Initially, c is empty, and

when adding an element, the node creates a new dot (replica_id, sequence_value + 1), where

the sequence_value starts with 0. Yet, a replica can never delete its dots. Imagine that a client

applied the following set of operations:

M = {add("x"), add("y"), rm("y")}

For each operation, the node will create a new dot, resulting in the following sequence of

causal contexts:

add("x")→ cA = {(A,1)}

add("y")→ cA = {(A,1),(A,2)}

rm("y")→ cA = {(A,1),(A,2)}

To add a new entry "y", the node retrieved the biggest sequence value associated with A (i.e., 1)

and added the new entry with this value incremented by one: (A,2). Notice that the causal context

remained the same when the client removed "y", as a causal context never diminishes its size.

Adding elements modifies not only the causal context but also the set of elements. Each entry

of s is a triple (replica_id, sequence_value, element) similar to a dot, but entries can be removed

when deleting an element.

To better visualize it, consider the following sequence of actions over node A:

N = {add("a"), add("k"), add("k"), rm("k"), add("j")}

Node A obtains the following sequence of states when applying the operations one at a time:

Background 12

add("a") : A = {s = {(A, "a",1)},c = {(A,1}}

add("k") : A = {s = {(A, "a",1),(A, "k",2)},c = {(A,1),(A,2)}}

add("k") : A = {s = {(A, "a",1),(A, "k",2),(A, "k",3)},c = {(A,1),(A,2),(A,3)}}

rm("k") : A = {s = {(A, "a",1)},c = {(A,1),(A,2),(A,3)}}

rm("k") : A = {s = {(A, "a",1),(A, "j",4)},c = {(A,1),(A,2),(A,3),(A,4)}}

Until now, it was explained what happens when an element is added and removed from a node

locally. Nevertheless, a merge/join function is necessary as distributed systems contain many

nodes, and they must share states.

Consider Figure 2.5. It formally defines the state of an AWORSet, a tuple containing: the

set of elements (s) and causal context (c). The node starts with these entries empty and formally

defines the operations we discussed: add and rm.

The merge operations joins both sets of the local node to the received one (s′ and c′). A node

can merge two causal contexts by performing the union between the current causal context c and

the one receiving c′.

AWORSet = P(I×N×E)×P(I×N)
⊥= (s,c) = ({},{})
addi(e,(s,c)) = (s∪{(i,n+1,e)},c∪{(i,n+1)})

with n = max({k | (i,k) ∈ c})
rmi(e,(s,c)) = (s\{(j,n,e) | (j,n,e) ∈ s},c)
elementsi((s,c)) = {e | (j,n,e) ∈ s}
(s,c)⊔ (s′,c′) = ((s∩ s′)∪{(i,n,e) ∈ s | (i, n) ̸∈ c′}

∪{(i,n,e) ∈ s′ | (i,n) ̸∈ c},c∪ c′)

Figure 2.5: State-Based AWORSet definition

Merging sets of elements is not so trivial since some elements can be removed. Consider

Figure 2.6 as an example. The network in the example contains two nodes, A and B.

Initially, both nodes A and B have empty states. Then "y" and "z" are added to A, and "y" to B.

After that, node A shares its state with B. When B receives A’s state, it makes a union of its state

and A’s:

B = {s = {(B,1"y"),(A,1, "y"),(A,2, "z")},

c = {(B,1),(A,1),(A,2)}}

2.5 Delta-State CRDTs 13

Then B removes "y". The operation removes all the y elements from s, but the causal context

remains untouched.

B′′ = {s = {(A,2, "z")},c = {(B,1),(A,1),(A,2)}}

When B sends its state to A, the destination node needs to solve conflicts. In this case, a simple

union between states won’t be enough to merge the states as elements that also belongs to A were

modified by B.

Notice that when a tagged element is deleted, it can never be re-added to a node. The instance

(A,1, "y"), for example, once belonged to A, but as the sequence number is continuously increasing,

the node’s sequence number will never be 1 again. Looking at the causal context, A knows an

element tagged with (A,1) was once part of B’s state. But since it was no longer a member of sB,

A knows this element was deleted.

Following this logic, the final state of A are the common elements between A and B(sA∩ sB),

plus the elements not known by each other. A not-known element is at sA, but not at cB or sB, but

not at cA.

add "y" add "y"

sB: {(B,1,"y")}
cB: {(B,1)}

sA: {(A,1,"y")}
cA: {(A,1)}

rm "y"

add "z"

sA: {(A,1,"y"), (A,2,"z")}
cA: {(A,1), (A,2)}

sA: {(A,2,"z")}
cA: {(A,1), (A,2), (B,1)}

sB: {(A,2,"z")}
cB: {(B,1), (A,1),(A,2)}

σB'

sA: {}
cA: {}

sB: {}
cB: {}

Node A Node B

sB: {(B,1,"y"), (A,1,"y"),(A,2,"z")}
cB: {(B,1), (A,1),(A,2)}

Figure 2.6: AWORSet State-Based example on merging operation

Background 14

2.5.3 Delta-Based Add-Wins OR-Set

In this subsection, we present and discuss the differences between the AWORSet Delta-Based

and State-Based. In the Delta-Based CRDTs, the operations generate a delta (δ), which contains

the modifications applied to a CRDT. The add operation, for instance, produces a δ (Eq. 2.6),

which, when joined to X , generates a new state X ′ (Eq. 2.7).

δX ← add(X ,n) (2.6)

X ′← X ⊔δX (2.7)

Suppose that node X has the following state:

X = {s = {(X ,1, "a"),(X ,2, "b"),(X ,4, "d")},

c = {(X ,1),(X ,2),(X ,3),(X ,4)}}

When X adds a new element "e", add operation generates a δX ′ which contains its mutations.

δX ′ = {s = (X ,5, "e"), c = {(X ,5)}}

X ′ = δX ′ ⊔X ⇒

X ′ = {s = {(X ,1, "a"),(X ,2, "b"),(X ,4, "d"),(X ,5, "e")},

c = {(X ,1),(X ,2),(X ,3),(X ,4),(X ,5)}}

When we merge δX ′ to X , we obtain X ′. The logic behind generating a δ for a remove operation

is similar. Suppose that we remove "b" from X ′. The delta generated would be:

δX ′′ = {s = /0, c = {(X ,2)}}

X ′′ = δX ′′ ⊔X ′ ⇒

X ′ = {s = {(X ,1, "a"),(X ,4, "d"),(X ,5, "e")},

c = {(X ,1),(X ,2),(X ,3),(X ,4),(X ,5)}}

Likewise, when joining δX ′′ to X ′ we would get X ′′.

In the formal definition, the functions add and rm now are adapted to return deltas, as Figure

2.7 shows.

2.5 Delta-State CRDTs 15

AWORSet = P(I×N×E)×P(I×N)
⊥= (s,c) = ({},{})
addδ

i (e,(s,c)) = ({(i,n+1,e)},{(i,n+1)})
with n = max({k | (i,k) ∈ c})

rmδ
i (e,(s,c)) = ({},{(j,n) | (j,n,e) ∈ s})

elementsi((s,c)) = {e | (j,n,e) ∈ s}
(s,c)⊔ (s′,c′) = ((s∩ s′)∪{(i,n,e) ∈ s | (i, n) ̸∈ c′}

∪{(i,n,e) ∈ s′ | (i,n) ̸∈ c},c∪ c′)

Figure 2.7: Delta-Based Aworset definition [9]

Deltas provide a solution for the network overhead of State-Based CRDTs. Instead of sending

its entire state to its correspondent, a node can transmit only the modifications the replica has

applied since the last transmission. When an operation generates a delta, the node merges it to

a buffer and keeps merging deltas until it is delivered to another node. When the transmission is

done, the buffer can be again set to null. This buffer is called Delta-Interval and will be discussed

in the next section.

2.5.4 Causal Consistent Anti-Entropy Algorithm

While State-Based CRDTs guarantee causal consistency by disseminating their complete state

across the network [15], ∆-CRDTs rely on an algorithm to provide this assurance. Before going

through the algorithm, consider the definitions below:

Definition 2 (Delta-Mutator) A single delta-mutation or a join of multiple delta-groups.

Definition 3 (Delta-Interval (∆a,b
i) [7]) Is a delta-group produced by joining all the deltas in the

range da
i , da+1

i , ..., db
i of a replica i.

Algorithm 1 presents a version of the algorithm presented in [7] with modified syntax.

Algorithm 1 Anti-Entropy algorithm for causal consistency

1: input n : N ▷ Set of neighbors’ node id

2: durableState
3: cd : K = {} ▷ A CRDT containing a state s

4: c : u64 = 0 ▷ Sequence number

5: end durableState
6:

7: volatileState
8: D: map(u64 : K) = {} ▷ Map of deltas

9: A: map(N : u64)← {} ▷ Ack map

Background 16

10: end volatileState
11:

12: function ONRECEIVEDELTA j,i(d: K, seqNumber: u64) ▷ i receives a delta d from j

13: if d ̸⊑ cd.s then
14: cd.s = join(cd.s, d) ▷ Update cd’s state

15: D.add(c, d)

16: c = c + 1 ▷ Update curret node’s sequence number

17: sendi, j(ack, seqNumber)

18: end if
19: end function
20:

21: function ONRECEIVEACK j,i(seqNumber: u64) ▷ i receives ack message from j

22: A.add(j, max(A[j], seqNumber))

23: end function
24:

25: function ONOPERATION(mδ)

26: d = mδ (cd.s) ▷ Apply mutation to state

27: cd.s = join(cd.s, d) ▷ Update crdt’s state

28: D.add(c, d)

29: c = c + 1

30: end function
31:

32: function SHIPSTATEORINTERVAL ▷ Periodically called
33: Declare minKey = 0

34: d = {}

35: minKey = min(D.keys()) ▷ Smallest key in D

36: j = random(n)

37: if D = {} ∨ D[minKey] > A[j] then
38: d = cd.s ▷ Send all the state

39: else
40: for ∀key ∈ D.keys() do ▷ join all the deltas between A[j] and c

41: if A[j] ≤ key < c then
42: d = join(d, D[key])

43: end if
44: end for
45: end if
46: if A[j] < c then
47: sendi, j(d, c)

48: end if
49: end function

2.5 Delta-State CRDTs 17

50: function GARBAGECOLLECT ▷ Periodically called
51: remove deltas acked by all neighbors

52: end function

Every node in the algorithm has a durable and volatile state. The durable state is regularly

saved in a durable storage and consists of a CRDT (i.e., cd) and a sequence number denoted by

c. The volatile state includes two maps: D, which holds sequence numbers as keys and deltas

as values, and A, which stores acknowledged messages with node ids as keys and a sequence

number as value. This sequence number is the largest index b from a delta-interval ∆a,b that was

acknowledged by a node j.

When an operation is performed, it generates a delta state by applying a delta-mutation to

cd’s state. The cd’s state is then updated by merging it with the generated delta. The generated

delta is then added to the D map with the current sequence number, and the sequence number is

incremented.

When receiving a delta state with (d, seqNumber) as a message, node i first verifies if the

received state is not already present in the state of the CRDT. If not, the delta d is joined to cd’s

state. After that, d is computed as change. Thus, it is added to D associated with a sequence

number so that it can be propagated to other nodes. Finally, i increments its counter and sends an

acknowledge message to j.

Node i verifies if the received delta state with a message (d, seqNumber) is absent in the

CRDT’s state. If it’s not, the delta d is combined with the CRDT’s state. The change d is calculated

and added to the D map with the sequence number for propagation to other nodes. Finally, node i

increments its counter and sends an acknowledgment message to node j.

Upon receiving an acknowledgment message, node i records in A the sequence number of

the latest delta received by node j. This information is crucial when delivering states to other

nodes. The shipping function, which is periodically executed, selects a random node to receive

the modifications recorded in D. Node i sends its complete state in two cases: when there are no

modifications to deliver (i.e., D is empty) or when the oldest change (delta) in D is older than the

last acknowledged sequence number by node j. If the two conditions mentioned previously are

not met, all deltas with sequence numbers between A[j] and c will be combined and sent to node

j. With this algorithm, node i avoids sending information to node j that it may already have.

2.5.5 Discussion

Compared to State-Based CRDTs, δ -CRDTs are more efficient in transmitting messages and

incorporating modifications to the current state. However, they do not ensure causal consistency

like State-Based CRDTs. To address this, an anti-entropy mechanism was introduced.

Despite being introduced as a solution to the lack of causal consistency, the anti-entropy algo-

rithm underperforms and is not an improvement over the state-based approach. This is due to its

potential for spreading redundant states among replicas. A proposed improvement is discussed in

[21].

Background 18

2.6 Summary

This chapter makes an overview about consistency, explains the CAP and SEC theorems, and

describes State-Based CRDTs and Delta-State CRDTs, which are key concepts to understand this

thesis.

Section 2.1 overviews consistency, approaching its concept and describing other types of con-

sistency, namely eventual and strong consistency. In short, eventual consistency allows temporary

inconsistencies during the replication process, under the promise that if no updates are made, all

copies of the data will eventually be the same. There is no guarantee of how long it will take for

consistency to be achieved. This means that when a client updates a replica, it may not be immedi-

ately available for all the replicas. Still, it ensures that all copies of the updated data will eventually

be consistent. By another hand, strong consistency is a model where all copies of data are always

synchronized and consistent. When some data is updated, all the clients have immediate access to

its most recent version.

Section 2.2 defines the CAP theorem and presents Strong Eventual Consistency, which allows

temporary inconsistencies, which are eventually solved under a series of rules. In constrast to EC,

SEC eases development and reasoning, and guarantees that the consistency will be reached.

Section 2.3 explains what are join-semilattices, so that the reader understands the domain of

the CRDT’s state.

Section 2.4 describes State-Based CRDTs, a structure used in distributed systems that ensures

eventual convergency to a consistent state even in network partitions and delays. However, State-

Based CRDTs are typically less efficient in terms of latency because they send the entire state

to other replicas and have limited scalability, as the size of the data object being replicated may

become too large.

Finally, Section 2.5 explains Delta-State CRDTs. In contrast to State-Based CRDTs, the δ -

CRDTs do not propagate the entire state of the data over the network, instead they only send the

changes (deltas) made to the data, reducing the amount of data that needs to be sent across the

network. However, δ -CRDTs relies on an anti-entropy algorithm to ensure causal consistency.

On this way, this data structure reduces significantly the latencies issues related to the State-Based

CRDTs.

On the following chapter we discuss the current state of the art related to this dissertation.

Chapter 3

Problem Statement

3.1 Open problems . 19

3.2 Main Hypothesis . 19

3.3 Research Questions . 20

3.4 Development methodology . 20

3.5 Summary . 21

3.1 Open problems

CRDTs face scalability challenges due to state growth proportional to the number of clients.

This leads to a phenomenon called "id explosion," where each replica’s state is mapped to a replica

id.

While CRDTs ensure reliable communication, a lack of CRDTs on the client side demands

exact message delivery. To achieve this, a consensus protocol like Paxos can be used, but at the

cost of reducing availability, as replicas must wait for consensus to complete an interaction. This

may result in financial consequences for enterprises that need to provide continuous services.

3.2 Main Hypothesis

We can summarize the hypothesis of this work as:

"There are isolated solutions for solving CRDT’s scalability problems (1). There

is at least one specific architecture and protocol design that can be generalized for

causality-based CRDTs (2)."

The first part of the hypothesis enunciates that some CRDTs already have a personalized so-

lution for their scalability problem. Handoff Counters, for instance, solve the scalability problems

of counter-based CRDTs.

19

Problem Statement 20

The second part of the hypothesis states that some solutions can be generalized for other types

of CRDTs, requiring formalizing this generalized design and its implementation.

3.3 Research Questions

To guide the investigation and inform the study design, the following research questions were

identified:

RQ1: What are the isolated solutions for the scalability problems CRDTs, that the literature
provides?

This research question is the starting point for the dissertation and validates part (1) of the

hypothesis. It defines and establishes the current knowledge about the isolated solutions already

created for CRDTs.

RQ2: How can the isolated solutions found be adapted to fit causal-based CRDTs?
Not every isolated solution for CRDTs’ scalability problem can be generalized to fit causal-

based CRDTs. Therefore, RQ2 tries to prove component (2) of the hypothesis by asking "how"

the solution can be generalized. If none of the references provided can be generalized, then it will

be studied if the solution might fit a smaller set of CRDTs, rather than causal-based ones. In the

worst scenario, a study explaining the adaptation problems will be developed.

RQ3: How does the generalization impact the use of CRDTs in terms of latency and memory
occupation?

This step evaluates how the scalable mechanism impacts the performance of CRDTs in prac-

tice. In essence, it is necessary to measure each node’s latency and memory occupation and com-

pare the results with an implementation that does not use the scalable mechanism. Distinct sce-

narios will be tested and generated by varying the number of clients in each tier. In the end, we

expect to verify performance improvements in a network using the developed mechanism.

3.4 Development methodology

The algorithm that will be presented in chapter 5 was developed in steps. Synthesizing all

features simultaneously overcomplicates the process. Adapting a poorly developed algorithm is

harder them building it in steps.

Suppose a student needs to pack cubic blocks in a backpack for a school project. As the student

had little time, he threw all blocks into the sack, leaving some behind. In this situation, the student

could try to organize them while still in the bag, but arranging blocks at the bottom is arduous.

An obvious solution would be adding the larger blocks in the bottom, side by side, and then

piling up the remaining ones. Although the student might have some mistakes while pilling the

cubics, these are easier to fix. Creating an algorithm is no different from the bag case.

Building all features at the same time is complex in terms of logic. We must build and modify

an incomplete code until it fits our needs. However, as organizing blocks already in a bag is hard,

organizing an incomplete code is also. Therefore, we idealized an order to implement the features,

3.5 Summary 21

so we call first build a solid basis and perform small adaptations while having some confidence in

what was built before:

1. Addition;

2. Removal, Translations;

3. Caching.

3.5 Summary

The research question focuses on CRDTs’ scalability challenges, which arise from growing

state proportional to the number of clients, leading to "id explosion." The hypothesis suggests that

some CRDTs have personalized solutions (e.g. Handoff Counters) and that some solutions can be

generalized to causal-based CRDTs.

The research questions validate part 1 of the hypothesis by defining the current knowledge of

isolated solutions and test part 2 by studying how to generalize the solution.

This evaluation assesses the effect of the scalable mechanism on CRDT performance by com-

paring the developed solution with an unmodified implementation in terms of latency and memory

consumption and testing performance enhancements across various scenarios with different num-

bers of clients.

Chapter 4

State of the Art

4.1 Methodology . 22

4.2 KaZaA . 23

4.3 Handoff Counters . 25

4.4 Topolotrees . 31

4.1 Methodology

To analyze the current state of the art in the problem’s domain, a specific methodology was

employed. Given that the problem in this domain has not been extensively explored in literature,

simple queries were utilized to retrieve a limited number of relevant documents.

4.1.1 Database

The search included ACM Digital Library, CRDT.tech, and IEEE Xplore, and did not have a

specific file type restriction. As a result, the investigation covered magazines, journals, conference

papers, and other file types. Additionally, web articles were also included in the search.

4.1.2 Queries

The following is a list of the key queries used in the study. Due to the lack of keyword search

functionality on the CRDT.tech database, basic filters were applied. Given that the website only

covers research related to CRDTs, it was not necessary to include CRDT-related keywords.

• Q1: "scalable" eventual consistency (databases: IEEE Xplore, ACM Digital Library)

• Q2: scale (database: crdt.tech)

• Q3: scalable (database: crdt.tech)

22

4.2 KaZaA 23

• Q4: (crdt OR "eventual consistency") AND (scale OR scalability) (databases: IEEE Xplore,

ACM Digital Library)

4.2 KaZaA

KaZaA [26] was a P2P application to share files such as music and movies, created in 2001

and shut down in 2012. It was one of the largest systems deployed on the internet, with over 3

million active users sharing large quantities of data.

4.2.1 Topology

In contrast to overlay networks with random connections, KaZaA improves the system scala-

bility by exploiting the network’s heterogeneity. Peers do not have the same characteristics; they

have different capacities, bandwidth, memory, and connection time.

Unlike Gnutella, KaZaA has two types of nodes, Ordinary Nodes (ONs) and Super Nodes

(SNs). Users own both types, but SNs are more powerful peers and have other responsibilities.

KaZaA built a two-tier hierarchical system where SNs keep track of their children’s content.

Figure 4.1 shows the topology rules:

• ONs only connect to SNs;

• SNs link to ONs and some SNs;

SN layer

ON layer

Figure 4.1: KaZaA topology

State of the Art 24

ONs keep a list of up to 200 SNs, and SNs have lists with thousands of SNs. These lists are

exchanged between peers to keep them up-to-date. Based on these updates, the SNs also change

their connections occasionally. This topology increases the variety of content to be searched.

4.2.2 Operations

When an ON uploads a file to the network, the SN responsible for the ON receives the file’s

metadata, which includes, for instance, the file name and size.

Then, when a user searches, the application creates a query, and sends it to the SN via TCP

communication. Upon receiving the query, the SN lookup in its internal table for the files that

match its parameters. For each match, the SN returns the node’s IP storing the file and the corre-

sponding metadata. The SN can also forward the query to other SNs that are connected to it.

Amongst the metadata, there is the ContentHash. The file descriptor contains the artist name,

album name, and other data. This content is used for keyword matching in the databases and is

part of a "recover system." The ContentHash uniquely identifies files. If a download of a file fails,

the peer can search for the specific file in the network and continue the download without issuing

a new query and request.

4.2.3 Discussion

Unlike Gnutella [18], KaZaA scaled to millions of users thanks to the hierarchical topology,

which improves the traffic and memory of Ordinary Nodes.

Without server-like nodes, peers with scarce resources would have to handle high message

traffic and store a list of nodes in the network. The scenario is similar to Gnutella, where the

biggest part of the messages delivered in the network was PING and PONG messages. Later, the

Gnutella protocol was improved to use a two-layer topology [19].

Other solutions could be used to prevent nodes from storing a big list of members in the

network. However, it would force the implementation of slower and heavy search mechanisms.

To improve scalability, it would be necessary to abdicate performance.

Therefore, although hierarchy makes a system less distributed, it leverages the characteristics

of each node to improve performance. Nodes with more memory, for instance, are more suitable

for storing more information and coordinating other nodes, for instance.

In this dissertation, we also take advantage of network heterogeneity and split the topology

into layers to scale the system, as it will be explained in Section 5.

4.3 Handoff Counters 25

4.3 Handoff Counters

Almeida and Baquero described Handoff Counters [8] as a CRDT-based counter mechanism
that meets eventual consistency criteria, works in unreliable networks, and is scalable. It addresses

CRDT counters’ scalability issue mentioned in Section 1.3 by creating a networking topology and

hierarchy. Figure 4.2 shows an example of network topology.

In the network hierarchy, tier 0 nodes store information permanently, while nodes at lower

tiers, such as tiers n+1, are subject to garbage collection. Data generated by clients at the lowest

tier, referred to as leaf nodes, is transmitted up the hierarchy until it reaches tier 0 nodes.

root root

mid mid mid

End-Client

tier 0

tier 1

tier 2

Figure 4.2: Handoff Counters network topology

The network topology must support eventual consistency by allowing node u to switch to

another server in case of network partition during a message exchange, ensuring that a local incre-

ment is handed off. To achieve this, the topology must follow these guidelines:

• Each link is bidirectional;

• Tier 0 nodes is a sub connected network allowing information to be spread among servers;

• There is always a path from any node to a node at tier 0, which is natural, as the information

needs to be properly stored;

• If two nodes have a common parent, then there is a link between them

4.3.1 Distributed Algorithms

When CRDTs are employed, the distributed algorithm is simplified as the complexity is shifted

to the CRDT. For instance, a gossip algorithm can distribute information throughout the network,

with each node periodically selecting a random neighbor to deliver its state, which the receiver

State of the Art 26

then merges with its own. The distributed algorithm must therefore have routines to merge states,

retrieve the local counter, and increment its value.

4.3.2 Handoff Counter Data Type

This section illustrates, through an example, how Handoff Counter Data Types achieve even-

tual consistency in a network by employing a dependable 4-way handshake protocol.

The state of a Handoff Counter is composed by the following fields:

• id: node identification;

• tier: node tier;

• below: lower bound of values accounted in lower tiers;

• vals: maps node ids to integer counter values;

• sck: source clock;

• dck: destination clock;

• slots: maps node ids to pair (sck, dck);

• tokens: maps a pair of node ids (i,j) to a pair ((sck, dck), v), where v is the counter value.

Figure 4.3 illustrates an uninterrupted execution of the Handoff Counter Data Type. In the

example, node i has a source clock of 10 and has been incremented 9 times, as shown in the

vals field. The aim of node i is to transmit its state to node j so that the counter value can be

incremented an additional 9 times, reaching a final value of 19.

In the first step, node i will send its state i1 to j, where it will be merged:

j2 = i1⊔ j1

The merge will create a slot in j2, where the key is the id of node i, and the value is a pair

(scki,dck j). Consequently, the j’s destination clock (dck) is incremented by one. The slot ex-

presses the capability of node j to receive a value and ensures that a value can not be received

more than once.

After creating state j2, node j will send its state to i in return, which will evaluate j’s slots

and create an entry in the token. Consequently, i increments its source clock (sck) in one as it

creates a new token by moving values from vals map to the token. The entry created in i’s token

contains a pair (source_node_id, destination_node_id) as key, and its respective value contains

the increment value. Then, node i replies to the j, sending its state again.

In this interaction, node j evaluates the fields in i2. As i’s state has a token whose key pair

contains j as the destination node, and j includes a slot of the source node matching the source

4.3 Handoff Counters 27

clock and destination clock, j merges j2 with i2, consequently deleting the respective slot entry

and incrementing its local counter in 9.

At last, j sends j3 to i, where i merges the received state and deletes its remaining token,

creating the state i3.

sck: 10
dck: 0
vals: {i:9}
slots:
tokens:

sck: 11
dck: 0
vals: {i:0}
slots:
tokens: {(i,j): ((10,15),9)}

sck: 11
dck: 0
vals: {i:0}
slots:
tokens:

sck: 0
dck: 15
vals: {j: 11}
slots:
tokens:

sck: 0
dck: 16
vals: {j: 11}
slots: {i: (10, 15)}
tokens:

sck: 0
dck: 16
vals: {j: 20}
slots:
tokens:

Node i,
tier 1

Node j,
tier 0

Figure 4.3: Handoff Counters protocol example

4.3.3 Notation

As the next few subsections use extensive mathematical notation, we present here the neces-

sary semantics to understand its content.

A map is a set of tuples with keys and values (k,v), which can also be referenced with the

"maps to" sign k 7→ v when accessing entries. Map updates come as M{...}. M{k 7→ 1}, for

instance, assigns 1 to key k and keeps all other keys unchanged.

Domain subtraction uses −◁, where S−◁ M returns the map obtained by removing all key-value

pairs from S. The first element of a tuple can be accessed using fst(T), whereas snd(T) for the

second. Domains are accessed using dom (i.e., dom(M)) and ∪ f (m1,m2) is the join of two maps

while applying function f for values with common keys. The function returns the key-value tuple

(k,v) resultant from the joining.

Akin to many programming languages, we use if and else statements to separate different

cases.

State of the Art 28

4.3.4 Operations

Figure 4.4 shows that Handoff Counters initializes its structure with empty sets. Among all

operations, fetch is the simplest, as it only returns the counter’s current value. The incr operation

increments the counter in one, and the merge joins two states. The merge operation is the most

complex, and we dedicate the next subsection to explaining each function that composes it.

init(i, tier) .
= {id = i, tier = tier, val = 0, below = 0, sck = 0, dck = 0,

slots = {}, tokens = {}, vals = {i 7→ 0}}
fetch(Ci)

.
= vali

incr(Ci)
.
=Ci{val = vali +1,vals = valsi{i 7→ valsi(i)+1}}

merge(Ci,C j)
.
= cachetokens(createtoken(discardtokens(aggregate(

mergevectors(createslot(createslot(discardslot(fillstlost(Ci,C j),

C j),C j),C j),C j),C j),C j),C j),C j)

Figure 4.4: Handoff Counter data type operations

4.3.5 Merge operation

Firstly, the merge operation calls fillslots. If C j has a token ((src,dst),(ck,n)) with (src,dst)=

(i, j) and Ci a slot (src,(sck,dck)) with src = j, then fillslots checks if the token’s clock is equal

the slot’s (i.e., ck = (sck,dck)). In the affirmative case, the slot is filled since the token matches the

slot. By filled, we mean that n is added to the node, valsi(j) = valsi(j)+n, and the slot is deleted.

After that, the node discards invalid slots calling discardslots. The function compares C j’s

source clock against slots(j)’s. If C j’s source clock is higher than the one in the slot, the slot will

never be filled. Therefore i discards the slot.

The next called function is createslot. If j comes from a lower layer and it contains new

information stored under its id, then i creates a slot to receive new tokens.

The mergevectors function merges states from nodes in layer 0 by choosing the maximum

between their values in vals, ensuring idempotency. The aggregate function, however, performs a

vertical aggregation. It updates the below and val fields according to C j data. The discardtokens

function removes tokens that were already delivered, or that can never be dispatched.

The createtoken function creates a new token when C j carries a slot with i as key and with

source clock equals to scki. After creating a slot, scki is incremented in one to avoid repeated tags.

The cachetoken is the last function to be called in the merge operation. Node i can keep

copies of tokens destined for another node k. When the transmission between two nodes fails,

node i inherits the responsibility of delivering the token to k. This increases the availability.

4.3 Handoff Counters 29

fillslots(Ci,C j)
.
=Ci{vals = valsi{i 7→ valsi(i)+∑[n|(_,n) ∈ S]},

slots = dom(S)−◁ slotsi}
where S .

= {(src,n) | ((src,dst),(ck,n)) ∈ tokens j | dst = i∧ (src,dck) ∈ slotsi}

discardslot(Ci,C j)
.
= if j ∈ dom(slotsi)∧sck j > fst(slotsi(j))

then Ci{slots = { j} −◁ slotsi}
else Ci

createslot(Ci,C j)
.
= if tieri < tier j ∧vals j(j)> 0∧ j ̸∈ dom(slotsi)

then Ci{slots = slotsi{ j 7→ (sck j,dcki)},dck = dcki +1}
else Ci

mergevectors(Ci,C j)
.
= if tieri = tier j = 0

then Ci{vals = ∪max(valsi,vals j)}
else Ci

aggregate(Ci,C j)
.
=Ci{below = b,val = v}

where b .
= if tieri = tier j then max(belowi,below j)

else if tieri > tier j then max(belowi,val j)

else belowi

v .
= if tieri = 0 then ∑[n | (_,n) ∈ valsi]

else if tieri = tier j then max(vali,val j,b+valsi(i)+vals j(j))

else max(vali,b+valsi(i))

discardtokens(Ci,C j)
.
= {tokens = {(k,v) ∈ tokensi | ¬P(k,v)}}

where P((src,dst),((_,dck),_)) .
= (dst = j)∧

if src ∈ dom(slots j) then snd(slots j(src))> dck

Figure 4.5: Merge operation functions

State of the Art 30

createtoken(Ci,C j)
.
= if i ∈ dom(slots j)∧ fst(slots j(i)) = scki

then Ci{tokens = tokensi{(i, j) 7→ (slots j(i),valsi(i))},
vals = valsi{i 7→ 0},
sck = scki +1}

else Ci

cachetokens(Ci,C j)
.
= if tieri < tier j

then Ci{tokens = ∪ f (tokensi, t)}
where t .

= {((src,dst),v) ∈ tokens j | src = j∧dst ̸= i},
f ((ck,n),(ck′,n′)) .

= if fst(ck)≥ fst(ck′) then (ck,n) else (ck′,n′)

Figure 4.6: Merge operation functions

4.3.6 Discussion

Handoff Counters manage to reduce the causal context space complexity. Instead of increasing

space based on the number of replicas in the network, the space in Handoff Counters linearly

increases with the number of subset of replicas. Consequently, the authors abdicated from having

a totally distributed system and added a layer of hierarchy to scale the structure. Yet, the changes

also increased the merge operation complexity.

The protocol presented in this thesis is the successor of Handoff Counters. Some functions

declared by Handoff Counters are recycled and reused in the ROSES protocol. Therefore, it’s

essential for the reader to understand this section.

4.4 Topolotrees 31

4.4 Topolotrees

TopoloTree [31] is a data type created by Power et al. that solves the memory consump-

tion problem in counter-like CRDTs. The data type abdicates ID mapping while supporting non-

idempotent operations and preserving strong eventual consistency. As a result, the system solves

large-memory consumption by reducing the space complexity from O(n) to O(4).

Using a binary tree topology, the author enforces idempotency through hierarchy, where parent

nodes deduplicate messages delivered by children.

4.4.1 Algorithm

The algorithm organizes nodes in a tree structure, where a node can only communicate with

its parent and its children. The algorithm works as follows:

Algorithm 2 TopoloTree-Replica

1: input statelocal,statele f t ,stateright ,stateparent ←⊥
2: merge mergele f t(v)

3: statele f t ← max(statele f t ,v)

4:

5: merge mergeright(v)

6: stateright ← max(stateright ,v)

7:

8: merge mergeparent(v)

9: stateparent ← max(stateparent ,v)

10:

11: gossip
12: send left← statelocal + stateright + stateparent

13: send right← statelocal + statele f t + stateparent

14: send parent← statelocal + statele f t + stateright

15:

16: operation
17: statelocal ← statelocal ·update

18:

19: query
20: return statelocal + statele f t + stateright + stateparent

Each node contains four state: the statelocal stores the value of the local counter, the statele f t

and stateright stores the children subtrees, and stateparent stores the value of the system outside the

node’s subtree, excluding the local node. The sets are non-overlapping. Formally we can say:

nodelocal ∩ subtreeright ∩ subtreele f t ∩ subtreeparent = /0

State of the Art 32

The protocol works for any monoid. In algebra, a monoid is a set that can use associative

binary operations. Here we designate this operation as a dot (i.e., ·). In algebra, a monoid is a

binary operation that holds the associative (i.e., (a · b) · c = a · (b · c)) and identity element (i.e.,

e ·a = a and a · e = a) axioms. The system, however, excludes scenarios where the output is a set,

multiset, or list. Parents can deduplicate repeated messages by using the max operator, ensuring

idempotency and convergence.

4.4.2 Discussion

TopoloTree is a much simpler protocol when compared to Handoff Counters. It has a simple

design that also leverages the network’s topology to reduce the space complexity. No matter how

many nodes the network has, any node will be limited to constant space consumption.

Although simple, the protocol might not be adapted to use composed structures such as sets

and lists, as messages cannot be deduplicated by the max operation, for instance. Additionally,

the paper is not clear on how to add new nodes, remove them, and migrate a child pair to another

parent, which makes the structure rigid. If a node is removed, the children must migrate to another

position in the tree or remain detached from the network. Using standard algorithms to make this

migration does not guarantee that the network will remain consistent.

Chapter 5

ROSES Protocol

5.1 System Model . 33

5.2 Notation . 34

5.3 State . 34

5.4 Operations . 35

5.5 Algorithm . 36

5.6 Formalization . 43

In this section, we introduce the ROSES (Renaming Operations for Scalable Eventually-

Consistent Sets) protocol. As the name proposes, the protocol scales CRDT-based, eventually-

consistent sets and registers using renaming techniques. It allows the client to add and remove

elements from these structures.

Although a kernel was developed to implement multiple CRDT types, such as multi-value

registers, we use AWORSet CRDT to elucidate and provide a clear understanding of the protocol.

Yet, we present the protocol without deltas and further improvements in the causal context for

simplicity reasons.

5.1 System Model

The protocol uses a distributed system with asynchronous communication and logical time.

Nodes in the system can experience failures but will eventually recover. The network may dupli-

cate and lose messages, but lost messages are eventually delivered to their intended destination.

However, messages are guaranteed to be error-free and contain the correct content.

The system follows a two-layer topology network. Tier 0 represents a sub-layer consisting

exclusively of servers, while tier 1 comprises only clients. In tier 1, clients do not communicate

directly with each other, but they can establish connections with multiple servers. Servers in

tier 0, on the other hand, need to communicate with each other to enable replication and ensure

availability in case of failures.

33

ROSES Protocol 34

When a client suspects its corresponding server s crashed, it sends its state to another server

s′. This allows s′ to finish the protocol when s returns online. To achieve this, we have established

that if a client has a link with servers m and n, then m and n are also connected. Ultimately, the

network must adhere to the following rules:

• The links are bidirectional. So clients can send information to servers and vice-versa.

• If a client u has a link to two servers s and s′, then s and s′ are linked;

• All clients have a path to a server;

• Tier 0 is a sub-connected network;

5.2 Notation

A map can be represented as a set of keys and values (k, v), each associated with a unique

value. We also represent this relation using an arrow (i.e., k 7→ v). To update a value in a map, we

use the M{...} notation. M{d 7→ 5}, for instance, updates the value of key d to 5.

The sign −◁ is a domain subtraction; P −◁ Q returns a map excluding all key-value pairs of Q

from P; {(k1,v1),(k2,v2),(k3,v3), ...,(kn,vn)} −◁ {k1,k3}= {(k2,v2), ...,(kn,vn)} . The domain of

a relation R is obtained using dom (i.e., dom(R)); dom({(k1,v1),(k2,v2)}) = {k1,k2}.
We access values of a finite ordered list, such as a tuple, using dot notation followed by the

position; T.0, for instance, retrieves the first position of a tuple T . We use ∪ f (m,m′) to join two

maps while applying function f for common keys. The if and else statements are used to represent

conditionals.

5.3 State

In this subsection, we present the state structure of a node using the ROSES protocol. The

state is similar to Handoff Counters, as ROSES also uses tiers, clocks, slots, and tokens.

• id; string: node identification;

• tier; i32: number of the tier (0 or 1);

• sck; i32: source clock. Incremented when node creates a slot;

• dck; i32: destination clock. Incremented when node creates a token;

• te; {i 7→ {(sck,n,elem)}}: a map where a node’s id maps a set of tagged elements;

• slots; {i 7→ {(scki,dck j)}}: a map where a node’s id maps a set of tuples. A tuple contains

two integers;

5.4 Operations 35

• cc; {(id,sck,n)}: the causal context, where n is a counter that starts with 0 and is restarted

when the source clock is incremented;

• token; {(i, j) 7→ ((scki,dck j),ni,{(scki,n′,elem)})}: a token that maps a tuple of ids to a

triple containing the clocks, a counter and a set of tagged elements;

• transl; {((i,scki,ni),(j,sck j,n j))}. Set of tuples where each tuple contains a triple with

three integers.

ROSES protocol ensures idempotency using structures called tokens and slots. As well as in

Handoff Counters, a slot means the server is prepared to receive a message from a client. For

instance, a slot i 7→ (scki,dck j) conveys a server j is ready to receive a token from a node i. The

corresponding token must have a pair of clocks (scki,dck j), where scki is i’s current source clock

when the slot was created, and dck j is the destination clock value when the slot was created.

The source and destination clocks uniquely tag slots and tokens. When a node creates a slot,

it increases the source clock. Likewise, when a client creates a token, it increases its destination

clock. By monotonically increasing sck and dck the nodes guarantee that they will not be used

twice.

5.4 Operations

In Figure 5.1, we show the ROSES node datatype. The init function shows the initial state

of its fields. Notice that the clock starts at zero. Operation fetch returns a set with the elements

in the node. It gathers all elements from te and tokens and displays them uniquely. The add

and rm operations work similarly to AWORSets. The add operations insert elements in te and

consequently its tombstone at the causal context cc. Whereas the rm operations not only delete

matching elements from te, but also from tokens field.

ROSES Protocol 36

init(i, tier) .
={id = id, tier = tier,sck = 0,dck = 0, te = /0,slots = /0,cc = /0

tokens = /0, transl = /0}
fetch(Ci)

.
={e | ((_,_),(_,_,x)) ∈ tokensi∧ (_,_,e) ∈ x}∪{e′ | (_,_,e′) ∈ tei}

add(Ci,e)
.
=Ci{te = {i 7→ {{(scki,N +1,e)}∪ tei(i)}}}

where N .
= {n | ∀(i,scki,n′) ∈ cci | n′ ≤ n}

rm(Ci,e)
.
={te = {(id,(sck,n,elem)) ∈ elemsi | elem ̸= e},

tokens = {(k,v) ∈ tokensi | f (v,e)}}
where f (v,e) = {(_,_,elem) ∈ v | elem ̸= e}

merge(Ci,C j)
.
=cachetokens(createtokens(discardtokens(mergevectors(cachetransl(translate(

discardtransl(createslot(discardslot(fillslots(Ci,C j),

C j),C j),C j),C j),C j),C j),C j),C j),C j)

Figure 5.1: Node operations

From all operations, merge is the most complex. It orchestrates a series of functions that

handles the ROSES protocol. In Section 5.6, we detail each function.

5.5 Algorithm

In this section, we explain ROSES algorithm without formalizations. The goal is to give the

reader a good intuition of the protocol so that the formalization in Section 5.6 becomes easier to

read.

The ROSES protocol begins when a client shares its state with a server. This event can happen

at every new operation or periodically. Choosing one over another depends on the characteristics

of the network. In write-intensive networks, for instance, periodical state exchanges would likely

be more suitable.

To explain the algorithm, we will consider a network with periodical writes. In other words,

the client will periodically exchange information with servers. Still, a client has an associated

server to which it commonly transmits information. However, as we will explain in the following

paragraphs, in case the server fails, the client can initiate communication with an alternative server.

The protocol is divided into four main states: Notify, Prepare, Incorporate, and Translate.

1. Notify: The protocol starts when a client c sends its state to a server s. When s receives the

upcoming state, it applies the merge function. If the function verifies that c has new local

information (i.e., data stored under c’s id in cc), then it generates a slot and sends its state

back to the client;

5.5 Algorithm 37

2. Prepare: Upon receiving the server’s state, the client merges its state with the server’s. The

merge function will join upcoming elements from s in a similar way to AWORSets. Yet, if

the function finds a slot with c’s id as a key, the client moves data stored under its key to a

new token. After that, the client sends its state to the server;

3. Incorporate: The server receives the client’s state and merges its state. If a token matches

a slot, then the slot is filled. In other words, the information in the token is renamed and

added to the server. The server creates a translation entry, matching the previous tags of the

elements to the new ones. It then sends its state to the client once again.

4. Translate: After receiving the server’s state, merging it, and verifying the successful inte-

gration of the server’s elements, elements in the token are translated and added to the client.

Notice that the merge function drives the algorithm as it is in charge of analyzing the upcoming

state and performing changes according to it.

To better understand the steps discussed, we prepared Figure 5.2 as an example. The following

paragraphs informally describe the protocol highlighting the steps mentioned previously. The

system has two nodes; node x is a client at tier 1, and node y is a server at tier 0. Both are

initialized in arbitrary states to make the flow more comprehensive.

Firstly, node x adds element "B" to its state. Hence, x adds a triple to its causal context and an

entry to the tagged elements structure te containing "B". At some point, the Notify step begins as

x sends its state to y, which witnesses an entry in ccx stored under x’s id (i.e., ccx(x) ̸= /0). As a

result, y creates a slot for this node with x’s source clock (i.e., sckx) and y’s destination clock (i.e.,

dcky): x→ (72,97).

The Prepare state starts when Node y returns its state to the client. Upon receiving y’s state,

x checks that there is a slot under its id (i.e., slotsy(x) ̸= /0). Since the source clock in the slot is

equal to sckx, the client moves its tagged elements and causal context entries to a newly created

token. Then the x sends its state back to the server.

The Incorporate step begins when Node y receives x’s state. In this step, the server verifies that

the client has a token matching a slot. By matching, we mean that y is the destination of the token,

and y has a slot whose clocks are equal to the tokens’ and whose key is equal to the origin node

x. Upon this verification, the server incorporates the token elements by merging them as if they

were locally added. In the example, the tagged element (72,1,”B”) became (0,91,”B”). After

incorporating the elements, a translation is created. For simplicity, we will explain translations in

the next subsection (subsection 5.5.1. After this step, the server sends its state back to the client.

The step Translate starts when the client receives the answer from the server. In this step, the

client translates its token and deletes it since the server already incorporated it.

ROSES Protocol 38

sck: 72
cc:
te:
token:

dck: 98
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
slots: {x → (72, 97)}
transl:

sck: 72
cc: {(x,72,1)}
te: {x → {(72, 1, "B")}}
token:

dck: 97
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token:
transl:

sck: 73
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token: {(x,y) → ((72, 97), 1, {(72, 1, "B")})}

dck: 98
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y → {(0, 91, "B")}}
slots:
transl: {((x, 72, 1), (y, 0, 90))}

sck: 73
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y → {(0, 91, "B")}}
token:

add: "B"

dck: 98
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y → {(0, 91, "B")}}
slots:
transl:

Node x,
tier 1

Node y,
tier 0

Figure 5.2: Example of ROSES protocol

5.5.1 Remove and Translations

More than just adding, the client can also remove elements from its state. When removing an

element, we have three possible scenarios:

1. The removed element was at te. Therefore it wasn’t transmitted to the upper layer yet;

2. The element was already moved to the token in the origin node, but it was not sent to the

server yet;

3. The element was already moved to the token, and the server already incorporated it.

The first scenario occurs as it would in a typical AWORSet CRDT. The replica deletes the

element from te while cc remains intact. The server, however, will update its causal context as it

receives the token either way, although it will never add the element to te.

In AWORSet, deletions only modify the set of tagged elements. To support the second case,

we allow the node to remove elements from the token so the user sees its own writes. If "C" was

5.5 Algorithm 39

tokenA = {(A,B) 7→ ((1,5),3,{(1,1, "B"),(1,2, "C"),(1,3, "K")}}
rm("C")

tokenA = {(A,B) 7→ ((1,5),3,{(1,1, "B"),(1,3, "K")}}

Figure 5.3: Remove element from token

present at the token and te, both structures would be modified. Otherwise, without this approach,

the user would delete "C" from te, and upon a fetch, the element would still be in the client’s state.

Figure 5.3 shows an example where element "C" is removed from a token in node A.

To solve the third case, we must deal with the question: how can the server apply modifica-

tions that happened after it incorporates the token? Tokens are exactly-once structures; therefore,

deletions applied to a token must be transmitted to the server in an alternative way, as it’s impos-

sible to incorporate the token more than once. The server ignores it, as we will explain in Section

5.6.

In the Incorporate step, the server adds the token’s elements to its state and creates a transla-

tion, which maps new tags to the previous ones. Each entry in transl has the following tuple format

((i,scki,ni),(j,sck j,n j)). The first tuple element describes tags from the origin node, where the

first entry is the origin node id, and the second and third are the source clock and the counter

attached to the token. The second tuple element has similar information. It holds the id of the

destination node, the source clock, and the counter when the server receives the token.

In Figure 5.4, we have a client node M with three elements in the token and a server N. If

N receives M’s token, the generated translation will be ((M,69,3),(N,0,2)). This translation

represents the range of all tags received in a token.

To better understand what we mean by range, consider the example in Figure 5.5. Node A has

three tagged elements. Then, it creates a token upon receiving a slot sB = (A 7→ (31,50)). The

recently created token stores all elements added to A (except the deleted ones) while its source

clock was 31. As we can see, a token with source clock k stores all elements ever added to the

node when its source clock was k, and only these. Therefore, the first tuple element in a translation

reports that the server received all non-deleted elements generated by the client when its source

clock was scki. It implies that the server added ni entries to its causal context.

In other words, the server node added new entries in the causal context with tags in the range

[n j, ni + n j). This assignment is done in sequence: the tag (scki,0) becomes (sck j,n j), (scki,1)

M ={sck = 70,cc = /0, te = /0,

token = {(M,N) 7→ ((31,50),3,{(69,1, "i"),(69,2, "j"),(69,3, "k")})}}
N ={dck = 7,cc = {(N,0,1),(N,0,2)}, te = {N 7→ {(0,2, "b")}}}

Figure 5.4: Example of state in a node B

ROSES Protocol 40

A ={sck = 31,cc = {(A,1),(A,2),(A,3)},
te = {(31,1, "m"),(31,3, "o")}, token = /0}

A′ ={sck = 32,cc = /0, te = /0,

token = {(A,B) 7→ ((31,50),3,{(31,1, "m"),(31,3, "o")})}}

Figure 5.5: Example of state in a node A

becomes (scki,n j +1) and so on until (scki,ni) becomes (sck j,n j +ni−1). Then when an origin

node receives a translation, it looks for a tuple in transl, which the first entry regards its id. If a

matching tuple is found, the origin node translates the elements in its token and joins it with its

current state, similarly to AWORSet states. Figure 5.6 shows an execution demonstrating the third

case.

The presented solution, however, still needs to be better adapted. Imagine a similar situation:

a client x starts a protocol with a server y that crashes. Before crashing, the server has received the

token from the client, successfully incorporated it, and propagated its elements to another server

z, which merges its current state to y’s. Meanwhile, x deletes an element from the token, and y

crashes. Before y heals, z propagates its state to x. The problem is that z has x’s incorporated

elements but lacks translation. Therefore, when z propagates its state to x, the client will merge

its state to the received one but will not translate the token. The recently removed element, in this

situation, will reappear in the client’s state, which is not consistent and not desired.

In this context, when replicating its state, the destination node also needs to share translations

that might be in the transl structure. However, this mechanism might cause translations to live

forever. For this reason, it was created a mechanism to allow a server to delete the translation

when the client has already translated the target elements. If a server s1 receives a state from

a client and realizes that the client already has the incorporated elements, the server deletes the

translation. Now consider that another server s2, stores the same translation. If s2 receives s1’s

state, it will check that the upcoming state contains the incorporated elements, but s1 does not

store the translation. This means that the translation existed once but was deleted. By induction,

s2 knows that the client has already translated the elements and therefore removes it.

5.5 Algorithm 41

x, tier 1

sck: 72
cc:
te:
token:

dck: 98
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
slots: {x → (72, 97)}
transl:

y, tier 0

rm: "B"

sck: 72
cc: {(x,72,1)}
te: {x → {(72, 1, "B")}}
token:

dck: 97
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token:
transl:

sck: 73
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token: {(x,y) → ((72, 97), 1, {(72, 1, "B")})}

dck: 98
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y → {(0, 91, "B")}}
slots:
transl: {((A, 72, 1), (B, 0, 90))}

sck: 73
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token: {(x,y) → ((72, 97), 1, {})}

dck: 98
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0, 91)}
te: {y → {)}
slots:
transl:

add: "B"

sck: 73
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y→ {}}
token:

Figure 5.6: Third case when removing elements in ROSES

ROSES Protocol 42

dck: 20
cc: {(z,0,1), (z,0,2), ..., (z,0,20)}
te:
token:
transl:

dck: 0
cc: {(z,0,1), ..., (z,0,20),(y,0,1), ...(y,0,91)}
te: {y → {(0, 91, "B")}}
token:
transl:

sck: 70
cc:
te:
token:

dck: 53
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
slots: {x → (70, 52)}
transl:

rm: "B"

sck: 70
cc: {(x,70,1)}
te: {x → {(70, 1, "B")}}
token:

dck: 52
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token:
transl:

sck: 71
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token: {(x,y) → ((70, 52), 1, {(70, 1, "B")})}

dck: 53
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y → {(0, 91, "B")}}
slots:
transl: {((x, 70, 1), (y, 0, 90))}

sck: 71
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token: {(x,y) → ((70,52), 1, {})}

add: "B"

sck: 71
cc: {(z,0,1), ..., (z,0,20),(y,0,1), ...(y,0,91)}
te: {y → {(0, 91, "B")}}
token: {(x,y) → ((70,52), 1, {})}

X

Node x,
tier 1

Node y,
tier 0

Node z,
tier 0

Figure 5.7: Translation in ROSES

5.5.2 Caching

To improve availability, ROSES implements a cache system similar to Handoff Counters. Sup-

pose a node is exchanging messages with a server, but the server stops responding for some reason.

In this situation, the client must wait until the server heals. To avoid this, the client starts a new

protocol with another server, which inherits the responsibility of delivering the data to the fault

server upon its recovery, as Figure 5.8 shows.

5.6 Formalization 43

Node z,
tier 0

dck: 20
cc: {(z,0,1), (z,0,2), ..., (z,0,20)}
te:
token:
transl:

dck: 0
cc: {(z,0,1), ..., (z,0,20),(y,0,1), ...(y,0,91)}
te:
token: {(x,y) → ((42, 73), 1, {(42, 1, "B")})}
transl:

sck: 42
cc:
te:
token:

dck: 74
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
slots: {x → (42, 73)}
transl:

Node y,
tier 0

sck: 42
cc: {(x,42,1)}
te: {x → {(42, 1, "B")}}
token:

dck: 73
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token:
transl:

sck: 43
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token: {(x,y) → ((42, 73), 1, {(42, 1, "B")})}

add: "B"

X

sck: 43
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
token: {(x,y) → ((42, 73), 1, {(42, 1, "B")})}

caching

dck: 74
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90)}
te:
slots: {x → (42, 73)}
transl:

dck: 74
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y→{(0,91,"B")}
slots:
transl: {((x,42,1),(y,0,91))}

sck: 43
cc: {(y,0,1), (y,0,2), ..., (y, 0, 90), (y,0,91)}
te: {y→{(0,91,"B")}
token:

Node x,
tier 1

Figure 5.8: Caching in ROSES

Caching was designed to deal with two situations:

• Upon a server crash, caching allows the clients to go offline for a long time with the insur-

ance that the information will be uploaded to the target server as soon as possible;

• In some systems, clients upload data by operation. Imagine a situation where a client added

an element, but the upload failed because the target server crashed. Without caching, the

client is forced to perform another operation to push the data to the server, which is not

ideal. With caching, this situation is avoided;

5.6 Formalization

In this section, we will dive into the merge function. For the sake of clarity, the functions were

implemented without using improvements in the causal context.

The fillslots is the first function to be called in the merge operation. If C j contains a token that

matches a slot, then it incorporates the elements, adding then to te. The new tags of the elements

will be (scki, N+elem.n), where N is the maximum counter associated with i in its causal context.

After incorporating the elements, the slot is deleted, and a translation is created in transl.

ROSES Protocol 44

fillslots(Ci,C j)
.
=Ci{te = {i 7→ tei(i)∪{(scki,elem.n+N,elem.e) | e ∈ T}},

transl = transli∪{((j,sck,n),(i,scki,N +n)) | (j,sck,n) ∈ tokens j}
cc = cci∪{(i,scki,n+N) ∈ T},
slots = {{src ∈ dom(T)} −◁ slotsi}

where T .
= {((src,dst),((sck,dck),n,elems)) ∈ tokens j |

dst = i∧ src ∈ dom(slotsi)∧slotsi(src) = (sck,dst)},
N .
= {n | ∀(i,scki,n′) ∈ cci | n′ ≤ n}

Figure 5.9: fillslot functon

Since the discardslot function is identical to the one implemented in Handoff Counters, we

are not going through its details.

discardslot(Ci,C j)
.
= if j ∈ dom(slotsi)∧sck j > slotsi(j).sck

then Ci{slots = { j} −◁ slotsi}
else Ci

Figure 5.10: discardslot function

The createslot function is akin to the function used in Handoff Counters. If the received state

comes from a client and the causal context associated with j’s is not empty, then a new slot is

created, and the destination clock of i is incremented.

createslot(Ci,C j)
.
= if tieri < tier j ∧ (j,sck j) ∈ dom(cc j)∧ j ̸∈ slotsi

then Ci{slots = slotsi{ j 7→ (sck j,dcki)},dck = dcki +1}
else Ci

Figure 5.11: createslot function

After the slots, the node must handle translations, which should be done before deleting any

tokens. If tokens are deleted before handling translations, it might not be possible to translate

elements.

Firstly, the node discards translations that node j has already received. This is achieved with a

function discardtransl, where i verifies if the translated elements are at cc j. In case the elements

were already incorporated, then the translation is deleted.

5.6 Formalization 45

discardtransl(Ci,C j)
.
=if tieri < tier j

then Ci{transl = S−◁ transli}
where S .

= {(ts, tt) | (ts, tt) ∈ transli | j = ts.id | tt ̸∈ cc j}

Figure 5.12: discardtransl function

The translate is one the most complex functions. It creates a new detached state Cx, which

contains the elements in the corresponding token, but with the newly assigned tags. Then the node

i joins the new state and the Ci as in AWORSets.

translate(Ci,C j)
.
=if tier j < tieri

then Ci =Cx⊔Ci

where Cx = {te = ∪ f ({(ts, tt, token) | (ts, tt, token) ∈ X}),
cc = ∪c({(ts, tt) | (ts, tt,_) ∈ X}})

X .
= {(ts, tt, token) | (ts, tt) ∈ transl j ∧ token ∈ tokensi |

token.0 = (ts.id, tt.id)∧ token.1.0.sck = ts.sck}
f (ts, tt, token) .

= {(tt.id, tt.n− ts.n+ e.n,e.elem) | e ∈ token.1.2}
c(ts, tt) .

= {(tt.id, tt.sck,n) | n ∈ [tt.n− ts.n+1, tt.n]}

Figure 5.13: translate function

The cachetransl handles the caching of the translations between nodes in tier 0, which is not

explicit in the equation; the only condition is tieri == tier j. Since client nodes can’t communicate

with each other, if a node receives a state from a node in the same tier, it means that both nodes

are in tier 0.

The function follows the flow explained before. In short:

• Common translations belonging to Ci and C j (i.e., transli∩ transl j) are kept;

• If Ci doesn’t have a translation t (i.e., t ̸∈ transli) that C j has (e.g., t ∈ transl j) and j has

already incorporated the elements the translation targets (their tag is at cci), it means that

i deleted the translation. By induction, the target client already translated the elements.

Therefore, i doesn’t add t to its set of translations;

• If a translation t belongs to C j (i.e., t ∈ transl j) and not to Ci (i.e., t ̸∈ transli), while their tags

aren’t in cci, the translation was never received by i as well as the elements the x targets.

This is why this function is called before mergevectors. Translations need to be added

before the elements.

ROSES Protocol 46

cachetransl(Ci,C j)
.
= if tieri == tier j

then Ci{transl ={(transli∩ transl j)∪{(id,sck,n) ∈ transli | (id,sck,n) ̸∈ cc j}}
∪{(id,sck,n) ∈ transl j | (id,sck,n) ̸∈ cci}

Figure 5.14: cachetransl function

Not all elements are added to the node via incorporation. Clients when receiving elements

from a server do not incorporate it, just join the upcoming cc and te using the same strategy of

AWORSets. The very same occurs when nodes from tier 0 share their state with each other. The

only exception is when a client delivers its state to a server. In this case, the server ignores te ele-

ments stored under the client’s id and joins the other elements with its state. This is natural, since

the elements added locally to the client can only be delivered to a server, if these are encapsulated

in a token.

mergevectors(Ci,C j)
.
= if ¬(tieri = 0∧ tier j = 0)∧ tieri ≤ tier j

then (tei,cci)⊔ (S,M)

where S .
= {(id,(sck,n,elem)) | (id,(sck,n,elem)) ∈ te j ∧ id ̸= j}

M .
= {(id,sck,n) | (id,sck,n) ∈ cc j ∧ id ̸= j}

else (tei,cci)⊔ (te j,cc j)

where (s,c)⊔ (s′,c′) =((s∩ s′)∪{(i,sck,n,e) ∈ s | (i,sck,n) ̸∈ c′})
{(i,sck,n,e) ∈ s′ | (i,sck,n) ̸∈ c},c∪ c′)

Figure 5.15: mergevectors function

The discardtokens function discards tokens that cannot be delivered anymore. This is

achieved by comparing the destination clocks of a matching slot if exists, or the one in the node

itself otherwise.

discardtokens(Ci,C j)
.
=Ci{tokens = {(k,v) ∈ tokensi | ¬P(k,v)}}

where P((src,dst),((_,dck),_)) .
= (dst = j) ∧

if src ∈ dom(slots j) then slots j(src).dck > dck

else dck j > dck

Figure 5.16: dicardtokens function

The createtoken function as the name suggests, creates a new token to a node when C j has a

slot with i as key and with the same source clock of i (i.e., scki). In this case, elements are moved

from tei to the token, as well as the ones in cci. Right after that, the node increments its source

clock.

5.6 Formalization 47

createtoken(Ci,C j)
.
=if i ∈ dom(slots j)∧slots j(i).sck = scki

then Ci{tokens = tokensi{(i, j) 7→ (slots j(i),N, te j(i))},
te = {i} −◁ tei,

cc = {(i,scki,_)} −◁ cci,

sck = scki +1}
else Ci

Figure 5.17: createtoken function

We will not go through details about the cachetoken function as it is identical to the one

exposed in Handoff Counters section.

cachetoken(Ci,C j)
.
= if tieri < tier j

then Ci{tokens = ∪ f (t, tokensi)}
else Ci

where t .
= {((src,dst),(ck,n,_)) ∈ tokens j | src = j∧dst ̸= i},

f ((ck,n,elems),(ck′,n′,elems′)) .
= if ck.sck ≥ ck′.sck then (ck,n,elems)

else (ck′,n′,elems′)

Figure 5.18: cachetoken function

Chapter 6

Evaluation

6.1 Tests . 48

6.2 Results . 53

The first section of this chapter discusses the executed tests that give correctness confidence

on ROSES. We could demonstrate correctness by formally proving the protocol. However, formal

proofs are complex and time-demanding, leading us to adopt incremental unit [14] and integration

[23] tests.

The second section discusses the results obtained by comparing ROSES with a typical

AWORSet implementation. We present the difference between the effectiveness of the two ap-

proaches by comparing metrics depicted in graphs. We also show that the ROSES memory con-

sumption depends on the number of servers.

6.1 Tests

We tested the ROSES library using a methodological approach separating tests into two

phases:

1. Unit tests;

2. Integration tests (sequential and non-sequential).

We conducted the first phase while building the library, as it is easier to fix bugs while develop-

ing than after completion. However, unit tests won’t verify if the logic behind the design is correct.

They only inspect if functions portray what was idealized. But what if the design was wrong from

the beginning? How can we find logic errors that we couldn’t catch before? To address these

matters, we created integration tests.

Integration tests check if all functions created for the library work correctly as a unit and

deliver what we expected. In this context, the following integration tests were created:

• test_rnd_1x1_seq

48

6.1 Tests 49

• test_rnd_1x1_noseq

• test_rnd_1xn_seq

• test_rnd_nx1_seq

• test_rnd_nxm_noseq

• test_std_1x1_noseq

• test_std_cache_token

• test_std_transl

The test modules follows a specific nomenclature: test_<type>_<distribution>_[sequence,

feature]:

• type: Each test has a type: random (rnd) or standard (std). Random tests [36] can generate

a random number of add and rm operations over a predefined domain of elements. Every

execution will output different results. Standard tests, on the other hand, contains a prede-

fined set of operations to be executed. If a test is executed more than once, the result should

be the same;

• distribution: Describes the network in a n × m style, where n is the number of clients and

m is the number of servers. For instance, a distribution 1x1 denotes that the tests execute

a network with one client and one server, respectively. Whereas a distribution nx1 has a

network with n clients and 1 servers.

• sequence: Tests might be sequential (seq) or non-sequential (noseq). As described in the

previous chapter, ROSES is a four-handshake protocol. If a replica applies any operation

while a protocol is being executed (i.e., add, rm), we call the protocol "non-sequential."

In this case, the propagation of operations is periodical to random servers. Otherwise, we

consider it sequential; at every new operation, the protocol is initialized, and the user is

prohibited from issuing new operations until the current protocol is over. However, the

client also communicates with random servers;

• feature: Standard test modules do not necessarily have some sequence type. Inside the

same module, there might be sequential and non-sequential tests to test a feature such as

token caching. This field describes what feature is being tested independently of the network

organization.

6.1.1 Sequential tests

Sequential tests are unrealistic as they isolate the system and inhibit parallel operations and

simultaneous protocols. However, they are simple to debug and give us confidence in basic scenar-

ios. Yet, predicting the final output can be troublesome, as each test has a distinct way of verifying

if the system’s final state matches the expected one.

Evaluation 50

Sequential tests have the same default configurations. Each test is executed 100 times, and

in a test, the network can apply the protocol n times, where n ranges from 10 to 20. Each client

cRi issues 0 to 10 random operations (i.e., add or rm) before starting a protocol. Additionally, a

client can propagate its state to any random server, and servers can share states with each other.

In the following paragraphs, we explain how we managed to verify if the final system state is the

expected one for each test.

As the nomenclature suggests, the test_rnd_1x1_seq is a random test module where the net-

work has one client cR and one server sR. For each test, we initialized another two nodes imple-

menting AWORSets (i.e., cA and sA), where cA applies the same operations as cR. Therefore, if

cR adds an element and sends it to the sR, then cA adds the same element and sends its state to the

sA. At the end of the test, we expect that cR,cA,sR, and sR must have the same set of elements

since the operations applied are equivalent.

The test_rnd_1xn_seq module contains a variable number of servers, which is 100 by default.

After n protocol executions, the client stops issuing operations and exchanges its states with every

server until the system converges. Along with this execution, we create a single instance of a node

cA implementing the AWORSet data type. All the operations applied to cR are also applied to

cA. When convergency is achieved, the set of elements in each node, including servers, should be

equal to the set in cA.

The test_rnd_nx1_seq modules have a variable number of clients, which is 100 by default.

The strategy to validate the system’s final state is akin to test_rnd_1xn_seq. After n protocol

operations, clients cRi stop issuing operations and exchange their state with the server sR for

synchronization. In this module, we created an AWORSet node cAi for each client cRi in ROSES

protocol and one server sA. The same operations applied to a node cRi were also applied to its

correspondent cAi, and for every protocol execution between a node cRi and sR, the node cAi

shares its state with sA. At the end of the test, all the nodes in the server should have the same set

of elements of the server implementing AWORSets.

We also implemented test_rnd_nx1_seq with a second form of validation. Instead of synchro-

nizing all the elements after n operations, we compared the states between every pair cRi and cAi

and between the sR and sA. In the end, the corresponding pairs should have the same of elements.

6.1.2 Non-sequential tests

In sequential tests, we would deduce the system’s final state by replicating the issued oper-

ations in a similar network composed of nodes implementing AWORSets. We follow a similar

approach for test_rnd_1x1_noseq. But unfortunately, non-sequential tests in a scenario with m

clients and n servers do not necessarily have a straightforward translation to AWORSets. Since

the ROSES protocol is slower in propagating elements, the final result of the network might differ

from its AWORSet equivalent.

Let’s consider the example shown in Figure 6.1, which depicts a subgroup of nodes in a net-

work. Here, x acts as a client, while z and y are servers. In this example, x adds an element "A"

to its state. However, due to a network partition, x caches its token in z. While y is still waiting

6.1 Tests 51

sck: 10
cc:
te:
token:

dck: 2
cc: {(y,0,1)}
te:
slots: {x → (10, 1)}
transl:

sck: 10
cc: {(x,10,1)}
te: {x → {(10, 1, "A")}}
token:

dck: 1
cc: {(y,0,1)}
te:
token:
transl:

sck: 11
cc: {(x,10,1)}
te:
token: {(x,y) → ((10, 1), 1, {(10, 1, "A")})}

dck: 2
cc: {(y,0,1)}
te:
slots: {x → (10, 1)}
transl:

add: "A"

X

dck: 2
cc: {(y,0,1)}
te:
slots: {x → (10, 1)}
transl:

Node x,
tier 1

Node y,
tier 0

dck: 2
cc: {(z,0,1), (z,0,2)}
te:
slots:
token: {(x,y) → ((10, 1), 1, {(10, 1, "A")})}
transl:

dck: 2
cc: {(z,0,1), (z,0,2)}
te:
token:
transl:

Node z,
tier 0

...

dck: 11
cc: {(y,0,1),, ..., (y,0,13)}
te: {y → {(0, 3, "M"), (0,4,"J")}}
slots: {x → (10, 1)}
transl:

dck: 11
cc: {(y,0,1),, ..., (y,0,13),(y,0,14)}
te: {y → {(0, 3, "M"), (0,4,"J"), (0,14,"A")}}
slots:
transl: {(x,10,1),(y,0,1)}

Figure 6.1: Example of unordered operations

for x’s token, it receives a series of other elements that were issued after "A". Eventually, z finally

receives x’s token and incorporates "A".

If we were to replicate the operations from the example using AWORSets, the element "A"

would have been received by node y before the elements issued by other clients (e.g., "M", "J") that

came after it. In this example, even though y received the elements in a different order, eventually,

it will have the same elements of the AWORSet network. However, if a client attempts to remove

element "A" before y receives it, the result will differ. In the AWORSet network, the element would

already have been received and therefore removed, whereas this does not happen in the ROSES

network.

We could test the network without caching to avoid this phenomenon, but the translation fea-

ture would cause similar behavior. A solution would be keeping track of when the server received

a token and share states in AWORSet networks upon this event. However, there are some disad-

vantages to this approach:

Evaluation 52

• Test correctness: This adaptation would increase the test complexity. At a certain point, it

would be hard to tell if the test is correct. It’s a good practice to keep it simple;

• Test forced fitting: Tests are expected to validate a code output or state. If we modify the

structure AWORSet to verify the output, at which point are we just adapting the test so it

passes?

For the reasons cited, we devised an alternative test strategy. Consider a network with n clients

and m servers with the following rules and variables:

• x is the total number of messages exchanged in the system. Therefore, every time a node

sends its message to another, x is incremented in one;

• k is a constant and pre-defined number:

– If x < k, then the client can make operations of add and rm; (Phase 1)

– If x >= k, then nodes can only make rm operations. Messages exchanges are not

random anymore but are made to achieve convergence as fast as possible; (Phase 2)

• A client can add any elements it wants in a range [0, p], where p is also defined before the

test starts. Thus, if p = 2, the following set of operations is allowed:

{add 0,add 1,add 2, rm 0, rm 1, rm 2}

• Still, a client can have one or no peculiarity. A peculiarity is when a node doesn’t "like" an

element i. Every time a node with a peculiarity i, receives or adds an element i, the element

is removed. When a node x, for instance, with peculiarity 1 receives an element whose

value is 1, x will apply rm 1. A node cannot apply a rm unless it has a peculiarity over the

removed element. Therefore, x can apply rm 1, but not rm 2 as it doesn’t have peculiarity

2;

While the test is in execution, it stores how many times an element was removed and added by

each node. By the end of the test, we want to verify that:

1. One element cannot be removed more times than it was added;

2. In phase 2 all the nodes must reach convergency. Therefore, the final state should be the set

of added elements, less the set peculiar elements. For example, suppose a system applied

the following set of operations {add 1, add 2, add 4, add 10, rm 10}. In that case, we

have the set of added elements is: {1,2,4,10}, and if one element was removed, then the set

of peculiar elements is {10}. Thus, in the final state, each node should have the following

elements: {1,2,4,10} - {10 } = {1,2,4}.

This test builds the module test_rnd_nxm_noseq. It helped us fix bugs in the design logic

and is simpler than adapting a network using AWORSets. This test passes successfully.

6.2 Results 53

Figure 6.2: Mermaid graph flow

6.1.3 Logs

As tests scale (e.g., high number of clients, tests, servers, messages, etc.), debugging and

understanding the source of errors becomes increasingly complex. To address this challenge, we

have developed a log syntax to transform it into a visual representation or replay of the last test

execution through code. While we won’t delve into the implementation details of the log, we aim

to provide an overview of how we have applied these text-to-text transformations.

Within the source code, we have introduced a file containing macros. Each macro can op-

tionally accept parameters and outputs a series of instructions. Each instruction is prefixed with

either "++ " or "– ". Instructions starting with "++ " are used for generating code that can replay

test executions. Following the prefix, these instructions are written in Rust. On the other hand,

instructions beginning with "– " are employed to create a visual representation of the most recent

test execution. Although we utilize text-to-text transformation, these instructions include diagram

syntax suitable for rendering with tools like Mermaid [37].

We can easily generate the log and select instructions prefixed with "– " to produce a graph

depicting the test flow by utilizing a Makefile. Conversely, we can choose instructions prefixed

with "++ " to generate executable code for reproducing the test execution. Figure 6.2 shows a

subsection of a Mermaid Graph Flow using the logs.

6.2 Results

We have conducted a controlled analysis to verify ROSES performance against AWORSet by

comparing their memory consumption in bytes. Additionally, we developed a simulator using

Rust programming language. The source code with the simulator and with an implementation of

Evaluation 54

ROSES can be found at https://github.com/Jumaruba/ROSES-protocol. The network simulations

have a diversified number of clients c= {16,64,256} and servers s= {4,16}. By taking the Carte-

sian Product [33] of s× c, we obtained the set of network configurations used in each scenario:

{4× 16, 4× 64, 4× 256, 16× 16, 16× 64, 16× 256}. In each simulation time unit, nodes can

add or remove up to 10 random elements within a predefined range. After transmitting its state to

a destination node, the origin node has the possibility of receiving an answer right away.

Figures 6.3 and 6.5 depict the graphical analysis for network scenarios with 16 and 64 clients,

respectively. We calculated the mean of the space occupied by each node and divided it by the

number of simulations executed. After time unit 20, the nodes stop generating new operations and

only share their states with other nodes.

All the graphs have similar behavior regarding AWORSets. From time units 0 to 20, the curve

initially ascends rapidly and reaches a "constant." We say "constant" as it increases gradually

because the causal context never diminishes. But since the probability of removing and adding

operations are similar, the curve becomes flat. After time unit 20, the simulation seizes emitting

operations, and the network strives to achieve consistency. Consequently, elements added in other

clients will be replicated in other nodes without being potentially removed. This causes the curve

to ascend for a brief period before stabilizing.

ROSES graph curve presents similar behavior. From time units 0 to 20, its curve increases,

although slowly, and then reaches an "equilibrium." But after this mark, memory consumption

diminishes. This is expected since structures such as tokens and translations start to be discarded.

Figures 6.3a and 6.3b show two graphs with 16 clients and a variable number of servers, 4 and

16. By comparing the two graphs, we can see that increasing the number of servers affects not

only the AWORSets curve but also ROSES’. Figures 6.4a and 6.4a show similar behavior.

However, if we compare Figures 6.3a with 6.4a, and 6.3b with 6.4a, we can see that adding

more clients and maintaining the number of servers significantly changes the memory consump-

tion in AWORSets. Still, ROSES’ memory consumption remains almost the same. This shows

that in ROSES, the memory consumption depends on the number of servers and not clients.

6.2 Results 55

0 5 10 15 20 25 30
Time units

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

M
em

or
y

in
 b

yt
es

Memory usage over time
ROSES
AWORSET

(a) Simulation with 4 servers and 16 clients (4x16)

0 5 10 15 20 25 30
Time units

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

M
em

or
y

in
 b

yt
es

Memory usage over time
ROSES
AWORSET

(b) Simulation with 16 servers and 16 clients (16x16)

Figure 6.3: Simulations with 16 clients

Evaluation 56

0 5 10 15 20 25 30
Time units

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000
11500

M
em

or
y

in
 b

yt
es

Memory usage over time
ROSES
AWORSET

(a) Simulation with 4 servers and 64 clients (4x16)

0 5 10 15 20 25 30
Time units

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000
11500

M
em

or
y

in
 b

yt
es

Memory usage over time
ROSES
AWORSET

(b) Simulation with 16 servers and 64 clients (16x64)

Figure 6.4: Simulations with 64 clients

6.2 Results 57

0 5 10 15 20 25 30
Time units

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
32000
34000

M
em

or
y

in
 b

yt
es

Memory usage over time
ROSES
AWORSET

(a) Simulation with 4 servers and 256 clients (4x256)

0 5 10 15 20 25 30
Time units

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000
24000
26000
28000
30000
32000
34000

M
em

or
y

in
 b

yt
es

Memory usage over time
ROSES
AWORSET

(b) Simulation with 16 servers and 256 clients (16x64)

Figure 6.5: Simulations with 64 clients

Chapter 7

Conclusion

Distributed systems don’t have a single server to store all relevant information. Instead, data is

spread across the network and can be written to one node, and then replicated to others. However,

this design doesn’t simultaneously provide high consistency, availability, and partition tolerance

(CAP theorem).

CRDTs are distributed data structures suitable for systems that require high availability by

momentarily abdicating consistency. It can synchronize without requiring expensive consensus

protocols and easily solve conflicts between replicas by storing a copy of each node’s state locally.

Although highly available, CRDTs don’t scale well in large networks.

When replicating other nodes’ states, the space complexity grows proportionally with the num-

ber of replicas in the network. Then, large networks must count with high storage capacity nodes.

However, P2P networks are likely heterogeneous; some replicas have more computer power and

storage than others. Therefore, scalability is restricted to the computer power of replicas, which

might be out of reach.

As discussed in the State of the Art, some solutions, such as Handoff Counters and

TopoloTrees, were created to solve this issue. Most base strategies rely on reshaping the network

topology to simplify the state. However, the solutions are limited to counter CRDTs.

In this dissertation, we presented the ROSES protocol. It leverages the structure devised by

Handoff Counters and adapts it to suit registers and set-based CRDTs, although we only imple-

mented it for AWORSets. The main contribution of ROSES is implementing a translation mech-

anism to allow the renaming of deleted elements, which also improves availability. After tests,

we verified that the system improves the space complexity of nodes in the system, making this

structure eligible for use in machines that lack computational space.

Nevertheless, ROSES have vast potential for improvements. ROSES work with a two-layer

topology, encompassing just a small set of modern systems. The most significant refinement would

be increasing the number of layers the protocol can work. Other minor improvements could be

made, such as diminishing the token’s size. Still, ROSES provide a solid start to building more

robust protocols supporting set and register-based CRDTs.

58

References

[1] Balancing Strong and Eventual Consistency with Datastore.
https://cloud.google.com/datastore/docs/articles/balancing-strong-and-eventual-
consistency-with-google-cloud-datastore/#strong-consistency-on-reading-entity-values-
and-indexes. Accessed: 2023-02-03.

[2] Conclave - A private and secure real-time collaborative text editor. https://conclave-
team.github.io/conclave-site/. Accessed: 2023-02-02.

[3] How league of legends scaled chat to 70 million players - It Takes Lots Of Min-
ions. http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-
million-players-it-t.html. Accessed: 2023-02-02.

[4] Key lessons learned from transition to nosql at an online gambling website.
https://www.infoq.com/articles/key-lessons-learned-from-transition-to-nosql/. Accessed:
2023-02-02.

[5] Low Latency Underpins Carrierś Ability to Compete & Succeed in Vertical Mar-
kets. https://carrier.huawei.com/en/technical-topics/fixed-network/low-latency-underpins.
Accessed: 2023-02-02.

[6] Reading Group. Conflict-free Replicated Data Types | Aleksey Charapko.
http://charap.co/reading-group-conflict-free-replicated-data-types/. Accessed: 2022-12-27.

[7] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data types.
Journal of Parallel and Distributed Computing, 111:162–173, jan 2018.

[8] Paulo Sérgio Almeida and Carlos Baquero. Scalable eventually consistent counters over
unreliable networks. Distributed Computing, 32(1):69–89, February 2019.

[9] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient State-based CRDTs by
Delta-Mutation.

[10] H. A. Priestley B. A. Davey. Introduction to Lattices and Order, Second Edition. Cambridge
University Press, 2 edition, 2002.

[11] Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, extensions, and beyond.
Communications of the ACM, 56(5):55–63, May 2013.

[12] K. A. Baker, P. C. Fishburn, and F. S. Roberts. Partial orders of dimension 2. Networks,
2(1):11–28, 1972.

59

REFERENCES 60

[13] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-based crdts
operation-based. In Proceedings of the First Workshop on Principles and Practice of Even-
tual Consistency, PaPEC ’14, New York, NY, USA, 2014. Association for Computing Ma-
chinery.

[14] Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

[15] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: specification, verification, optimality. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 271–284, San Diego
California USA, January 2014. ACM.

[16] Eric Burgener. Meeting the High Availability Requirements in Digitally Transformed Enter-
prises. 2022.

[17] Joe Celko. Chapter 1 - nosql and transaction processing. In Joe Celko, editor, Joe Celko’s
Complete Guide to NoSQL, pages 1–14. Morgan Kaufmann, Boston, 2014.

[18] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making
gnutella-like p2p systems scalable. In Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM ’03,
pages 407–418, New York, NY, USA, 2003. Association for Computing Machinery.

[19] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker. Making
gnutella-like p2p systems scalable. In Proceedings of the 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’03,
page 407–418, New York, NY, USA, 2003. Association for Computing Machinery.

[20] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: Amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, oct 2007.

[21] Vitor Enes, Paulo Sergio Almeida, Carlos Baquero, and Joao Leitao. Efficient Synchroniza-
tion of State-Based CRDTs. In 2019 IEEE 35th International Conference on Data Engineer-
ing (ICDE), Macao, Macao, April 2019. IEEE.

[22] Dietrich Featherston. Cassandra: Principles and application. 2010.

[23] Martin Fowler and James Shore. Continuous integration: improving software quality and
reducing risk. Addison-Wesley Professional, 2012.

[24] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News, 33(2):51–59, jun 2002.

[25] Joseph Ingeno. Software Architect’s Handbook. Packt Publishing, August 2018.

[26] Keith W. Ross Jian Liang, Rakesh Kumar. Measurements and understanding of the kazaa
p2p network. In Current Trends in High Performance Computing and Its Applications, pages
425–429, Berlin, Heidelberg, 2005.

[27] Martin Kleppmann. CRDT Glossary • Conflict-free Replicated Data Types.
https://crdt.tech/glossary. Accessed: 2022-12-28.

REFERENCES 61

[28] Martin Kleppmann. A Critique of the CAP Theorem, September 2015. arXiv:1509.05393
[cs].

[29] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured storage sys-
tem. SIGOPS Oper. Syst. Rev., 44(2):35–40, apr 2010.

[30] Mohsen Mosleh, Kia Dalili, and Babak Heydari. Distributed or Monolithic? A Compu-
tational Architecture Decision Framework. IEEE Systems Journal, 12(1):125–136, March
2018. arXiv:1608.00944 [cs].

[31] Conor Power, Shadaj Laddad, Chris Douglas, Joseph Hellerstein, and Dan Suciu. Topolotree:
From o(n) to o(1) crdt memory consumption via aggregation tree gossip topologies. Rome,
Italy, May 2023.

[32] Nuno Preguiça. Conflict-free replicated data types: An overview. CoRR, June 2018.

[33] Catherine M. Ricardo. Relational database systems. In Hossein Bidgoli, editor, Encyclopedia
of Information Systems, pages 661–680. Elsevier, New York, 2003.

[34] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42–81,
2005.

[35] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-Free Repli-
cated Data Types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, Stabilization,
Safety, and Security of Distributed Systems, Lecture Notes in Computer Science, pages 386–
400. Springer, 2011.

[36] John Smith. Random tests: A comprehensive analysis. Journal of Software Engineering,
15(3):123–145, 2023.

[37] Knut Sveidqvist and Sidharth Vinod. Github: Mermaid. https://github.com/mermaid-
js/mermaid. Accessed: 2023-06-23.

[38] Bartosz Sypytkowski. Optimizing state-based CRDTs (part 2), August 2018.

[39] Maarten van Tanenbaum, Andrew S;Steen. Distributed systems: principles and paradigms.
Always learning;Pearson custom library. Pearson, 2nd ed., new international ed edition,
2013;2014.

[40] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 General Goals
	1.5 Document Structure

	2 Background
	2.1 An overview about consistency
	2.1.1 Strong Consistency
	2.1.2 Eventual Consistency
	2.1.3 Causal Consistency

	2.2 CAP Theorem and SEC
	2.2.1 CAP theorem
	2.2.2 SEC

	2.3 Join-semilattice
	2.4 State-Based CRDTs
	2.4.1 Grow-Only Counter
	2.4.2 Discussion

	2.5 Delta-State CRDTs
	2.5.1 Dots
	2.5.2 State-Based Add-Wins OR-Set
	2.5.3 Delta-Based Add-Wins OR-Set
	2.5.4 Causal Consistent Anti-Entropy Algorithm
	2.5.5 Discussion

	2.6 Summary

	3 Problem Statement
	3.1 Open problems
	3.2 Main Hypothesis
	3.3 Research Questions
	3.4 Development methodology
	3.5 Summary

	4 State of the Art
	4.1 Methodology
	4.1.1 Database
	4.1.2 Queries

	4.2 KaZaA
	4.2.1 Topology
	4.2.2 Operations
	4.2.3 Discussion

	4.3 Handoff Counters
	4.3.1 Distributed Algorithms
	4.3.2 Handoff Counter Data Type
	4.3.3 Notation
	4.3.4 Operations
	4.3.5 Merge operation
	4.3.6 Discussion

	4.4 Topolotrees
	4.4.1 Algorithm
	4.4.2 Discussion

	5 ROSES Protocol
	5.1 System Model
	5.2 Notation
	5.3 State
	5.4 Operations
	5.5 Algorithm
	5.5.1 Remove and Translations
	5.5.2 Caching

	5.6 Formalization

	6 Evaluation
	6.1 Tests
	6.1.1 Sequential tests
	6.1.2 Non-sequential tests
	6.1.3 Logs

	6.2 Results

	7 Conclusion
	References

