103 research outputs found

    Pervasive Data Access in Wireless and Mobile Computing Environments

    Get PDF
    The rapid advance of wireless and portable computing technology has brought a lot of research interests and momentum to the area of mobile computing. One of the research focus is on pervasive data access. with wireless connections, users can access information at any place at any time. However, various constraints such as limited client capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues. In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data access. A number of interesting research results were reported in the literature. This survey paper reviews important works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data access techniques aiming at various application requirements (such as time, location, semantics and reliability) are covered

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    Research in Mobile Database Query Optimization and Processing

    Get PDF

    Dynamic data consistency maintenance in peer-to-peer caching system

    Get PDF
    Master'sMASTER OF SCIENC

    Cooperative Caching in Vehicular Networks - Distributed Cache Invalidation Using Information Freshness

    Get PDF
    Recent advances in vehicular communications has led to significant opportunities to deploy variety of applications and services improving road safety and traffic efficiency to road users. In regard to traffic management services in distributed vehicular networks, this thesis work evaluates managing storage at vehicles efficiently as cache for moderate cellular transmission costs while still achieving correct routing decision. Road status information was disseminated to oncoming traffic in the form of cellular notifications using a reporting mechanism. High transmission costs due to redundant notifications published by all vehicles following a basic reporting mechanism: Default-approach was overcome by implementing caching at every vehicle. A cooperative based reporting mechanism utilizing cache: Cooperative-approach, was proposed to notify road status while avoiding redundant notifications. In order to account those significantly relevant vehicles for decision-making process which did not actually publish, correspondingly virtual cache entries were implemented. To incorporate the real-world scenario of varying vehicular rate observed on any road, virtual cache entries based on varying vehicular rate was modeled as Adaptive Cache Management mechanism. The combinations of proposed mechanisms were evaluated for cellular transmission costs and accuracy achieved for making correct routing decision. Simulation case studies comprising varying vehicular densities and different false detection rates were conducted to demonstrate the performance of these mechanisms. Additionally, the proposed mechanisms were evaluated in different decision-making algorithms for both information freshness in changing road conditions and for robustness despite false detections. The simulation results demonstrated that the combination of proposed mechanisms was capable of achieving realistic information accuracy enough to make correct routing decision despite false readings while keeping network costs significantly low. Furthermore, using QoI-based decision algorithm in high density vehicular networks, fast adaptability to frequently changing road conditions as well as quick recovery from false notifications by invalidating them with correct notifications were indicated

    Improving Data Delivery in Wide Area and Mobile Environments

    Get PDF
    The popularity of the Internet has dramatically increased the diversity of clients and applications that access data across wide area networks and mobile environments. Data delivery in these environments presents several challenges. First, applications often have diverse requirements with respect to the latency of their requests and recency of data. Traditional data delivery architectures do not provide interfaces to express these requirements. Second, it is difficult to accurately estimate when objects are updated. Existing solutions either require servers to notify clients (push-based), which adds overhead at servers and may not scale, or require clients to contact servers (pull-based), which rely on estimates that are often inaccurate in practice. Third, cache managers need a flexible and scalable way to determine if an object in the cache meets a client's latency and recency preferences. Finally, mobile clients who access data on wireless networks share limited wireless bandwidth and typically have different QoS requirements for different applications. In this dissertation we address these challenges using two complementary techniques, client profiles and server cooperation. Client profiles are a set of parameters that enable clients to communicate application-specific latency and recency preferences to caches and wireless base stations. Profiles are used by cache managers to determine whether to deliver a cached object to the client or to validate the object at a remote server, and for scheduling data delivery to mobile clients. Server cooperation enables servers to provide resource information to cache managers, which enables cache managers to estimate the recency of cached objects. The main contributions of this dissertation are as follows: First, we present a flexible and scalable architecture to support client profiles that is straightforward to implement at a cache. wireless base station. Second, we present techniques to improve estimates of the recency of cached objects using server cooperation by increasing the amount of information servers provide to caches. Third, for mobile clients, we present a framework for incorporating profiles into the cache utilization, downloading, and scheduling decisions at a We evaluate client profiles and server cooperation using synthetic and trace data. Finally, we present an implementation of profiles and experimental results

    Cloud Computing Strategies for Enhancing Smart Grid Performance in Developing Countries

    Get PDF
    In developing countries, the awareness and development of Smart Grids are in the introductory stage and the full realisation needs more time and effort. Besides, the partially introduced Smart Grids are inefficient, unreliable, and environmentally unfriendly. As the global economy crucially depends on energy sustainability, there is a requirement to revamp the existing energy systems. Hence, this research work aims at cost-effective optimisation and communication strategies for enhancing Smart Grid performance on Cloud platforms
    corecore