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Pervasive data access in wireless and mobile computing
environments
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Summary

The rapid advance of wireless and portable computing technology has brought a lot of research interests and
momentum to the area of mobile computing. One of the research focus is on pervasive data access. With wireless
connections, users can access information at any place at any time. However, various constraints such as limited client
capability, limited bandwidth, weak connectivity, and client mobility impose many challenging technical issues.
In the past years, tremendous research efforts have been put forth to address the issues related to pervasive data
access. A number of interesting research results were reported in the literature. This survey paper reviews important
works in two important dimensions of pervasive data access: data broadcast and client caching. In addition, data
access techniques aiming at various application requirements (such as time, location, semantics and reliability) are
covered. Copyright © 2006 John Wiley & Sons, Ltd.

KEY WORDS: pervasive data access; wireless and mobile computing; broadcast; caching

1. Introduction

The advance of wireless communication and portable
computing technologies has sparked a lot of research in
the area of pervasive and mobile computing in the last
decade. One of the primary goals in these research is to
facilitate pervasive data access, that is, to allow users
to efficiently access data at any place at any time. This
unrestricted mode of data access, via mobile computers
or devices (e.g., mobile phone, palmtops, laptops, and

*Correspondence to: Wang-Chien Lee, Department of Computer Science and Engineering, 342 IST Building, Pennsylvania
State University, University Park, PA 16802, U.S.A.
†E-mail: wlee@cse.psu.edu

Contract/grant sponsor: US National Science Foundation (K.C.K.L.; W.C.L.); contract/grant number: IIS-0328881.
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PDA), fosters a new class of mobile applications such
as just-in-time stock trading, news services, and mobile
games. A tremendous research effort from academia
and industry has been put forth to support these new
applications.

While technology has been rapidly advancing, vari-
ous constraints inherited from limitations of wireless
communication and mobile devices remain primary
challenges in design and implementation of mobile
systems and applications. These constraints include:

Copyright © 2006 John Wiley & Sons, Ltd.



26 K. C. K. LEE, W.-C. LEE AND S. MADRIA

� Limited Client Capability. Mobile clients have very
limited resources. They are typically powered by
short-lived batteries. Efficient energy utilization (by
smartly turning on/off hardware parts) can prolong
client lifetime.

� Limited Bandwidth. Wireless bandwidth is a scarce
resource which needs to be properly allocated in
order to maximize various service needs.

� Weak Connectivity. Wireless communication is
error-prone. Client disconnections occur frequently,
which may be intentional (e.g., to save battery power)
or unintentional (e.g., due to signal interference).

� User Mobility. In mobile computing environments,
users are free to move. User mobility fosters location-
dependent applications which may request data in
accordance with the current positions of users.

These constraints make pervasive data access in
wireless and mobile computing environments uniquely
different from data access in a conventional wired
server/client environment. Wireless data broadcast has
been broadly used to address the issues of limited
client resources and wireless bandwidth, while mobile
client caching techniques are typically used to handle
the problems resulted from user mobility and weak
connectivity. Thus, in this paper, research results
obtained in these two dimensions of pervasive data
access are reviewed. In addition, this survey is extended
to cover pervasive data access techniques tailored for
various application requirements, in terms of time,
location, data semantics, and reliability.

The remainder of this paper is organized as follows.
Section 2 outlines a general architecture for pervasive
data access, based upon which various techniques are
developed. Section 3 and Section 4 survey the wireless
data broadcast and mobile client caching techniques.
Section 5 reviews a number of pervasive data access
techniques tailored for some important application
requirements. Finally, Section 6 concludes the paper.

2. Pervasive Data Access Architecture

Today, there are many wireless technologies (e.g.,
Bluetooth, IEEE 802.11, UMTS, Satellite, etc.) that
could be integrated to construct a seamless, pervasive
data access platform. Although their goals and
applications are very different, data access via these
wireless technologies can be logically captured by a
basic model which consists of an access point (i.e.,
cellular base station or satellite) and a number of
wireless channels. A general architecture is shown in
Figure 1. A mobile device can be served by a base
station (which supports bi-directional communication)
or covered by a satellite (which only supports uni-
directional data transmission). All access points and
servers are connected to a fast internet backbone.
Under this architecture, a base station serves as a
gateway between mobile clients and remote servers.
On the other hand, a wireless cell can be viewed as a
simple client/server environment where a base station
functions as a local server disseminating information
to clients inside the cell. The servers in this architecture

Fig. 1. Pervasive data access architecture.
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DATA ACCESS IN WMC ENVIRONMENTS 27

are information providers while mobile clients are
customers. Without loss of generality, all updates are
performed at the servers.

Typically, the internet backbone is a fast link
with data rate in an order of tens of Mbps up
to Gbps. Deployed by wireless carriers, modern
cellular networks can be based on GPRS [1] and
3G [2] technology. For a single point-to-point access,
GPRS can support bandwidth up to 172.2 kbps. The
bandwidth of 3G networks can reach 384 kbps for slow
moving clients and up to 2 Mbps for stationary clients.
Provided by private sectors, Wireless LANs (WLANs)
are equipped in some hotels, shopping malls, airports,
college campus [3] as Wi-Fi [4] service. 802.11 [5]
and its extensions are standard link layer protocols
used in WLANs. The bandwidth ranges from 1 Mbps
(for 802.11) up to 20 Mbps (for 802.11g) operating at
2.4 GHz. For 802.11b which operates at 5 GHz can pro-
vide up to 54 Mbps bandwidth. In general, signal trans-
mitted between a base station (also known as access
point) and a client can be as far as 300 ft. If the distance
is less than 30 ft, clients operate in low power mode.

Taking a base station as an intermediate host or a
proxy [6] forwarding server/client messages, the client
and server communication can operate in point-to-point
access mode. A client initiates a request to a server
and retrieves responses from the server through the
base station. Logically, it is identical to conventional
client/server interactions in wired networks. However,
the wireless link is always a performance bottleneck.
To have a better overall system performance, a number
of data access techniques are developed. Over wireless
medium, information transmitted (i.e., broadcast)
can be heard by multiple clients. With this nature,
a data item interested by a large portion of client
population can be disseminated in a dedicated public
channel (called a broadcast channel). The clients can
tune in and retrieve the desired items by listening
to the channel. This technique, called wireless data
broadcast, significantly saves bandwidth required
for delivering the same data item multiple times to
individual clients via point-to-point wireless channels.
To alleviate the contention of wireless channels,
frequently accessed data items can be maintained in
the client cache memory. This does not only shorten
the access latency but also improve the data availability
during the period of disconnection. Due to limited
cache size, efficient cache management techniques
(including cache replacement, cache coherence
and cache prefetching) are required and thus are
collectively studied under the theme of mobile client
caching.

3. Wireless Data Broadcast

Wireless data broadcast (or simply broadcast) is
particularly efficient for data dissemination in wireless
and mobile environments due to its high scalability,
efficient client energy conservation, and channel
bandwidth utilization. By listening to a broadcast
channel, an arbitrary number of clients can be
served simultaneously. This not only conserves
shared wireless bandwidth but also save client
energy (since submitting requests consumes more
energy than receiving messages) and alleviate server
workload.

For wireless broadcast systems, access efficiency
and energy conservation are two essential performance
criteria. Access efficiency concerns how fast a client re-
quest is answered, while energy conservation concerns
how much battery power a mobile client consumes to
access the requested data items. Energy conservation is
particularly important due to constrained battery power
available to a mobile client. In the literature, two perfor-
mance metrics, namely access time and tuning time are
typically used to measure the access efficiency and en-
ergy conservation of a wireless data broadcast system,
respectively.

� Access time. It is the time elapsed from the moment
a request is issued by a client to the moment the
requested data is returned.

� Tuning time. It is the duration of time a client
stays in active mode to collect requested data
items.

Broadcast of unwanted data items not only
consumes the scarce wireless bandwidth but also
increases expected client access time. Thus, broadcast
scheduling, to arrange the order of data items, and
the frequency of these data items in a broadcast
channel, to improve the client access time, is a
critical research issue. In general, broadcast schedules
can be categorized as push-based broadcast, pull-
based (on-demand) broadcast, and hybrid broadcast.
In push-based broadcast, a server schedules public
information (such as weather and traffic information)
over a broadcast channel. This approach assumes
uni-directional communication (i.e., server to mobile
clients only). The server compiles a broadcast
program based on the prior knowledge of access
profiles or access statistics. In on-demand broadcast,
clients send requests for data items to the server
via uplink channels. The server then responds
the clients by disseminating requested data via a

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:25–44



28 K. C. K. LEE, W.-C. LEE AND S. MADRIA

shared broadcast channel. Different from conventional
point-to-point communication, a broadcast data item
may satisfy multiple client requests at the same time.
Both push and on-demand broadcast can be combined
into a hybrid broadcast approach.

A client stays connected to monitor an entire
broadcast cycle for a requested data item, resulting
in overconsumption of client’s precious energy. With
Smart power management facility, clients are able
to efficiently switch between active and doze modes
according to a time schedule and synchronize with
a broadcast channel. Thus, air indexing techniques
have been proposed to let a client effectively turn
into sleep mode (to conserve energy) when irrelevant
data items are broadcast on air. The basic idea is to
incorporate auxiliary information about content and
arrival time of data items in the broadcast program. The
inclusion of air index, however, lengthens the broadcast
cycle and degrades the access efficiency. Hence, a
trade-off between access efficiency and tuning time is
established.

For the rest of this section, a number of broadcast
scheduling techniques via push-based, on-demand, and
hybrid broadcast models and air indexing techniques
are reviewed.

3.1. Broadcast Scheduling

3.1.1. Push-based broadcast

The server actively disseminates data items in a
broadcast channel. The broadcast schedule determines
the order and the frequencies of the data items
to be broadcast. There are four typical methods
for push-based broadcast, namely flat broadcast,
probabilistic-based broadcast, broadcast disks, and
optimal scheduling.

� Flat Broadcast. It is the simplest form of broadcast.
All data items are broadcast only once in a cycle. The
access time of a data item is expected to be the same,
that is, a half of the broadcast cycle. If the access
distribution is skewed, poor access performance will
be resulted.

� Probabilistic-Based Broadcast [7]. It selects data
item i from a set of N data items to broadcast
with a broadcast frequency, fi. Supposed qi is the
access probability for data item i. The best setting
of fi is determined by the rate of square root of qi

to the sum of square roots of access probabilities
for all items, that is, fi = √

qi

/∑N
j=1

√
qj . This

approach is deficient since an arbitrarily long access

a b c d e f gDataset

a b c d e f gDisks

Hot Cold

Fast spining Slow spining

a b c d e f gChunks
C1,1 C2,1 C2,2 C3,1 C3,2 C3,3 C13,4

Broadcast
Cycle

a b d a c e a b a cf g

Minor Cycle

C1,1 C2,1 C3,1 C1,1 C2,2 C3,2 C1,1 C2,1 C3,3 C1,1 C2,2 C3,4

Fig. 2. Broadcast disk example with 7 data items, three disks.

time for a data item may be resulted. It shows an
inferior performance to other broadcast algorithms
for skewed access distributions [7].

� Broadcast Disk [8]. In broadcast disk schedule, data
items of same range of access probability are grouped
into logical disks. Each disk is assigned a broadcast
frequency. The higher access probability disk is
assigned the higher broadcast frequency. Such design
resembles real physical disks spinning at different
speed, with faster disks placing more instances of
a data item on the broadcast. Then a broadcast is
decomposed into several minor cycles. The length
of a minor cycle is long enough to contain one data
item from each disk. The total number of the minor
cycles is the least common multiple (LCM) of the
relative frequencies (spinning speed) of the disks.
Figure 2 illustrates the construction of a broadcast
program based on 7 data items divided into three
groups of access probabilities (i.e., for three separate
logical disks). These three disks are interleaved in a
single broadcast cycle. The first disk (the fastest one)
rotates at a speed twice faster than second one and
four times faster than the third disk (the slowest one).
The final broadcast consists of four minor cycles.
It can be observed that broadcast disk can be used
to construct a fine-grained memory hierarchy such
that data items of higher probabilities are broadcast
more frequently by varying the number of disks, the
size, the relative spinning speed, and the number of
assigned data items of each disk.

� Optimal Push Scheduling. Optimal broadcast
schedules have been studied in References [7,9–11].
A square-root rule discovered in Reference [9] for
minimizing access latency states that the minimum
overall expected access latency is achieved when two
conditions are met. First, instances of each data items
are equally spaced on the broadcast channel. Second,
the spacing, si, between two consecutive instances
of each item, i, is proportional to the square-root
of its item length li on the broadcast channel and

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:25–44
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inversely proportional to the square-root of its access
probability qi, that is, si ∝ √

li/qi or expressed
as s2

i qi/ li = K, where K is a constant for all
items i.

Since these two conditions are not always
simultaneously achievable, an online scheduling
algorithm can only provide an approximation of the
theoretical results. An efficient heuristic scheme was
introduced in Reference [11]. This scheme maintains
two variables, bi and ci for each data item i. bi is
the earliest broadcast time of the next instance of
data item i and ci is maintained equal to bi + si.
ci could be interpreted as the ‘suggested worst-case
completion time’ for the next transmission of data
item i. The algorithm with complexity O(log N)
for N data items operates iteratively. At the very
beginning, every data item i is initialized with si
and a global variable t is set to the current time.
Then the algorithm examines all the data items
and selects a data item j with minimum cj for
broadcast. Its bj and cj are updated to old value
cj and bj + sj , respectively, while t is revised
to t + lj .

A low-overhead bucket-based scheduling algo-
rithm based on square-root rule was also studied
in Reference [9]. In this strategy, the data set is
partitioned into several buckets which are kept as
separate cyclical queues. The algorithm chooses to
broadcast the first item in the bucket for which
the expression (T − R(Im))2qm

/
lm evaluates to the

largest value. In the expression, T is the current
time, R(i) is the time at which an instance of item
i was most recently transmitted, Im is the first item
in bucket m, and qm and lm are average values of qi

and li for the item in the bucket m.
The bucket-based scheduling algorithm is similar

to the broadcast disk. They differ in the following
aspects. Broadcast disk generates periodic broadcast
while bucket-based approach delivers data item
online. Bucket-based approach fills up data item
instances on the scheduling decision whereas
broadcast disk may create holes in its broadcast
program. Last, the broadcast frequency for each
data item is obtained analytically to achieve the
optimal overall system performance in the bucket-
based algorithm. However, no study has been carried
out to compare their performance.

3.1.2. On-demand broadcast

Push-based broadcasts are designed to serve the
majority of the clients, but not tailored to the

individual client needs. In addition, they tend to
limit the broadcast data items to a pool and react
slowly to changing client access patterns. To alleviate
these problems, several research studies propose to
use on-demand broadcast [10,12–14]. An on-demand
broadcast system supports two types of channels,
a high-bandwidth broadcast channel plus a low-
bandwidth uplink channel. When a client needs data
items, it sends to the server a request for them through
a uplink channel. All client requests are queued at the
server. The server repeatedly chooses requested items,
delivers them over the broadcast channel, and clear the
associated requests in the queue. The client monitors
the broadcast channel and retrieves her requested items.
In the following, on-demand broadcast scheduling
techniques for fixed-size items and variable-size
items, and energy-efficient on-demand scheduling are
described.

• Fixed-Size Item On-demand Broadcast. Scheduling
fixed-size items in a broadcast is considered in most
early studies. The average access time performance
was used as the main optimization objective.
In Reference [15] (also described in Reference
[7]), three scheduling algorithms were proposed
and compared with the FCFS algorithm, a naive
approach.
— First-Come-First-Served (FCFS). Data items are

broadcast according to the arrival order of their
corresponding requests. This simple scheme has
a poor access performance for skewed access
distribution.

— Most Requests First (MRF). Data items with
the largest number of outstanding requests are
broadcast first.

— MRF Low (MRFL). This scheme is essentially
the same as MRF but it breaks the tie in favor of
the item with the lowest request probability.

— Longest Wait First (LWF). Data items with the
largest total waiting time, that is, the sum of the
time that all outstanding requests for the item has
been waiting, is chosen for broadcast first.

Numerical results presented in Reference [15]
provide the following observation. When the system
load is light, the average access time is insensitive
to the scheduling algorithm used. This is expected
because few scheduling decisions are required in
this case. As the load increases, MRF yields the
best access time performance if request probabilities
on the items are equal. When request probabilities
follow the Zipf distribution [6], LWF has the best
performance while MRFL is close to LWF. However,

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:25–44
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LWF is not a practical algorithm because at each
scheduling decision, it needs to recalculate the total
accumulated waiting time for every data item against
all pending requests to decide the next broadcast
candidate.

Thus, MRFL was suggested as a low-overhead
replacement of LWF in Reference [22]. It was,
however, observed in Reference [13] that both MRFL
and MRF have a poor performance for a large
data set. This is because the opportunity for tie-
breaking diminishes and thus MRFL degenerates
to MRF. Consequently a low-overhead and scalable
approach called RxW was proposed in Reference
[11]. The RxW algorithm schedules a data item with
the maximal R × W value for the next broadcast,
where R is the number of outstanding requests for
that item and W is the amount of time that the
oldest of those requests has been waiting. Thus,
RxW broadcasts an item either because it is very
popular or because it has a pending request waiting
for a long time. The method could be implemented
efficiently by maintaining the outstanding requests
in two sorted queues, one ordered by R values and
the other ordered by W values. Avoiding exhaustive
search of the request queues, a pruning technique was
proposed to find the maximal R × W value. Simula-
tion results show that the performance of the RxW

is close to LWF, meaning that it is a good alternative
for LWF when scheduling complexity is a major
concern.

To further reduce scheduling overheads, a
parameterized algorithm was developed to extend
RxW . The parameterized RxW algorithm selects
the first item it encounters in the searching process
whose R × W value is greater than or equal to
α × threshold where α is a system parameter and
threshold is the running average of the R × W

values of the requests that have been served. Varying
α can adjust the performance trade-off between
access time and scheduling overhead. For example,
in the extreme case where α = 0, this scheme selects
the top item either in the R list or in the W list; this
has the least scheduling complexity, while its access
time performance may not be very good. With larger
α values, the access performance can be improved,
but the scheduling overhead is increased as well.

• Variable-Size Item On-demand Broadcast. On-
demand broadcast for variable data item sizes
was studied in Reference [12]. To evaluate the
performance for items of different sizes, a new
performance metric called stretch was used. Stretch
is a ratio of the access time of a request to its service

time, where the service time is the time needed to
complete the request.

Compared with the access time, the stretch
performance is believed to be a more reasonable
metric for data items of variable sizes since it takes
the size (i.e., the service time) of a requested data
item into consideration. Based on the stretch metric,
four different algorithms have been investigated [12].
All of the four algorithms considered are pre-
emptive in the sense that the scheduling decision
is re-evaluated after broadcasting any bucket of a
data item (assuming a data item covers multiple
buckets).
— Pre-Emptive Longest Wait First (PLWF). This is

the pre-emptive version of the LWF algorithm.
The LWF criterion is applied to select the
subsequent buckets of data items to broadcast.

— Shortest Remaining Time First (SRTF). The
data item with the shortest remaining time is
selected to broadcast first.

— Longest Total Stretch First (LTSF). The
data item which has the largest total current
stretch is chosen to broadcast first. Here,
the current stretch of a pending request is
the ratio of the time the request has been
queued in the system thus far to its service
time.

— MAX algorithm (MAX). MAX was proposed
based on an off-line algorithm [12]. MAX
assigns a deadline to each request when it
arrives at the server. The data item with
the earliest deadline is scheduled for the
next broadcast. In computing the deadline
for a request, the following formula is
used:

deadline = arrivaltime + servicetime × SMAX

where SMAX is the maximum stretch value of
the individual requests for the last satisfied
requests in a history window. To reduce the
computational overhead, once a deadline is set
for a request, this value does not change even if
SMAX is updated before the request is served.

The trace-based performance study carried
out in Reference [12] indicates that none of
these schemes is superior to the others for all
cases. Their performance really depends on the
system settings. Overall, the MAX scheme, with
a simple implementation, performs quite well
in both the worst and average cases in terms of
access time and stretch measures.

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:25–44
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• Energy-Efficient On-Demand Broadcast. The
study in Reference [17] takes energy saving issue
into consideration in on-demand broadcasts. The
proposed algorithms broadcast the requested
data items in batches, using an existing indexing
techniques [18] (see Subsection 3.2) to index the
data items in the current broadcast cycle. This way,
a mobile client may tune into a small portion of
the broadcast instead of monitoring the broadcast
channel until the desired data arrives. Thus, the
proposed method is energy efficient. The data
scheduling is based on a priority formula:

Priority = IFASP × PF

where Ignore Factor (IF) denotes the number of
times that the particular item has not been included
in a broadcast cycle, Popularity Factor (PF) is the
number of requests for this item, and Adaptive
Scaling Factor (ASP) is a factor that weighs the
relative significance of IF and PF . Two sets of
broadcast protocols, namely Constant Broadcast
Size (CBS) and Variable Broadcast Size (VBS), were
investigated in Reference [17]. The CBS strategy
broadcasts data items in decreasing order of the prior-
ity values until the fixed broadcast size is exhausted.
The VBS strategy broadcasts all data items with pos-
itive priority values. Simulation results show that the
VBS protocol outperforms the CBS protocol at light
system loads, while the CBS protocol predominates
the VBS protocol at heavy system loads.

3.1.3. Hybrid broadcast

Although on-demand data broadcast can schedule data
items depending on the needs of users, it comes
with two disadvantages: (i) more uplink bandwidth
is allocated and more client energy is consumed to
submit client requests; (ii) when an uplink channel is
congested, the access latency will become extremely
high. Hybrid broadcast is a promising approach
because it effectively combines both push-based and
on-demand techniques. In the design of a hybrid
broadcast system, three issues need to be considered:
(1) bandwidth allocation between push and on-demand
deliveries, (2) assignment of data items to either push-
based and on-demand broadcast channels; and (3)
client access methods to collect required items from
appropriate channels. There are different proposals
for hybrid broadcast in the literature to address these
issues. In the following, techniques for balancing push
and pull and adaptive hybrid broadcast are described.

Broadcast cycle
(freq)

Request queue
(infreq)

Data transmission

Fig. 3. Hybrid broadcast system model.

� Balancing Push and Pull. The hybrid model (shown
in Figure 3) was firstly investigated in References
[15,19]. In this model, items are put in two distinct
sets: frequently requested (freq) or infrequently
requested (infreq) sets according to items’ access
frequency. It is assumed that clients know freq and
infreq. The model puts freq in a broadcast cycle and
delivers infreq in a request queue on demand. In the
downlink scheduling, the server makes r consecutive
transmission of freq items followed by the transmis-
sion of one infreq items. Analytical results for the
average access time were derived in Reference [19].

Meanwhile, the push-based broadcast disk model
was extended in Reference [20] to integrate with a
pull-based approach. The proposed hybrid solution,
named Interleaved Push and Pull (IPP), consists of an
uplink for clients to send pull requests to the server
for the data items absent on the push-based broad-
cast. The server interleaves the broadcast with the
responses to pull requests on the channel. To improve
the scalability of IPP, three different techniques were
proposed: (i) adjusting the bandwidth assignment to
push and pull in term of relative frequency of items
to broadcast, (ii) setting a client patience (time the
client willing to wait a data item) [21,22] such that a
client pulls the item only if the waiting time for a item
exceeds its patience on broadcast; (iii) selectively
replacing pushed items from the slowest part of the
broadcast schedule with pulled items (i.e., in effect
reallocating more bandwidth from pushes to pulls).

� Adaptive Hybrid Broadcast. Adaptive broadcast
strategies were studied for dynamic systems [23,24].
These studies are based on the hybrid model where
the most frequently accessed items are delivered to
clients based on a flat broadcast, while the least fre-
quently accessed items are provided point-to-point
on a separate channel. In Reference [24], a technique
that continuously adjusts the broadcast content to
match the hot spot of a data set was proposed. To
do this, each item is associated with a temperature, a
metric corresponding to its request rate. Thus, each
item can be in either vapor, liquid and frigid states.

Copyright © 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:25–44
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Vapor data items are those frequently requested
and currently broadcast; liquid data items are those
having recently a moderate number of requests which
is still not large enough for immediate broadcast;
frigid data items refer to the cold items. The
access frequency and hence the state of a data item
can be dynamically estimated from the number of
on-demand requests received through the uplink
channel. For example, liquid data items can be
heated to vaporize if more requests are outstanding.
Simulation result show that this technique adapts
pretty well to rapidly changing workloads.

Another adaptive broadcast scheme was discussed
in Reference [23], which assumes fixed channel
allocation for data broadcast and point-to-point
communication. The idea for adaptive broadcast
is to maximize (but not to overload) the use of
available point-to-point channels so that a better
overall system performance can be achieved.

3.2. Air Indexing

Energy conservation is a key issue for battery-powered
mobile devices. Air indexing techniques are employed
to indicate the arrival times of data items. Instead of
full scanning a broadcast channel for requested data
items, the broadcast access with an air index involves
the following steps: (i) initial probe—tuning into
the broadcast channel to determine when an index
is broadcast; (ii) index lookup—accessing the index
to determine the time when a required data item is
on air; (iii) download—retrieving required data item
at its indicated broadcast time. A client can switch
into doze mode and resume to active mode only
when the interested index or data items are expected
to arrive, thus substantially reducing battery power
consumption. In the following, three basic classes of
indexing techniques namely hashing, index tree and
signatures are described:

� Hashing Technique and Flexible Indexing. Both
hashing-based schemes and flexible indexing
method were proposed in Reference [25]. In hash-
based schemes, each frame carries the control
together with the data inside the frame. The control
information consists of a hash function and a shift
function that guide a search to the frame containing
the desired data in order to improve the tuning time.
The hash function hashes a key attribute to the
address (i.e., delivery time) of the frame holding
the desired data. In the case of collision, the shift
function is used to compute the address of the
overflow area which consists of a sequential set of

frames starting at a position behind the frame address
generated by the hash function.

Flexible indexing first sorts the data items in
ascending (or descending) order and then divides
them into p segments. The first frame in each of
the data segments contains a control index, which
is a binary index mapping a given key value to the
frame containing that key. In this way, the tuning time
can be reduced. The parameter p makes the indexing
method flexible since either a very good tuning time
or a very good access time can be obtained by
selecting a p value.

Hash-based scheme should be used when the
tuning time requirement is not tight and the key
attribute size is relatively large compared with the
data item size. Otherwise, flexible indexing should
be used.

� Index Tree Technique. An index tree [18] stores the
key attribute values and the arrival times of the data
frames in each node disseminated in a broadcast
channel. The index tree technique is very efficient
for a clustered broadcast cycle and it provides a
more accurate and complete global view of the data
frames. An example of an index tree for a broadcast
cycle which consists of 81 data items is shown in
Figure 4. The lowest level consists of 27 rectangular
boxes each of which represents a data frame, that is,
a collection of three data items. Each index node has
three pointers.

To reduce the tuning time while maintaining a
good access time for clients, a part of index tree can
be replicated and interleaved with the data frames.
Instead of replicating the entire index tree m times
(meaning the index tree is broadcast every 1/m of the
broadcast cycle), each broadcast only consists of the
replicated part of the index (the upper levels) and
the non-replicated part (the lower levels) that indexes
the data frames immediately following it. As such,
each node in the non-replicated part appears only
once in a broadcast cycle. Since the lower levels of an
index tree take up much more bandwidth than the up-
per part, the index overheads can be greatly reduced
if the lower levels of the index tree are not replicated.
This scheme is termed distributed index [18]. In
this way, tuning time can be significantly improved
without causing much deterioration in access time.

To support distributed indexing, every frame
maintains an offset to the beginning of the index root
to be broadcast. Each node of an distributed index
tree contains a tuple, with the first field containing
the last primary key value of the data frame that is
previously broadcast and the second field containing
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the offset to the beginning of the next broadcast
cycle. This is to guide the clients that have missed
the required data in the current cycle to tune to the
next broadcast cycle. There is a control index at the
beginning of every replicated index to refer clients
to a proper branch in the index tree. This additional
index information for navigation together with the
sparse index tree provides the same function as the
complete index tree.

� Signature Technique. The signature technique has
been widely used for information retrieval. The
signature method is not affected much by the
clustering factor and thus is particularly good for
multi-attribute retrieval. The signature of a data
frame is generated by first hashing the values in the
data frame into bit strings and then superimposing
(using bitwise OR operation) them into a bit
vector [26]. Signatures are delivered in the broadcast
channel by interleaving them with the data frames.
A query signature is generated in the same fashion
based on the queried values given by the user. To
answer a query, a mobile client can simply retrieve
signatures from the broadcast channel and then
match the signatures with the query signature by per-
forming a bitwise AND operation. If no match is de-
termined, the corresponding data frame determined
not to contain requested items can be safely ignored.
The client turns into doze mode and wakes up
again for the next signature. Otherwise, the data
frame is further checked against the query. The
primary issue with different signature methods is

the size and the number of levels of the signatures
to be used.

In Reference [26], three signature schemes,
namely simple signature, integrated signature, and
multi-level signature were proposed. Their cost
models for access time and tuning time were given.
For simple signatures, a signature frame is broadcast
before its corresponding data frame. Therefore,
the number of signatures is equal to the number
of data frames in a broadcast cycle. An integrated
signature is constructed for a group of consecutive
data frames (called a frame group). The multi-level
signature is a combination of the simple signature
and the integrated signature methods, in which the
upper level signatures are integrated signatures and
the lowest level signatures are simple signatures.

Figure 5 illustrates a two-level signature scheme.
An integrated signature indexes all data frames
between itself and the next integrated signature (i.e.,
two data frames). The signatures (shown in gray
blocks) are simple signatures for the corresponding
data frames. In case of non-clustered data frames, the
number of data frames indexed by an integrated sig-
nature (in a black block) is usually small in order to
maintain the filtering capability of the integrated sig-
natures. On the other hand, if data frames with similar
contents are grouped together, the number of frames
indexed by an integrated signature can be large.

Among these basic schemes, a comprehensive
performance study of hash, index, and signature-
based index schemes was reported in Reference [27].
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In general, signature indexing achieves better access
time than most of other schemes. However, the
tuning time of signature schemes is comparatively
larger. Hashing usually achieve better tuning
time. In case of low data availability (caused
by disconnection) and key size is relatively
small compared with the record size, distributed
indexing achieves both good access time and tuning
time.

Derived from these basic schemes, enhanced
indexing techniques namely hybrid index,
unbalanced index tree, and multi-attribute air
indexing are discussed in the following.

� Hybrid Index Approach. Both the signature
and index tree techniques have some pros and
cons. Hybrid index proposed in Reference [28]
builds index information on top of the signatures.
A sparse index tree provides a global view
for the data frames and their corresponding
signatures. The index tree is called sparse because
only the upper t levels of the index tree (the
replicated part in the distributed indexing) are
constructed. A key-search pointer node in the t-th
level points to a frame group, a group of consecutive
frames following their corresponding signatures.
Since the size of the upper t levels of an index tree
is usually small, the overheads for such additional
indexes are very small. Figure 6 illustrates a hybrid
index. To retrieve a data frame, a mobile client
first searches the sparse index tree to obtain the
approximate location information about the desired
data frame group and then tunes into the broadcast
to find out the desired frame.

Since the hybrid index technique is built on
top of the signature method, it retains all of the
advantages of a signature method. At the same time,
the global information provided by the sparse index
tree considerably improves the tuning time.

� Unbalanced Index Tree Technique. To achieve better
performance with skewed queries, the unbalanced
index tree technique was investigated in References
[29,30]. Unbalanced indexing minimizes the
average index search cost by reducing the number
of index traversals for hot data items at the expense
of spending more on cold ones.

For fixed index fanouts, a Huffman-based
algorithm can be used to construct an optimal
unbalanced index tree. Given N data items and
fanout f of the index tree, the Huffman-based
algorithm first creates a forest of N subtrees, each of
which is a single node labeled with the corresponding
access frequency. Then, f subtrees labeled with
the smallest frequency are attached to a new node.
The resulting subtree inherits the sum of all the
labeled frequencies from all its f child subtrees.
This grouping procedure is repeated until only one
single tree remains. Figure 7(a) demonstrates an
index tree with a fixed fanout of three. In the figure,
each data item i is given in the form of (i, qi) where
qi is the access probability for item i.

Provided the data access patterns, an optimal
unbalanced index tree with a fixed fanout can be
constructed. However, its performance may not be
optimal. Thus, Reference [29] discussed a more
sophisiticated approach with variable fanouts. In
this case, the problem of optimally constructing
an index tree is NP-hard [29]. In Reference [29], a
greedy algorithm Variant Fanout (VF) was proposed.
Basically, the VF algorithm builds the index tree in
a top-down manner. VF starts by attaching all data
items to the root node. Then, it groups the nodes
with small access probabilities and moves them
to one level lower so as to minimize the average
index traversal cost. Figure 7(b) shows an index
tree built using the VF algorithm, where the access
probability for each data item is the same as in the
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example for fixed fanouts in Figure 7(a). The index
tree with variable fanout in Figure 7(b) has a better
average index traversal performance than the index
tree with fixed fanout in Figure 7(a).

� Multi-Attribute Air Indexing. Queries in real
applications are usually specified based on multiple
attributes [31]. This observation motivates the devel-
opment and adoption of multi-attribute air indexing.
As broadcast channels are in a linear medium,
querying and broadcast scheduling for multiple
attributes appear to be much more complicated.
For multi-attribute indexing proposed in Reference
[32], a broadcast cycle is clustered based on the
most frequently accessed attribute (that is the
first attribute and also called clustered attribute).
Although the other attributes are non-clustered in the
cycle, a second attribute can be chosen to cluster
the data items within a data cluster of the first
attribute. Likewise, a third attribute can be chosen
to cluster the data items within a data cluster of the
second attribute. The second and third attributes are
collectively called non-clustered attributes.

For each non-clustered attribute, a broadcast cycle
can be partitioned into a number of segments called
meta-segments [68], each of which holds a sequence
of frames with non-decreasing (or non-increasing)
values of that attribute. Thus, at each individual
meta-segment, the data frames are clustered and
the indexing techniques discussed in the previous
subsection are still applicable to a meta-segment.
The number of meta-segments in the broadcast cycle
for an attribute is called the scattering factor of
the attribute. The scattering factor of an attribute
increases as the importance of the attribute decreases.
The index tree, signature, and hybrid methods are ap-
plicable to indexing multi-attribute data frames [23].
For multi-attribute indexing, an index tree is built for

each index attribute, while the signature is generated
by superimposing multiple hashed attribute values.

When two special types of queries (i.e., queries
with all conjunction operators and queries with all
disjunction operators) are considered, empirical
comparisons show that the index tree method,
although performing well for single attribute queries
results in poor access time performance [23]. This is
due to its large overheads for building a distributed
index tree for each indexed attribute. Moreover,
index tree method has an update constraint, that
is, updates of a data frame are not reflected until
the next broadcast cycle. The comparisons reveals
that the hybrid technique is the best choice for
multi-attribute queries due to its good access time
and tuning time. The signature method perform
close to the hybrid method for disjunction queries.
The index tree method has a similar tuning time
performance as the hybrid method for conjunction
queries, whereas it is poor in terms of access time
for any types of multi-attribute queries.

4. Mobile Client Caching

Caching frequently used data items in the mobile
clients’ local storage can improve access latency
and data availability in case of disconnection. In
general, cache management techniques include cache
replacement, cache coherence, and cache prefetching.
Cache replacement decides what data items to keep
in order to maximize the space efficiency. Cache
coherence considers consistency between source
values and cached values of data items. Due to narrow
bandwidth, data items may not be always available on
air, cache prefetching loads data items in advance if
a request of those items is predictable. Due to weak
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connectivity, those cache management techniques
adopted in wireless and mobile computing environment
are different from conventional caching techniques.
In the following, various cache management issues
investigated in the literature are reviewed.

4.1. Cache Replacement

The cache replacement issue for wireless data
broadcast was first studied in the Broadcast Disk
project [8]. A cache replacement policy,PIX, proposed
by Acharya et al. selects the data item i with the
minimum value of pi/xi for replacement, where pi is
i’s access probability and xi is its broadcast frequency.
Thus, an evicted item either has a low access probability
or has a short retrieval delay. Since PIX is not an
implementable policy,LIX, a modified version of LRU
is used to approximate PIX. LIXmaintains a number
of lists: one list corresponding to each broadcast disk.
A data item always enters the list corresponding to
the disk in which it is broadcast. When a data item
enters the cache, LIX evaluates lixi value only for the
item i at the end of each list. The lixi is determined
as pi/xi. Here, the access probability pi is calculated
as pi = �/(CurrentTime − ti) + (1 − �)pi where ti
is the time of the most recent access to the item and �

is a control parameter ranging between 0 and 1.
Caching algorithms for Broadcast Disk systems

were also studied in Reference [33]. Their work
assumed that neither knowledge of future data requests
nor knowledge of access probability distribution
over the data items was available to the clients.
The proposed Gray algorithm takes the factors
of both access history and retrieval delay for
cache replacement/prefetching into consideration.
Theoretical study showed that, in terms of worst-case
performance, Gray outperformed LRU by a factor
proportional to CacheSize/ log CacheSize.

While most broadcast-based cache replacement
schemes consider only fixed size data items, SAIU, a
cache replacement scheme proposed in Reference [34]
considers four factors that affects cache replacement
decision of a data item i, including access probability
(ai), update frequency (ui), retrieval delay (li), and data
size (si). The replacement score of a data item i denoted
by a gain function annotated by gainSAIU (i) equals:

gainSAIU (i) = li · ai

si · ui

When the space is needed to reclaim, the data item
with the least gain function value is removed. Rather
than access latency, stretch [12], the ratio of the access
latency of a request to its service time that is defined as

the ratio of the requested item’s size to the bandwidth,
is used to measure the performance. However, the influ-
ence of the cache consistency requirement was not con-
sidered in SAIU. Then an optimal cache replacement
policy called Min-SAUD extending SAIU was investi-
gated in Reference [35]. The revised gain function for
Min-SAUD denoted by gainSAUD(i) is expressed as:

gainSAUD(i) = ai

si

(
li

1 + xi

− v

)

where xi is the ratio of update rate to access rate
for a data item i, and v is the cache validation delay
while the rest notations are the same as used in SAIU.
In Reference [35], analytical study shows that Min-
SAUD achieves optimal stretch under the standard
assumptions of the independent reference model and
Poisson arrivals of data access and updates. Also, the
simulation result shows that Min-SAUD outperforms
LRU and SAIU using on-demand broadcasts.

4.2. Cache Coherence

As discussed in Reference [36], a number of cache
consistency models are possible for wireless and
mobile computing:

� Opportunistic. A client can read any version of a data
item that is available in the cache without worrying
about consistency for some applications and certain
defined conditions are met.

� Quasi-Caching [37]. Consistency is defined subject
to application constraints that specify a tolerance of
slack compared with the latest value of the source
data items. For example, a cached value can be at
most x% deviated from the value in the server. The
cache update or invalidation occurs only when the
deviation between the values exceeds the range, that
is, x%. Or, a query can accept old versions of data
items consistent at a same snapshot [38,39].

� Latest Value. A client must always access the most
recent value of a data item, so whenever the data
items are updated, the corresponding cached value
are needed to update or invalidate.

The former two consistency models trade consis-
tency for performance, but it heavily depends on
the application requirement. In most cases, latest
value is a commonly assumed model in mobile
cache management. To synchronize the client cache,
a server can be either stateful or stateless. A
stateful server keeps tracks of the cache content
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and connection status of every client. The server
directs updates to the clients as long as they are
connected. However, client disconnection makes this
solution hard to realize and a large client population
further imposes limited scalability of this approach.
Stateless server approach has greater flexibility. It does
not have scalability problem since cache invalidation
is performed upon broadcast and the clients are
responsible to invalidate/update their cache.

The server delivers invalidation messages over
a broadcast channel periodically or aperiodically.
Summary of data items that are updated is called
Invalidation Report (IR). From an IR, clients can decide
which cached data items become invalid and if they
need to refresh the invalid cached items for their
queries. In Reference [40], three invalidation strategies
based on the periodical broadcast are studied namely
Broadcast Timestamp (BT), Amnesic Terminal (AT),
and Signature (SIG).

� Broadcast Timestamp (BT). In BT algorithm, an IR is
composed of the identifiers of changed data items and
the timestamps of the latest change on the item hap-
pened in the last w seconds. Upon receiving the IR, a
client discards those cached items whose timestamps
are less than the timestamps of corresponding items
mentioned in the IR. In case of the age of the cache
exceeds w seconds, the client evacuates entire cache.

� Amnesic Terminal (AT). In AT algorithm, an IR con-
tains the identifiers of data items that was changed
since the previous IR. A client drops a cached item if
it is reported in the IR. The client discards an entire
cache if it missed a threshold number of consecutive
IRs. AT saves more bandwidth than BT due to no
inclusion of timestamps, but it requires the client
constantly listens to every IR.

� Signature (SIG). In SIG algorithm, the identifiers of
changed items are encoded as a signature. The identi-
fiers of multiple changed items are merged as a single
signature reported in an IR. A client discards a cached
item when its signature matches the signature in IR.
The signature is more compact in size than original
item identifiers, thus saving bandwidth in IR delivery.
However, it is possible to have ‘false negative’ that
the client discards items which are still valid.

The trade-off among the three schemes in different
workload scenarios are reported in Reference [40].
Supporting those clients who may be disconnected for
a long period of time causes the formation of bulky
IRs. Upon an expensive wireless channel, a compact
IRs is more desirable. Bit-Sequence (BS), proposed

in Reference [41] is an improved version of invalidation
report. BS IR consists of a sequence of bits with each
bit representing a data item. The bit is set to ‘1’ if the
represented data item is updated; otherwise ‘0’. Each
bit sequence is associated with a timestamps indicating
the update time. To reduce the size of IR, updates are
aggregated and a hierarchical structure of bit-sequences
is formed. Given N data items, an IR is then composed
of k (k ≤ �log N�) level BSs, that is B1, B2, . . . , Bk.
The Bk, the highest-level BS, has N bits, representing
all N data items. For Bi, a lower level of BS, containing
2i bits, each bit stands for N/2k−i data items. As a
result, the whole IR consumes at most 2N bits and k

timestamps.
When a request is initiated by a client inside an

IR interval (i.e., the duration between two consecutive
IRs), the client has to wait until the IRs are received
to confirm validity of the cached items. Then a long
query latency is resulted. To improve the query waiting
time, multiple smaller updated IRs (UIRs) proposed
in Reference [42] are inserted in an IR interval. As long
as the client receives UIRs and no items are invalidated,
the query can be processed immediately.

4.3. Cache Prefetching

In the broadcast environment, data items are only
available at a specific time. If a query requests an item
which will only be broadcast a long time later, the
satisfactory response time cannot be guaranteed. Cache
prefetching is an operation to preload some data items
right before any query initiation to shorten the query
response time. Prefetching in a broadcast environment
only requires local resources, but the cache space may
be wasted if a data item is cached too early. In a
Tag-team [43], a client caches data item i when it is
broadcast and replaces it with another data item j when
j is broadcast. Similarly, j is dropped again when i is
re-broadcast. Assuming that i and j are broadcast using
a flat-disk and they are placed 180 degrees apart on a
same disk, the average tag-team caching cost is one-
eighth of a disk rotation, which is one-half of the cost
in a demand-driven caching scheme. Thus, it doubles
the performance over demand-driven caching due to
the fact that the cost of a miss in Tag-team is half of the
cost of a miss in demand-driven caching.

Introduced in Reference [44], PT algorithm is
adopted on Broadcast Disk. It measures the pt value
of data items. The cache is used to maintain the data
items with high pt values. The pt value is the product
of the access probability (p) and the elapsed time (t)
from the present time to the time when the instance of
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the item to be broadcast again. Attempting to minimize
average access latency, Reference [45] presented a
cache update policy in which a broadcast channel is
divided into time slots of equal size, that are equal to
the broadcast time of a single item. Let λi be the access
rate for item i and τi(n) be the amount of time from slot
n to the next transmission of item i. A time-dependent
reward (latency reduction) for item i at slot n is given
by r(i, n) = λiτi(n) + λi/2. The proposed W-step
look-ahead scheme made the cache update decision
at slot n such that the cumulative average reward from
slot n up to slot n + W was maximized. The larger the
window W is, the better the access performance, the
worse the complexity of the algorithm will be.

The analytical model for various prefetching policies
is derived in Reference [46]. Also, in Reference [46],
PP1 and PP2 policies are devised. PP1 policy achieves
the minimum power consumption. PP2 policy achieve
minimum access latency. Both PP1 and PP2 are static
policies. For the dynamic environment where request
rates are not fixed, adaptive power-aware prefetching
schemes [47,48] are proposed.

5. Data Access Based on Application
Requirements

In the previous two sections, both the discussed
wireless broadcast and client caching techniques are
developed for general data access. Those techniques
may be quite different, subject to the nature of
applications and their specific requirements. In this
section, data access techniques based on the application
requirements in terms of time, location, data semantics,
and reliability are described. Time-critical applications
demand data to be made available by a specified ‘dead-
line,’ otherwise the delayed information is of no value
to the users. Location-based applications request data
based on the current locations of the users. An example
of such an application is to find the nearest ATM from
a user’s current position. Further, the semantic and
reliable data access are also discussed in the following
subsections.

5.1. Time-Critical Data Access

Timeliness of data access is of central importance
in many time-critical applications. The belated
information has no value to users. Take stocks as an
example, belated stock price information will lead
to a bad investment decision. To ensure information
accessible by a specified time, the online broadcast
schedules takes deadlines associated with data requests

into account. Usually the schedules are applied to on-
demand broadcast.

The major performance metric for time-critical data
dissemination is request drop rate. It measures the
overall performance based on the rate of number of
requests which deadlines are missed to the total number
of requests. A good broadcast schedule should provide
the lowest request drop rate. Some developed heuristics
are discussed below:

� Earliest Deadline First (EDF) [49]. Each request
specifies the deadline of requested data item. The
item with the earliest deadline is delivered first. This
approach performs reasonably well in moderately
loaded situation (i.e., the channel utilization is under
100%). In a case that multiple data items demanded
by a request, r, the deadline of each requested items,
i, is defined based on Equal Slack Data (EQSD) [50]:

deadline(i) = arrivel(r) + deadline(r) − arrival(r)

total number of items requested by r

where deadline(r) and arrival(r) are the deadline
and arrival time of r, respectively.

� Most Request First (MRF). The data items with
the largest number of requests are broadcast first to
satisfy most requests.

� Slack Time Inverse Number of Pending Requests
(SIN-α) [51]. The delivery priority of a data item,
i, denoted by sin.α(i) is defined as

sin.α(i) = slack(i)

num(i)α

where slack(i) of an item, i, is the remain time
before the i’s first deadline, that is, the earliest
deadline among all pending requests on i, num(i)
is the number of pending requests on i and α is
a control parameter to adjust the relative weight
between num(i) and slack(i). In Reference [51], the
theoretical bound of request drop rate is derived.
In addition, a detail implementation and simulation
studies are presented. Simulation result shows that
SIN-α outperforms EDF and MRF as it can handle
both deadlines and request volumes.

5.2. Location-Based Data Access

Location-dependent applications are unique in mobile
computing environments. They access data items
based on the current user locations. The requests are
expressed as location-dependent queries. The most
common location-dependent queries are range queries
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and nearest neighbor (NN) queries. Range queries
search for location-dependent data items within a
distance range from a given query point or in a specified
area. NN queries find data items located the closest to
the query point.

To facilitate processing these location-dependent
queries, the techniques for data broadcast and client
caching become specialized. In particular, NN search
is more complicated than range query as NN search
requires backtracking when location-dependent data
items are arranged in a hierarchical structure such as
R-tree [52].

5.2.1. Location-dependent data broadcast

Although location-dependent data items can be
disseminated using a multi-attribute broadcast, it is
inefficient to support NN search since existing search
algorithms usually require backtracking that results in
scanning more than one broadcast cycle to process a
single NN request. To support efficient NN searches in
broadcast environments, D-tree and DSI air indexing
structures were proposed.

� D-tree [53]. D-tree is a binary tree indexing a Voronoi
diagram [54] in which every Voronoi cell (cell) is
a region within which an NN query always finds
the corresponding object as its result. An example
of D-tree is shown in Figure 8. In Figure 8(a), four
cells (C1, C2, C3, and C4) and six vertices (V1, V2,
V3, V4, V5, and V6) are derived. Along a sequence
of vertices, the space is recursively partitioned into
two complementary subspaces. Each partitioned
subspace contains about the same number of cells.
The partition is along x- or y-dimension alternatively.
In the figure, the whole space is first divided into P5
and P6. Further, P5 is partitioned into P1 and P2
where cells are C1 and C2, respectively. Similarly,
P6 is partitioned into P3 and P4 representing C3 and

C1(P1)

V1

P5
P6

V2

V3

V4

V6

V5

1 Y . . V2 V3 V4 V6

2 X . . V1 V3 3 X . . V4 V5

P5 P6

Root

(a) (b)

C2(P2)

C3(P3)

C4(P4) C1(P1) C2(P2) C3(P3) C4(P4)

Fig. 8. D-tree; (a) division of space, (b) D-tree structure.

C4 correspondingly. The index is then flattened and
disseminated over a broadcast channel.

When a client issues an NN query (with the client
position treated as a query point), it traverses the
index along the path from the root to the leaf. At each
level, the client follows the branch which subspace
contains the query point. At the leaf, the object inside
the region is the NN to the client. Other than D-
tree, the subspace can be embedded as minimum
bounding box and then can be indexed using R-tree.
In Reference [53], D-tree is shown to outperform this
R-tree based approach.

� Distributed Spatial Index (DSI) [55]. DSI distributes
the index information over the whole broadcast
and provides a client with sufficient information
to conduct both range and NN search. The
dissemination order of location-dependent data
items follows the sequence of Hilbert Curve, a space
filling curve. Figure 9(a) shows an Hilbert curve
of order 3 covering 64 positions in which 8 data
items are located and their respective HC values
are 6, 11, 17, 27, 32, 40, 51, and 60. Based on the
ascending HC values, data items located in the two-
dimensional space are linearized and disseminated
in the broadcast channel.

Figure 9(b) illustrates the broadcast structure. DSI
index tables are delivered interleaving the data items.
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Fig. 9. Distributed spatial index; (a) Hilbert curve of order 3, (b) index table.
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Each index table maintains pointers to upcoming
frames (each containing one location-dependent data
item). Rather than pointing all individual frames,
an exponential index [56] is adopted so that the
number of frames indexed is exponentially increased
with the order of index table entries. Take the index
table for frame O6 as an example in Figure 9(b).
The first pointer refers to the first upcoming frame
which contains O11. The second pointer refers to the
second upcoming frame of O17 while the third the
fourth upcoming frame of O32. Query processing on
location-dependent data broadcast using HC values
is discussed in Reference [57].

5.2.2. Location-dependent data caching

The concept of valid scope is an important property of
location-dependent queries. Each location-dependent
query result has a valid scope that is captured as a
region. Unless a client stays outside the scope, the result
of the same location-dependent query remains valid.
The valid scope provides client additional knowledge
about the query result and saves client resources to
re-execute the same query. Reference [58] roughly
estimates the valid scope for a k-NN result by retrieving
m + k data items. The new k-NN result can be found
within the previous result when the distance moved
by a client from the query initiation point is not
greater than 1

2 (dist(m + k) − dist(k)) where dist(x) is
the distance between the xth data item from the query
initiation point. To exactly calculate the valid scope for
a k-NN query as well as a window query, an online
algorithm is proposed in Reference [59]. It determines
the valid scope by issuing multiple TPNN [60] queries
to explore influencing objects at all possible directions
from existing query result.

Cache management for location-dependent queries
also takes locations into consideration. In Refer-
ence [61], the distances between a current user location
and cached data items are proposed as replacement
decision rather than temporal-based heuristics such as
Least Recently Used (LRU) and Most Recently Used
(MRU). Further Away Replacement (FAR) proposed
in Reference [62] is used as replacement score. The
data item located farthest from the current user position
is replaced first if space is needed to accept new
data items. In Reference [63], replacement score is
based on both the distance and valid scope area of
a cached data item. Valid scope area is considered
due to an intuition that the larger the valid scope area
of the data item is, the higher the access probability
of it will be. Then two policies are proposed namely

probability area (PA) and and probability area inverse
distance (PAID). By PA, the cost function of an item,
i, cPA(i) is expressed as Pi · A(vi) and by PAID, the
cost function of an item i, cPAID(i) is Pi · A(vi)/dist(i)
where Pi is the access probability of item i, A(vi) is
the area of valid scope of i, and dist(i) is the distance
of i from a current client position. In Reference [63],
through simulation, both PA and PAID policies provide
substantial performance improvement over LRU and
FAR policies. In Reference [64], combined temporal
and distance factors in determining item relevance are
discussed. In addition, in Reference [65], the part of
underlying index structures are cached in addition to
cached data items to support various kind of location-
dependent queries.

5.3. Semantic-Based Data Access

Due to weak connectivity, clients should be made
more aware of the cache content. If a client can
determine that all data items needed to answer its
queries are available in its cache, many requests can
be served locally without contacting the server. To
provide clients such ability, a semantic caching is
proposed in References [61,66,67]. The cached items
are grouped and collectively described as semantic
regions using query expressions. When a new query
is determined with query containment [68] if it is
contained by a semantic region, a client can assure that
no additional data item(s) is required from the server. In
case a new query is partially covered, a remainder query
is formulated to fetch missing data from the server.

With the same rationale, a semantic broadcast
scheme is derived. Due to limited bandwidth, not
all data items are broadcast on air. With semantic
information present in the index, the clients can query
required data items and determine if the missing parts
for their queries are needed. In Reference [69], that
data items are clustered based on semantics in different
granularity are discussed.

5.4. Reliable Data Access

Wireless communication is error-prone. Data might be
corrupted or lost due to factors such as signal interfer-
ence. When an error occurs, mobile clients have to wait
for the next copy of the data if no special precaution is
taken. This will increase the access latency. To deal
with unreliable wireless communication, an idea is
to introduce controlled redundancy in the broadcast
schedule. Such redundancy allows mobile clients to
obtain their data items from the broadcast cycle even in
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the presence of errors. This eliminates the need to wait
for the next broadcast of the data item whenever any
error occurs. In References [70,71], additional index
information is distributed in the broadcast. Clients
can resume searching right after recovery without
waiting for next broadcast cycle. To have a reliable
data delivery, a set of k data blocks are encoded using
Tornado codes, proposed in Reference [72], into a set
of n encoded blocks (where n is a small multiple of
k). A client can collect any k out of n encoded blocks
to decode and determine the original data blocks.
Similar idea can be found in Reference [73] where
Adaptive Information Dispersal Algorithm (AIDA) is
adopted to distribute the content of m data items in
n (n > m) frames. By collecting a certain amount of
frames, the original data items can be reconstructed
by using a reconstruction transmission matrix. By the
same algorithm, security is also supported that only
legal clients know the reconstruction transformation
matrix to recover the original data items.

6. Summary

This survey paper reviewed wireless data broadcast
and mobile caching techniques in support of efficient
pervasive data access in wireless and mobile computing
environments. A number of broadcast scheduling
and air-index schemes appeared in the literature
to address performance requirements in access and
energy efficiency. Push-based, on-demand, and hybrid
broadcast scheduling techniques were discussed.
Push-based broadcast is attractive when access patterns
are known in advance while on-demand broadcast is
preferable for dynamic access pattern. Hybrid data
broadcast offers more flexibility by combining both
strength of push-based and on-demand broadcasts.
Several air indexing techniques, based on hashing,
index tree, signature and hybrid of the above, were
described. Air index in support of multi-attribute
queries were also discussed.

To improve access latency and provide higher data
availability, client data caching plays an important role.
To optimize the cache performance, cache management
issues such as cache prefetching, cache invalidation,
and cache replacement were discussed. For cache inval-
idation, different kinds of broadcast-based invalidation
reports are described. In addition, cache replacement
policies are also reviewed. Finally, to address
specific application requirements in time, location, data
semantics and reliability, data broadcast and mobile

caching schemes have been developed. This survey pa-
per also provides a good introduction of those studies.
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