843 research outputs found

    Architectural Considerations for a Self-Configuring Routing Scheme for Spontaneous Networks

    Get PDF
    Decoupling the permanent identifier of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. A group of proposals that have adopted such an approach use the same structure to: address nodes, perform routing, and implement location service. In this way, the consistency of the routing protocol relies on the coherent sharing of the addressing space among all nodes in the network. Such proposals use a logical tree-like structure where routes in this space correspond to routes in the physical level. The advantage of tree-like spaces is that it allows for simple address assignment and management. Nevertheless, it has low route selection flexibility, which results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of paths using incomplete hypercubes. The design of more complex structures, like multi-dimensional Cartesian spaces, improves the resilience and routing performance due to the flexibility in route selection. We present a framework for using hypercubes to implement indirect routing. This framework allows to give a solution adapted to the dynamics of the network, providing a proactive and reactive routing protocols, our major contributions. We show that, contrary to traditional approaches, our proposal supports more dynamic networks and is more robust to node failures

    DHT-based functionalities using hypercubes

    Get PDF
    Decoupling the permanent identifi er of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. Existing solutions use a logical tree-like structure that, although allowing for simple address assignment and management, lead to low route selection flexibility. This clearly results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of candidate paths by using incomplete hypercubes. We will see that this solution can cover a wide range of applications by adapting to the dynamics of the network1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    DHT-based functionalities using hypercubes

    Get PDF
    Decoupling the permanent identifi er of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. Existing solutions use a logical tree-like structure that, although allowing for simple address assignment and management, lead to low route selection flexibility. This clearly results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of candidate paths by using incomplete hypercubes. We will see that this solution can cover a wide range of applications by adapting to the dynamics of the network1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI

    Weaving quantum optical frequency combs into continuous-variable hypercubic cluster states

    Get PDF
    Cluster states with higher-dimensional lattices that cannot be physically embedded in three-dimensional space have important theoretical interest in quantum computation and quantum simulation of topologically ordered condensed-matter systems. We present a simple, scalable, top-down method of entangling the quantum optical frequency comb into hypercubic-lattice continuous-variable cluster states of a size of about 10^4 quantum field modes, using existing technology. A hypercubic lattice of dimension D (linear, square, cubic, hypercubic, etc.) requires but D optical parametric oscillators with bichromatic pumps whose frequency splittings alone determine the lattice dimensionality and the number of copies of the state.Comment: 8 pages, 5 figures, submitted for publicatio

    Inference of Ancestral Recombination Graphs through Topological Data Analysis

    Get PDF
    The recent explosion of genomic data has underscored the need for interpretable and comprehensive analyses that can capture complex phylogenetic relationships within and across species. Recombination, reassortment and horizontal gene transfer constitute examples of pervasive biological phenomena that cannot be captured by tree-like representations. Starting from hundreds of genomes, we are interested in the reconstruction of potential evolutionary histories leading to the observed data. Ancestral recombination graphs represent potential histories that explicitly accommodate recombination and mutation events across orthologous genomes. However, they are computationally costly to reconstruct, usually being infeasible for more than few tens of genomes. Recently, Topological Data Analysis (TDA) methods have been proposed as robust and scalable methods that can capture the genetic scale and frequency of recombination. We build upon previous TDA developments for detecting and quantifying recombination, and present a novel framework that can be applied to hundreds of genomes and can be interpreted in terms of minimal histories of mutation and recombination events, quantifying the scales and identifying the genomic locations of recombinations. We implement this framework in a software package, called TARGet, and apply it to several examples, including small migration between different populations, human recombination, and horizontal evolution in finches inhabiting the Gal\'apagos Islands.Comment: 33 pages, 12 figures. The accompanying software, instructions and example files used in the manuscript can be obtained from https://github.com/RabadanLab/TARGe

    Complex queries over decentralised systems for geodata retrieval

    Get PDF
    none4sìDecentralised systems have been proved to be quite effective to allow for trusted and accountable data sharing, without the need to resort to a centralised party that collects all the information. While complete decentralisation provides important advantages in terms of data sovereignty, absence of bottlenecks and reliability, it also adds some issues concerned with efficient data lookup and the possibility to implement complex queries without reintroducing centralised components. In this paper, we describe a system that copes with these issues, thanks to a multi-layer lookup scheme based on Distributed Hash Tables that allows for multiple keyword-based searches. The service of peer nodes participating in this discovery service is controlled and rewarded for their contribution. Moreover, the governance of this process is completely automated through the use of smart contracts, thus building a Decentralised Autonomous Organization (DAO). Finally, we present a use case where road hazards are collected in order to test the goodness of our system for geodata retrieval. Then, we show results from a performance evaluation that confirm the viability of the proposal. © 2022 The Authors. IET Networks published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. openZichichi, Mirko; Serena, Luca; Ferretti, Stefano; D'Angelo, GabrieleZichichi, Mirko; Serena, Luca; Ferretti, Stefano; D'Angelo, Gabriel

    High Performance Network Evaluation and Testing

    Get PDF

    Advances in Bosonic Quantum Error Correction with Gottesman-Kitaev-Preskill Codes: Theory, Engineering and Applications

    Full text link
    Encoding quantum information into a set of harmonic oscillators is considered a hardware efficient approach to mitigate noise for reliable quantum information processing. Various codes have been proposed to encode a qubit into an oscillator -- including cat codes, binomial codes and Gottesman-Kitaev-Preskill (GKP) codes. These bosonic codes are among the first to reach a break-even point for quantum error correction. Furthermore, GKP states not only enable close-to-optimal quantum communication rates in bosonic channels, but also allow for error correction of an oscillator into many oscillators. This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes, with emphasis on recent experimental progress in superconducting circuit architectures and theoretical progress in multimode GKP qubit codes and oscillators-to-oscillators (O2O) codes. We begin with a preliminary continuous-variable formalism needed for bosonic codes. We then proceed to the quantum engineering involved to physically realize GKP states. We take a deep dive into GKP stabilization and preparation in superconducting architectures and examine proposals for realizing GKP states in the optical domain (along with a concise review of GKP realization in trapped-ion platforms). Finally, we present multimode GKP qubits and GKP-O2O codes, examine code performance and discuss applications of GKP codes in quantum information processing tasks such as computing, communication, and sensing.Comment: 77+5 pages, 31 figures. Minor bugs fixed in v2. comments are welcome
    • …
    corecore