448 research outputs found

    Coupled Depth Learning

    Full text link
    In this paper we propose a method for estimating depth from a single image using a coarse to fine approach. We argue that modeling the fine depth details is easier after a coarse depth map has been computed. We express a global (coarse) depth map of an image as a linear combination of a depth basis learned from training examples. The depth basis captures spatial and statistical regularities and reduces the problem of global depth estimation to the task of predicting the input-specific coefficients in the linear combination. This is formulated as a regression problem from a holistic representation of the image. Crucially, the depth basis and the regression function are {\bf coupled} and jointly optimized by our learning scheme. We demonstrate that this results in a significant improvement in accuracy compared to direct regression of depth pixel values or approaches learning the depth basis disjointly from the regression function. The global depth estimate is then used as a guidance by a local refinement method that introduces depth details that were not captured at the global level. Experiments on the NYUv2 and KITTI datasets show that our method outperforms the existing state-of-the-art at a considerably lower computational cost for both training and testing.Comment: 10 pages, 3 Figures, 4 Tables with quantitative evaluation

    Real-time content-aware video retargeting on the Android platform for tunnel vision assistance

    Get PDF
    As mobile devices continue to rise in popularity, advances in overall mobile device processing power lead to further expansion of their capabilities. This, coupled with the fact that many people suffer from low vision, leaves substantial room for advancing mobile development for low vision assistance. Computer vision is capable of assisting and accommodating individuals with blind spots or tunnel vision by extracting the necessary information and presenting it to the user in a manner they are able to visualize. Such a system would enable individuals with low vision to function with greater ease. Additionally, offering assistance on a mobile platform allows greater access. The objective of this thesis is to develop a computer vision application for low vision assistance on the Android mobile device platform. Specifically, the goal of the application is to reduce the effects tunnel vision inflicts on individuals. This is accomplished by providing an in-depth real-time video retargeting model that builds upon previous works and applications. Seam carving is a content-aware retargeting operator which defines 8-connected paths, or seams, of pixels. The optimality of these seams is based on a specific energy function. Discrete removal of these seams permits changes in the aspect ratio while simultaneously preserving important regions. The video retargeting model incorporates spatial and temporal considerations to provide effective image and video retargeting. Data reduction techniques are utilized in order to generate an efficient model. Additionally, a minimalistic multi-operator approach is constructed to diminish the disadvantages experienced by individual operators. In the event automated techniques fail, interactive options are provided that allow for user intervention. Evaluation of the application and its video retargeting model is based on its comparison to existing standard algorithms and its ability to extend itself to real-time. Performance metrics are obtained for both PC environments and mobile device platforms for comparison

    Obstruction level detection of sewers videos using convolutional neural networks

    Get PDF
    Worldwide, sewer networks are designed to transport wastewater to a centralized treatment plant to be treated and returned to the environment. This is a critical process for preventing waterborne illnesses, providing safe drinking water and enhancing general sanitation in society. To keep a perfectly operational sewer network several inspections are manually performed by a Closed-Circuit Television system to report the obstruction level which may trigger a cleaning operative. In this work, we design a methodology to train a Convolutional Neural Network (CNN) for identifying the level of obstruction in pipes. We gathered a database of videos to generate useful frames to fed into the model. Our resulting classifier obtains deployment ready performances. To validate the consistency of the approach and its industrial applicability, we integrate the Layer-wise Relevance Propagation (LPR) algorithm, which endows a further understanding of the neural network behavior. The proposed system provides higher speed, accuracy, and consistency in the sewer process examination.This work is partially supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT), Estudiante No. CVU: 630716, by the RIS3CAT Utilities 4.0 SENIX project (COMRDI16-1-0055), cofounded by the European Regional Development Fund (FEDER) under the FEDER Catalonia Operative Programme 2014- 2020. It is also partially supported by the Spanish Government through Programa Severo Ochoa (SEV2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, and by the Generalitat de Catalunya (contracts 2017-SGR-1414).Peer ReviewedPostprint (published version

    Stereoscopic Seam Carving With Temporal Consistency

    Full text link
    In this paper, we present a novel technique for seam carving of stereoscopic video. It removes seams of pixels in areas that are most likely not noticed by the viewer. When applying seam carving to stereoscopic video rather than monoscopic still images, new challenges arise. The detected seams must be consistent between the left and the right view, so that no depth information is destroyed. When removing seams in two consecutive frames, temporal consistency between the removed seams must be established to avoid flicker in the resulting video. By making certain assumptions, the available depth information can be harnessed to improve the quality achieved by seam carving. Assuming that closer pixels are more important, the algorithm can focus on removing distant pixels first. Furthermore, we assume that coherent pixels belonging to the same object have similar depth. By avoiding to cut through edges in the depth map, we can thus avoid cutting through object boundaries

    Adaptation of Images and Videos for Different Screen Sizes

    Full text link
    With the increasing popularity of smartphones and similar mobile devices, the demand for media to consume on the go rises. As most images and videos today are captured with HD or even higher resolutions, there is a need to adapt them in a content-aware fashion before they can be watched comfortably on screens with small sizes and varying aspect ratios. This process is called retargeting. Most distortions during this process are caused by a change of the aspect ratio. Thus, retargeting mainly focuses on adapting the aspect ratio of a video while the rest can be scaled uniformly. The main objective of this dissertation is to contribute to the modern image and video retargeting, especially regarding the potential of the seam carving operator. There are still unsolved problems in this research field that should be addressed in order to improve the quality of the results or speed up the performance of the retargeting process. This dissertation presents novel algorithms that are able to retarget images, videos and stereoscopic videos while dealing with problems like the preservation of straight lines or the reduction of the required memory space and computation time. Additionally, a GPU implementation is used to achieve the retargeting of videos in real-time. Furthermore, an enhancement of face detection is presented which is able to distinguish between faces that are important for the retargeting and faces that are not. Results show that the developed techniques are suitable for the desired scenarios
    corecore