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The popularity of the Internet has dramatically increased the diversity of

clients and applications that access data across wide area networks and mobile

environments. Data delivery in these environments presents several challenges.

First, applications often have diverse requirements with respect to the latency

of their requests and recency of data. Traditional data delivery architectures do

not provide interfaces to express these requirements. Second, it is diÆcult to

accurately estimate when objects are updated. Existing solutions either require

servers to notify clients (push-based), which adds overhead at servers and may not

scale, or require clients to contact servers (pull-based), which rely on estimates

that are often inaccurate in practice. Third, cache managers need a 
exible and

scalable way to determine if an object in the cache meets a client's latency and

recency preferences. Finally, mobile clients who access data on wireless networks



share limited wireless bandwidth and typically have di�erent QoS requirements

for di�erent applications.

In this dissertation we address these challenges using two complementary

techniques, client pro�les and server cooperation. Client pro�les are a set of

parameters that enable clients to communicate application-speci�c latency and

recency preferences to caches and wireless base stations. Pro�les are used by

cache managers to determine whether to deliver a cached object to the client or to

validate the object at a remote server, and for scheduling data delivery to mobile

clients. Server cooperation enables servers to provide resource information to

cache managers, which enables cache managers to estimate the recency of cached

objects.

The main contributions of this dissertation are as follows: First, we present a


exible and scalable architecture to support client pro�les that is straightforward

to implement at a cache. wireless base station. Second, we present techniques

to improve estimates of the recency of cached objects using server cooperation

by increasing the amount of information servers provide to caches. Third, for

mobile clients, we present a framework for incorporating pro�les into the cache

utilization, downloading, and scheduling decisions at a We evaluate client pro�les

and server cooperation using synthetic and trace data. Finally, we present an

implementation of pro�les and experimental results.
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Chapter 1

Introduction

The popularity of the Internet has led to an increased diversity of applications

that access data across wide area networks and in mobile environments. Example

applications include news, sports scores, weather reports, E-commerce, auctions,

and email. Data delivery on wide area �xed networks is often characterized by

high latency due to congestion on the network or heavy loads at remote servers,

and data delivery on wireless networks is characterized by low bandwidth and

frequent disconnections. Clients may access data on a variety of devices across

either �xed or wireless networks, and may have di�erent degrees of connectivity.

Many caching and replication technologies have been proposed in these environ-

ments to reduce access latencies and bandwidth consumption, and improve data

availabilty.

There are many challenges to caching and data delivery in wide area environ-

ments. One challenge is keeping cached copies of objects fresh with respect to

the objects at the servers. This problem has received considerable attention in

the literature, and many di�erent solutions have been proposed. Some solutions

are push-based, i.e., servers notify caches when an object is updated. Such solu-

tions can guarantee that cached objects have an acceptable degree of freshness,
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but increase the load on servers. Other solutions are pull-based, i.e., the cache

must contact servers to validate objects (check for updates) whenever the cached

object is estimated to be stale. Pull-based solutions require no cooperation from

servers, but their e�ectiveness is limited by the accuracy of estimates of when

objects are updated at remote servers.

A second challenge is that clients may have di�erent preferences with respect

to the latency and recency of data for di�erent applications. For some applica-

tions, clients may require the most recent data. For other applications, clients

may tolerate stale data that can be delivered quickly. Existing solutions do not

consider this diversity. For example, pull based solutions may either vaildate

cached objects when clients can tolerate some staleness, or deliver stale objects

to clients who require the most recent data.

A third challenge is that it is diÆcult for cache managers to estimate when

updates occur at remote servers. Servers typically provide caches with the last

time an object was modi�ed, but do not provide any additional information about

an object's update patterns. This limits the e�ectiveness of heuristic estimates

of when updates occur. Estimates that are too conservative may cause too many

validations at remote servers, which can increase the latency of requests. On

the other hand, estimates that are too optimistic may result in stale data being

delivered to clients. Thus, the inability of cache managers to estimate when

updates occur severely limits the e�ectiveness of pull-based policies, and makes

it diÆcult for cache managers to meet the recency preferences of clients.

Finally, a challenge to data access for mobile clients is maintaining the de-

sired level of latency for di�erent applications in the presence of limited wireless

bandwidth. Mobile clients typically have di�erent Quality of Service (QoS) re-
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quirements for their di�erent applications. For some applications, e.g., instant

messaging, they may require low latency, but for other applications, e.g., casual

web browsing or email, they may tolerate higher latencies. Many techniques have

been proposed in the literature for end to end QoS deployment, i.e., providing

QoS guarantees to di�erent applications. However, these techniques may have

high overhead and may require changes to both the wireless network and the

underlying �xed network, which is not always feasible in practice. We note that

while QoS is also a challenge on �xed networks, we focus on mobile clients in this

dissertation. This is because we emphasize solutions that can be implemented

with minimal changes to existing architectures, and QoS deployment on �xed

networks typically requires changes to the underlying network.

The goal of this dissertation is to provide 
exible, scalable data delivery solu-

tions that can meet client latency and recency preferences with minimal changes

to existing architectures and protocols. Existing solutions fail to meet one or

more of these criteria. Speci�cally, our objectives are as follows:

1. Enabling clients to specify and communicate their latency and recency pref-

erences to cache managers and wireless base stations.

2. Enabling cache managers to determine if a cached object meets the client's

preferences.

3. Enabling cache managers to estimate the recency of cached objects with

greater accuracy than existing solutions.

4. Providing solutions that are 
exible (i.e., allow clients to easily express and

change their preferences), scalable (i.e., support a large number of clients
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with minimal overhead for cache managers and base stations) and that

require minimal changes to existing protocols.

1.1 Contributions

In this dissertation we present two complementary solutions to address these

challenges and meet the above objectives: client pro�les and server cooperation.

These two mechanisms improve pull-based consistency policies by enabling clients

and servers, respectively, to provide additional information to caches. They pro-

vide a scalable framework for customized data delivery to clients on both �xed

and mobile networks.

To improve pull-based consistency policies, pro�les enable clients to commu-

nicate to caches their application speci�c preferences with respect to both latency

and recency of data. Cache managers can use this client information to better

meet the needs of diverse clients and applications. Similarly, server cooperation

enables servers to provide caches with resource information. This may include

either an individual or aggregated history of updates to objects at the server.

This history is used by cache managers to estimate when objects are likely to be

updated in the future. This reduces the number of times the cache manager needs

to validate objects at remote servers, which improves access latencies compared

to existing pull-based policies without the heavy server overhead of push-based

policies. Together, this framework for both clients and servers to provide addi-

tional information to a cache can reduce the latency of client requests while still

providing fresh data in many cases. This dissertation shows that client pro�les

and server cooperation are 
exible and scalable ways to customize data delivery

to diverse clients in wide area environments with reduced latency, bandwidth con-
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sumption and server overhead compared to existing push-based and pull-based

solutions.

Pro�les can improve data access for mobile clients without the overhead of end

to end QoS deployment, i.e., changing the underlying �xed network to provide

QoS guarantees for di�erent applications. Pro�les leverage proxy caching at

or near a wireless base station to reduce the e�ects of �xed network latencies.

In addition, mobile client pro�les enable clients to specify the relative priority

of each application. These priorities are used at the base station to schedule

data delivery on the wireless downlink. In this dissertation we show that using

mobile client pro�les for both caching and scheduling decisions can e�ectively

di�erentiate services for mobile applications.

Speci�cally, this dissertation makes the following contributions:

� We present a framework to support two complementary techniques, client

pro�les and server cooperation, to improve pull-based caching and data

delivery in wide area and mobile environments.

� We show that for �xed network data access, using client pro�les in caching

decisions can e�ectively di�erentiate services for diverse clients and appli-

cations. Pro�les are 
exible: they can be speci�ed by clients and stored

locally, so clients can adjust pro�les without any additional communication

overhead. They can also be tuned to control the latency-recency tradeo�,

or to provide an upper bound with respect to either recency or latency. We

present an architecture for communicating pro�les to caches that is scal-

able to a large number of clients. Client pro�les can be deployed with no

overhead for servers, and low overhead for clients and caches. They can be

supported by clients and caches with only minor changes in the communi-
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cation protocol.

� Experimental results with trace data over a 5-day period show that pro�les

can reduce the total validations by 39%, nearly all of which are unnecessary

validations. Pro�les reduce the number of unnecessary validations (fresh-

ness misses) by up to 45%, without requiring any additional contacts with

remote servers. This is a signi�cant improvement over existing approaches

to reducing freshness misses. Existing approaches use either push-based

strong consistency [78], which requires servers to push update information

to clients, or pre-validation [39], which requires clients to prefetch expired

objects before they are requested.

� We present a server cooperation scheme that complements client pro�les

by enabling servers to provide caches with resource information about ob-

jects at servers. We present techniques for servers to model update paterns

to objects at servers using either individual or aggregated history informa-

tion. While our models do not provide a statistical �t, we show that our

techniques are more accurate than existing approaches using three distinct

datasets. We show that server cooperation can improve a cache manager's

estimates of the freshness of cached copies, which can reduce bandwidth

consumption and communication overhead. Server cooperation can be im-

plemented with only minor changes in communication protocols. It can

also scale better than push-based policies that require servers to store in-

formation about individual clients, and has less implementation overhead

for servers. Experiments with three datasets show that using an aggregated

history can reduce the number of validations by 10%-16% compared to us-

ing only the last update, and individual history can reduce the number of
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validations by 20%-36% compared to using the last update, while providing

a comparable level of freshness. We also present an adaptive policy that

can respond to unexpected changes in an object's update patterns.

� We use pro�les to improve data delivery and di�erentiate services for mo-

bile clients. Our scheme uses pro�les for caching decisions at or near the

wireless base station. We present a scheduling scheme for data delivery to

mobile clients that can provide di�erent levels of service for di�erent mo-

bile applications. Our results show that using pro�les for both caching and

scheduling decisions at the wireless base station can provide low latency

for certain classes of applications without the overhead of end-to-end QoS

deployment. We also enable applications to use hando� pro�les, which can

mitigate the e�ects of delays when clients migrate to a neighboring wireless

cell.

� We present an implementation of pro�les on both �xed and mobile networks

using the Squid proxy cache [24]. We describe the design of the system, and

present an experimental evaluation of pro�les. Our implementation shows

that pro�le deployment is feasible in both �xed and mobile environments,

and our implementation results validate the e�ectiveness of using pro�les.

Further, our results show that validations can signi�cantly increase access

latencies, even when an object has not changed, which further motivates

the need to reduce unnecessary validations. Our implementation results

over a three-hour period show that pro�les can reduce the total number of

validations by up to 16%, and nearly all of these are unnecessary validations.
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1.2 Organization of Thesis

This dissertation is organized as follows. In Chapter 2 we provide an overview of

wide area caching and data delivery technologies and formally de�ne our problem.

In Section 2.2 we present several examples of caching architectures that are widely

deployed on �xed networks. We discuss the advantages and disadvantages of

each, and challenges to maintaining data consistency. We then present several

commonly used policies for keeping cached data consistent with data at remote

servers in Section 2.3. We consider both pull-based and push-based policies, and

both strong and weak consistency guarantees. We present architectures for mobile

data access in Section 2.4 and discuss the unique challenges for data delivery for

mobile clients. We formally de�ne the problem addressed in this dissertation in

Section 2.5.

We survey related work in Chapter 3. This chapter includes related work

in databases, web caching, and networking. We classify this work broadly into

two areas, caching and scheduling. We present work in caching in Section 3.1.

This includes techniques in both web caching and databases to maintain data

copies and reduce access latencies. We consider work in web cache consistency

and view materialization, and present the state of the art in both push based

and pull based consistency policies. We also discuss prefetching. In Section 3.2

we present work in scheduling. This work includes packet scheduling on both

wireless and �xed networks, broadcast scheduling, and real time scheduling. We

survey schemes to di�erentiate services on wireless and �xed networks, as well as

work on adaptive applications and resource allocation.

In Chapter 4 we present our framework for clients to provide pro�le informa-

tion to caches using Latency-Recency Pro�les. Pro�les are a set of application-
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speci�c parameters that re
ect client preferences with respect to the latency of

their requests and the recency of their data. We present a 
exible, scalable ar-

chitecture for clients to con�gure and communicate their pro�les to caches. The

pro�le parameters can be tuned to control the latency-recency tradeo� or provide

an upper bound with respect to either latency or recency. We evaluate pro�les

using both synthetic and trace data. Our results show that using pro�les can

reduce bandwidth consumption and latency compared to existing policies while

still providing fresh data in many cases.

In Chapter 5 we present techniques for modeling updates at remote servers

to improve the e�ectiveness of using pro�les. We show how to model updates

to either an individual object (individual history) to multiple objects (aggre-

gated history), and present multiple levels of server cooperation depending on

how much information servers provide. Depending on the level of cooperation,

cache managers can choose di�erent policies to estimate the freshness of cached

objects for di�erent levels of server cooperation. We also consider heuristics to

detect bursts, i.e., periods where the number of updates to an object exceeds the

expected number of updates and is not consistent with the object's past update

history. We present an adaptive policy that can choose between di�erent policies

depending on an object's behavior. We evaluate these di�erent policies using

several data traces from diverse applications.

In Chapter 6 we show how pro�les can improve data delivery for mobile clients.

We show that using pro�les for both caching decisions at the base station and

scheduling decisions on the wireless downlink can improve end-to-end latencies

for di�erent classes of applications. Using pro�les can also mitigate the e�ects of

hando� delays when clients migrate to a neighboring cell. We present simulation
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results that show the e�ectiveness of pro�les in mobile environments.

We present our implementation of pro�les in Chapter 7. We have extended

the Squid Proxy Cache [24] to support pro�les, and we have modeled a low

bandwidth wireless link to show the e�ectiveness of both caching and scheduling

for mobile clients. We describe the design of the system, challenges, and lessons

learned. We also present experimental results from the implementation that show

the e�ects of caching and scheduling on latency and recency of data.

We conclude and discuss future research directions in Chapter 8.

10



Chapter 2

Background and Problem De�nition

In this chapter we present the state of the art in data access in wide area and mo-

bile environments. We �rst present motivating examples that illustrate challenges

of data access across wide area �xed and wireless networks. We then discuss ex-

isting caching technologies that are currently used to address these challenges,

and describe policies for keeping cached data fresh. We classify these policies on

two dimensions: amount of server cooperation (pull-based or push-based) and

consistency guarantees (strong or weak). We consider the advantages and dis-

advantages of each policy, and discuss limitations of current solutions. Next, we

discuss issues and challenges for clients who access data from mobile devices.

Finally, we formally de�ne the problem addressed in this dissertation.

2.1 Motivation

We present several motivating examples of clients with diverse latency and re-

cency preferences on both �xed and wireless networks, and discuss challenges to

modeling updates at remote sources.
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2.1.1 Diverse client preferences

Clients accessing data in wide area environments often have diverse latency and

recency preferences. There are many factors that can in
uence client preferences,

including latency, cost, and connectivity.

Latency refers to the amount of time it takes to deliver data to clients. Vali-

dating cached objects can add signi�cant latency to requests, even when clients

have a high bandwidth connection to the Internet [40]. For some applications,

e.g., stock quotes, clients may be willing to tolerate this extra latency if it guar-

antees that they receive the most recent data. For other applications, e.g., news,

weather, clients may be willing to validate the object less often (and risk receiv-

ing stale data) to improve latencies. Cost refers to other costs associated with

remote data access. For example, if a source charges money for data access, or

if it must regenerate dynamic objects, clients may be willing to explicitly accept

stale data to save money or reduce overhead. A third factor that may in
uence

client latency and recency preferences is connectivity. Clients with a high speed

connection to the Internet may be more interested in receiving the most recent

data because they have abundant bandwidth, and they may be less tolerant of

staleness. On the other hand, clients with a low bandwidth connection may much

more willing to tolerate stale data to reduce access latencies and other costs. For

example, a mobile client with data cached locally on their PDA may wish to

minimize the number of contacts with remote servers to conserve bandwidth and

battery power.
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2.1.2 Modeling updates

Estimating the recency of cached objects is useful in many contexts, for example

keeping cached data copies consistent with objects and remote servers, or deter-

mining if a cached copy meets a client's recency requirements. However, there

are several challenges to modeling update patterns to objects at remote servers.

Sources have considerable heterogeneity in update patterns, so a single model

may not be appropriate for all sources. We outline some of the challenges below.

Sources can vary considerably with respect to their update frequency, pre-

dictability, and burstiness. Frequency refers to how often a source is updated.

Some sources may be updated many times every day, e.g., a news source. Oth-

ers may be updated less frequently, e.g., daily or weekly. Predictability refers to

how easily one can predict when the next update will occur. At one extreme are

sources with completely deterministic update patterns, for example a source that

is updated every hour on the hour. At the other extreme are sources with com-

pletely random updates. Many data sources lie in between these two extremes,

for example a source that is updated once every morning, but not necessarily at

the same time each day. Burstiness refers to periods of bursts of updates that are

not consistent with the object's update patterns. We de�ne a burst as a period

where the number of updates is signi�cantly larger than the expected number

based on the object's update patterns. For example, a news source may normally

be updated at regular intervals, but may experience a burst of updates when a

breaking news event occurs.

Existing techniques for estimating updates to sources do not consider this

heterogeneity. To accurately estimate when updates occur, we need modeling

techniques that can adapt to sources with di�erent degrees of update frequency,
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predictability, and burstiness.

2.1.3 Mobile data access

Like clients on �xed networks, mobile clients typically have diverse QoS require-

ments for their di�erent applications. Applications such as instant messaging

typically require low latency, while applications such as email may tolerate higher

latencies. As discussed in Section 2.4, many mobile clients may share a low band-

width wireless connection to the �xed Internet. Further, clients in this environ-

ment may experience frequent disconnections, both voluntary and involuntary,

and hando�s (discussed further in Section 2.4). Thus, some clients may wish to

reduce the end-to-end latency of their requests. We motivate two ways to improve

data delivery to mobile clients and present examples below.

The �rst way to improve data delivery is to use an intelligent scheduling

scheme on the wireless downlink. A naive scheduling scheme would delivery data

in a �rst come, �rst served manner. When there is a heavy workload, the latency

of all requests will increase. This is unacceptable for applications such as instant

messaging that require low latency. Thus, an intelligent scheduling scheme that

can e�ectively di�erentiate services for di�erent applications is needed.

A second way to improve data delivery for mobile clients is by caching data

near the wireless base station. While there is typically more bandwidth on the

�xed network than on the wireless downlink, caching can still reduce end to end

latencies and can improve data delivery for many mobile clients. For example, if

a mobile client may be involuntarily disconnected, it may tolerate stale cached

data that can be delivered quickly.
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2.2 Caching Architectures

Caching is a widely used technology to reduce access latencies and improve data

availability on wide area networks. A challenge to caching is that cached data

becomes stale as updates are made at remote servers. Many cache consistency

solutions have been proposed, both push-based and pull-based, with varying levels

of server cooperation. In this section, we present examples of widely used caching

architectures. These architectures make di�erent assumptions about the level of

server cooperation, including whether or not the server is aware of the cache and

how much information the server provides to the cache. In Section 2.3, we discuss

issues and challenges to keeping caching data fresh with respect to data at remote

servers, and present pull-based and push-based solutions that are widely used in

practice.

Caching can be performed at many di�erent points on the Internet, either close

to clients (e.g., browser caches, proxy caches), close to a server (e.g., application

server caches), or in between (e.g., CDNs). In this section we present examples

of caching architectures at di�erent locations on the Internet. We categorize each

of these architectures by the types of bene�ts they provide to both clients and

servers, as well as by the amount of cooperation required between servers and

caches and their ability to meet client preferences.

Client/Browser An architecture that can improve data access for a single

client is caching data locally on a client's machine, e.g., as part of their web

browser. This architecture is shown in Figure 2.1. Caching at a client's browser

allows clients to access frequently referenced objects without contacting remote

servers, which can signi�cantly reduce access latencies. It can also improve data
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Figure 2.1: Browser Cache Architecture

availability when a client is temporarily disconnected from the network. Since

a browser cache serves a single client, clients can con�gure the cache according

to their preferences. However, there is currently no way for clients to explicitly

tradeo� data recency for reduced latency.

clients

serversInternetcache

Figure 2.2: Proxy Cache Architecture

Proxy Caches Client-side proxy caching is another example of caching close

to the client, and is a widely used technique to reduce access latencies on the Web

[26, 41, 72]. In this architecture, a cache resides between a group of clients, e.g.,
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a company or university campus, and the Internet. This architecture is shown in

Figure 2.2. A proxy cache stores objects previously requested by clients, and these

cached objects may be used to serve subsequent requests. Since multiple clients

access objects through the proxy, a proxy cache can leverage commonalities in

client requests and reduce access latencies. Proxy caches typically treat all client

requests alike, so they may not meet the preferences of individual clients. We

note that servers are typically unaware of the existence of both browser and proxy

caches and no server cooperation is assumed.

server

portal

server

Internet

clients

Figure 2.3: Portal Architecture

Web Portals Portals are sites that make it easier for clients to locate and

access relevant information. They cache data gathered from other data sources,

so clients can easily access all relevant information from a single site. This can

reduce the latency and overhead of accessing multiple sources. The web portal

architecture is shown in Figure 2.3. In this architecture, some servers may be

aware of and cooperate with the portals (i.e., notify them of updates), but this

is not required. Therefore, an important challenge for portals is keeping cached

data up to date, otherwise they will provide no bene�t to the clients.
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Figure 2.4: CDN Architecture

Content Delivery Networks (CDNs) Content Delivery Networks (CDNs)

distribute frequently accessed content from a web server to multiple locations

throughout the Internet. Servers redirect client requests for an object to a cached

copy that resides close to the client or has the lightest load. CDNs serve a large

amount of static content that rarely changes, e.g., images. However, CDNs may

also serve content that changes regularly. In this case, servers notify the copies

of changes [40], so the CDN will always deliver fresh data. This di�ers from

portals that may not be able to rely on receiving updates from servers. The

CDN architecture is shown in Figure 2.4. CDNs bene�t servers by reducing

the number requests for frequently requested objects, and work particularly well

for large objects, e.g., images. They also improve access latencies for clients by

serving requests with a copy that is geographically close to the client, rather than

the copy at the server.

We note that in this dissertation, we do not study the performance of CDNs

because they are limited to cases where the server fully cooperates.
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Figure 2.5: Application Server Architecture

Application Server Caches/Reverse Caches An example of caching tech-

nologies closer to a server are application server caches and reverse proxy caches.

Application servers improve the performance of data intensive web sites by of-


oading some functionality from web servers. Many commercial products are

available, e.g., Oracle9iASWeb Cache[23], IBMWebSphere[111], and BEAWebLogic[110].

Application servers are well-suited for large scale data handling, and can perform

caching to further improve performance. For example, an application server cache

can reside between database server and the Internet, and cache components of

dynamically generated web pages. The application server can then automatically

deliver pages without contacting the database server. The Oracle Application

Server Web Cache [23] is an example of a product with this functionality. Simi-

larly, reverse proxy caches reside close to a server and cache popular objects to

reduce the load on the web server. For servers, the advantage of a reverse proxy

cache is reducing the load on the server, which improves performance. Unlike

proxy caches, which aim to improve latencies for clients, reverse proxy caches

aim to reduce loads on servers. However, they also bene�t clients who access the

server by reducing the latencies of their requests. We note that there is typically
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some cooperation between the database server and the cache, and there may be

a high-bandwidth link connecting them. The architecture is shown in Figure 2.5.

2.3 Cache Consistency

An important challenge to any of the above caching technologies is that cached

data becomes stale as updates are made at remote servers. Many types of cache

consistency policies have been proposed to address these challenges. These poli-

cies can be categorized by both the amount of server cooperation required (push-

based vs. pull-based) and the types of guarantees they provide (strong vs. weak).

We de�ne each of these below and discuss the tradeo�s, then present example of

policies in each category.

Categorization of Policies We categorize consistency policies by the amount

of server cooperation required. Push-based policies require servers to notify caches

whenever a cached object is updated. Cache managers will typically mark such

objects as invalid, and it is their responsibility to request an updated object from

the server (either on the next client request for the object or earlier). Servers

must store information about the contents of all clients caches, which may add

signi�cant overhead at the server. Push-based policies may work well when the

number of caches is small (e.g., an application server cache), but may not scale

well to a large number of caches.

In contrast, Pull-based policies do not require servers to store any informa-

tion about caches. With pull-based policies, it is the responsibility of the cache

manager to contact the server whenever it estimates that a cached object is stale.

Inaccurate estimates may cause either fresh objects to be validated or stale ob-
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jects to be delivered to clients, both of which reduce the bene�ts of caching.

Since no server cooperation is required, pull-based policies work well when there

are a large number of caches, e.g., browser or proxy caches. We note that while

pull-based policies do not require servers to store any information about clients,

they may allow servers to provide additional information to clients as part of

their responses to client requests, e.g., [41, 92, 70, 112].

Policies can also be categorized by the consistency guarantees they provide,

either strong or weak. Strong consistency means that clients are guaranteed to

receive fresh data on every request. Weak consistency means that clients are not

guaranteed to receive fresh data. We note that the choice of push vs. pull is

orthogonal to strong vs. weak consistency.

2.3.1 Example Policies

We now consider several widely used policies. We categorize each policy accord-

ing to both the amount of server cooperation (push-based or pull-based) and

freshness guarantees (strong or weak). We discuss which caching architectures

most commonly use each policy, and consider the advantages and disadvantages

of each policy, as well as the ability of each to meet client preferences.

Time-to-Live (TTL) TTL is a pull-based weak consistency policy that re-

quires no cooperation from remote servers. Each object is assigned a time-to-live

(TTL) [30, 47, 57], i.e., the estimated length of time the object will remain fresh.

If the TTL of a requested object has expired, the cache must validate the ob-

jects (check for updates) at the remote server. We discuss the details of TTL in

Chapter 3. While TTL can deliver fresh data to clients in many cases, validation
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adds overhead to client requests and reduces the bene�ts of caching. Further,

it is diÆcult to accurately estimate an object's TTL. An estimate that is too

conservative will improve freshness but result in many unnecessary validations

at remote servers, while an estimate that is too optimistic reduces contact with

remote servers but may result in many clients receiving stale data. Further, since

cache managers typically control the TTL parameters, TTL treats all clients and

applications alike and does not consider clients with diverse preferences. TTL is

the most commonly used mechanism in browser and proxy caches, and may also

be used by web portals.

Polling-Every-Time Polling-Every-Time [27, 78] is a pull-based strong con-

sistency policy. On every request, a cache must validate the cached object before

delivering the object to the client. Thus, it is equivalent to TTL with every ob-

ject expiring immediately after being cached. While this policy guarantees that

clients will receive fresh data, it adds extra latency to every request and reduces

the bene�ts of caching. It is useful when strong consistency is required and down-

loading objects is costly (e.g., the objects are very large), but is not widely used

in practice due to its high latency for clients and heavy load on remote servers.

It also does not consider clients who may tolerate stale data.

Always-Use-Cache (AUC) A pull-based weak consistency policy that min-

imizes latency is to serve all requests from a cache, and perform prefetching in

the background to keep cached objects up to date. We refer to this approach as

Always Use Cache (AUC). Prefetching strategies to maximize the overall recency

of a cache are described in [29, 35, 36]. This approach has several limitations.

First, in the general case where there is no cooperation from remote servers, the
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cache has no knowledge of when updates occur. Therefore, AUC typically must

poll remote servers to keep cached data up to date. This may consume large

amounts of bandwidth and does not scale well to large numbers of objects. Also,

there may be some delay between when the update occurs and when the cache

manager checks for updates. During this time, the cache will return stale data.

Therefore, while AUC minimizes the latency of client requests, it may perform

poorly with respect to recency and consume large amounts of bandwidth, since

it does not scale well to large caches or frequently updated objects. Thus, it may

not meet the recency requirements of some clients. AUC is commonly used by

web portals and other technologies that maintain copies of objects from many

web sites, e.g., web search engines [35].

Server-Side Invalidation (SSI) A push-based strong consistency policy is to

have servers maintain information about objects stored in client caches, and send

invalidation messages to caches when an object is updated. Alternatively, a server

may push the updated object to caches. We refer to both of these approaches as

SSI [78]. When a server sends only invalidation messages to the cache, SSI has

performance comparable to TTL assuming TTL estimates are accurate. This

approach was shown to be feasible in terms of bandwidth and server load in

[27, 78]. However, if servers instead send the updated objects after each update,

as is the case with many application server caches[23], the overhead of SSI may

be considerably greater. Also, if clients can tolerate stale data, this places an

unnecessary load on the server and consumes excessive bandwidth.

SSI is often used in application server caches, CDNs, or web portals. It may

be feasible in these environments because the number of servers and caches is

typically �xed, which facilitates cooperation and reduces scalability concerns. It
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is unlikely to be a viable alternative in proxy caches because many web servers

are either unable or unwilling to implement it.

Approximate Caching Finally, a push-based policy that does not require

strong consistency is approximate caching, e.g., [8, 65, 88]. This policy allows

cached data values to deviate from the values at the server in a controlled way. For

example, a client could accept cached stock quotes that deviate from the actual

values by no more than 5%. Servers keep track of the values stored in client

caches as well as the client speci�ed bounds, and notify clients whenever their

cached value exceeds the bounds. Approximate caching can reduce the amount of

contact between caches and servers compared to SSI, and still provides freshness

guarantees. However, like SSI, is requires servers to store information about the

contents of caches, so it works best when the number of caches is relatively small.

Summary To summarize, the above policies treat all clients and applications

alike and may not meet the needs of diverse applications. Some policies (e.g.,

TTL, Polling-Every-Time, SSI) may increase the latency of requests, consume

excessive bandwidth, or do both. This overhead may be unnecessary in cases

where clients will tolerate stale data that can be delivered quickly. Similarly,

some policies (e.g., AUC) can minimize the latency of requests but may not

meet client recency preferences. A scalable solution that can handle clients and

applications with diverse latency and recency requirements is needed.
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Figure 2.6: Mobile Architecture

2.4 Mobile Data Access

In the previous section, we discussed challenges to remote data access on wide

area �xed networks, and existing caching technologies and consistency policies to

address some of these challenges. We now consider additional characteristics and

challenges to mobile data access on wireless devices.

2.4.1 Architecture

We consider a set of mobile clients in neighboring wireless cells. Clients access

the �xed Internet through the wireless base station in their cell. Clients may

migrate to a neighboring cell before all their requests are served, and need to

connect to the base station in the new cell to receive their data. When objects

become available at the base station, a scheduling algorithm determines the order

that they are delivered to clients.
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A proxy cache may be located at or near the base station to reduce �xed

network latencies. We assume that each base station maintains a separate cache.

This architecture is shown in Figure 2.6.

We assume that base stations are equipped with functionality to make caching

and scheduling decisions. Another feasible alternative is to implement this func-

tionality at a host colocated with the base station. We do not consider such

implementation-speci�c issues further in this dissertation; instead, we use the

generic term base station to refer to the entity with the caching and scheduling

functionality.

2.4.2 Challenges

Data delivery in mobile environments presents several challenges in addition to

those in �xed network data delivery. First, the available bandwidth on the wire-

less downlink is typically much lower than on the �xed network. Therefore,

clients may experience delays due to congestion on the wireless downlink. We

note that congestion is also a challenge on �xed networks, and many scheduling

algorithms, e.g., [15, 43, 54, 103, 117] have been proposed to allocate bandwidth

fairly to clients. We discuss these further in Chapter 3. Data delivery on �xed

networks typically requires multiple hops between the source and the destina-

tion, so implementing these algorithms requires changes to the entire network.

In contrast, data delivery on wireless cellular networks consists of a single hop

from the wireless base station to the client, so wireless scheduling schemes can

be deployed locally at a base station without any changes to the �xed network.

Thus, in this dissertation we focus on scheduling only for mobile clients.

Second, clients in this environment typically have di�erent preferences with

26



respect to the latency of their applications. For some applications, e.g., instant

messaging, they may require low latency. For other applications, e.g., email, they

may tolerate higher latency. Scheduling objects for delivery in a �rst-come �rst

served manner may not meet the requirements of applications that require low

latency, thus, a more intelligent scheduling scheme is needed.

Data access on wireless networks is also characterized by varying signal strength.

The rate that a base station can deliver data to a client can vary according to

the location of the mobile client. If the base station must deliver a large amount

of data to a client with low signal strength, it may increase the latency of other

client's requests.

Another challenge in this environment is that clients typically disconnect fre-

quently. Disconnections can be either voluntary or involuntary. Before a vol-

untary disconnection, clients may wish to download all the data they will need

during the disconnection period. They may have deadlines because they need to

receive all the data before they will disconnect. Involuntary disconnections also

present a challenge because a client may become disconnected before receiving

their data. Clients may also experience hando�s, when they migrate to a neigh-

boring cell. In this case they may not be disconnected, but the data needs to be

re-routed to the new base station. Thus, clients may experience additional delays

during hando�s.

A �nal challenge is that mobile devices typically have very low battery power.

Further, sending data consumes more power than receiving data, so it is impor-

tant to minimize the number of times that clients contact remote servers. For

example, if a client has data cached locally, it may want to minimize the number

of times it checks for updates at remote servers.
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2.5 Problem De�nition

We now formally state the problem addressed in this dissertation. We �rst state

the problem for clients accessing data on �xed networks, then consider the addi-

tional challenges for clients accessing data on wireless networks.

2.5.1 Fixed Networks

We consider two problems on �xed networks. Given a client request for a cached

object, as well as client preferences with respect to latency and recency of data,

to (1) determine the recency of the object and (2) determine whether to serve

the client request from the cache without validation, or to validate the object at

the remote server.

We state the problem formally as follows: We are given a cache containing a

set of n objects, O1; O2; : : : ; On, and corresponding latencies L1; L2; : : : ; Ln and

update patterns U1; U2; : : : ; Un (described in Chapter 5).

Given a client request for object i, 1 � i � n at time T , and given client

preferences ri and li with respect to the recency of the object and the latency of

their request, the problem is to

(1) Determine the recency Ri of object i. This is a function of T and Ui.

(2) Determine whether to validate object Oi at the remote server before de-

livering the object to the client, or deliver object Oi without validation. This is

a function of ri; li; Ri, and Li.
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2.5.2 Wireless Networks

On wireless networks, given a request for an object (which may or may not be

cached at the wireless base station, the problem is (1) if the object is in the

cache, determine whether or not to validate the object before delivering to the

client, and (2) when the object becomes available for delivery at the base station,

determine when to deliver it to the client. Clients may experience hando�s before

all of their data is delivered, so we want to mitigate the e�ects of hando� delays

when clients migrate to neighboring cells. The key challenge in this environment

is scheduling the delivery of objects to meet the desired latencies of di�erent

applications.

We state the problem formally as follows: We are given a set of m clients,

C1; C2; : : : ; Cm in a single wireless cell (some clients may have migrated from a

neighboring cell), a cache containing a set of n objects, including k cached objects

O1; O2; : : : ; Ok, as well as a set of n � k objects Ok+1; : : : ; On not in the cache,

and corresponding latencies of all objects L1; L2; : : : ; Ln and recencies of cached

objects R1; R2; : : : ; Rk, and a queue Q containing y pending requests Q1; : : : ; Qy,

where Q1 is the next object the base station will deliver.

Given a client request for object i, 1 � i � n, and given client preferences ri,

li, and pi with respect to the recency of the object, the �xed network latency of

their request, and the priority of the request, the problem is to determine (1) if

i � k (i.e., the object is in the cache) whether to validate object Oi at the remote

server before delivering the object to the client, or deliver object Oi without

validation, and (2) where to insert object Oi in Q, once it becomes available for

delivery.
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Chapter 3

Related Work

There has been a considerable amount of research in the database, web caching,

and networking communities addressing challenges to data delivery in wide area

and mobile environments. In this chapter, we survey relevant research in all

of these areas. We classify this research broadly into two categories, caching

and scheduling. In Section 3.1 we discuss research related to caching for both

web and database applications to improve performance and policies for data

consistency. In Section 3.2 we present scheduling algorithms for data delivery

on �xed and mobile networks, including adaptive techniques to handle varying

bandwidth and battery power in mobile environments, broadcast scheduling, and

real-time scheduling.

3.1 Caching and Consistency

Research in caching and cache consistency addresses challenges to keeping data

copies consistent with data at servers. This includes providing data within an

acceptable degree of consistency while meeting server, client, and bandwidth

constraints. In databases, related research considers caching approximate val-

ues, view materialization, and synchronizing large collections of objects. In web
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caching, related research includes cache consistency policies and caching dynamic

content. There is also related research in caching in other contexts, e.g., caching

on mobile devices, shared memory, and distributed �lesystems. We survey re-

search in all of these areas below.

3.1.1 Web Cache Consistency

Research in web cache consistency aims to keep cached data consistent with data

at remote servers (see [109] for a survey). In Chapter 2 we gave a brief overview

of both push-based and pull-based consistency policies. We discuss details of

research on both types of policies below.

Pull-Based Consistency The pull-based cache consistency mechanism cur-

rently used in most web proxy caches is to assign each object a time-to-live

(TTL) [30, 47, 57], either using heuristics or simply using a TTL value assigned

by a server. A TTL is an a priori estimate of how long a cached object will re-

main valid. If a requested object's TTL has expired, it must be validated at the

remote server. This increases the latency of the request and reduces the bene�t

of caching. When servers do not provide TTL estimates for an object, the TTL is

estimated as a function of the object's last-modi�ed time. The TTL is typically a

percentage of the time elapsed since the object was last modi�ed. This heuristic

is based on the intuition that objects that have been modi�ed the most recently

are likely to change again in the near future, and was shown to work better than

assigning a constant TTL value in [57].

While TTL is straightforward to implement, it has several limitations. In

practice, TTL estimates tend to use conservative estimates of when an object

31



will be updated. Therefore, it may cause many unnecessary validations (freshness

misses). It also treats all objects alike and does not consider that di�erent types of

objects may have di�erent update frequencies or update patterns. Many solutions

have been proposed to address these limitations of TTL.

Some research, e.g., [35, 53, 75], has proposed techniques for modeling updates

to sources to improve the accuracy of estimating when objects are updated. Re-

search reported in [75] estimates TTL values based on the probability that an

object will be updated within a time interval, rather than considering only the

time the object was last modi�ed. The technique suggested in [75] is identical

to the First Arrival policy suggested in [53]. [35, 53, 75] all suggest modeling

updates as a Poisson model. Research reported in [35, 75] assumes a model that

is homogeneous over time, while the model we present in Chapter 5 assumes a

time varying update intensity, which was shown to work better in [53].

Research reported in [87] aims to reduce the number of freshness misses by

using di�erent TTL values depending on the type of objects. For example, im-

ages are generally updated less frequently than HTML objects, so the number of

validations could be reduced by using less conservative TTL estimates for images.

This research shares similar goals to our research in modeling updates presented

in Chapter 5. However, in our research we show that considering the update

patterns of individual objects can improve the accuracy of freshness estimates

compared to considering the aggregate behavior of similar objects.

There has been research on reducing the number of validations of TTL by

having servers piggyback information about related objects on their responses

to client requests, e.g., [41, 70, 112]. This research shares our goal of improv-

ing pull-based consistency by improving server cooperation, and having servers
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piggyback information on the responses to client requests. However, rather than

providing history information, servers provide information on which objects have

been updated since the cache last contacted the server. This research is orthogo-

nal to ours and is not concerned with estimating the freshness of cached objects,

but rather how to eÆciently refresh cached objects. In [70], clients piggyback a

list of potentially stale cached objects when they contact a server. Servers pig-

gyback the subset of those objects that have been updated on their responses.

Research reported in [41] groups related objects into server volumes based on

the likelihood that objects will be accessed together, and presents methods for

proxies to �lter and customize this information. Research reported in in [112]

views HTML pages as containers, and piggybacks information about relation-

ships between containers and embedded objects on responses to client requests.

For example, if a container needs to be validated frequently, the server could

piggyback information about embedded objects on its responses and eliminate

the need to validate each embedded object.

Another proposed solution to reduce the client-perceived latency of the TTL

approach is to send a (possibly stale) cached copy of the data quickly, and send

update information as soon as the remote server has been contacted [12, 47]. In

[47], the authors propose sending a stale page to clients and replacing it with

a more recent page when it becomes available. Research reported in [12] aims

to reduce this latency even further by calculating the di�erence between the

new page and the stale page, and sending only the delta to the client. This

reduces latency and guarantees that the client eventually receives a fresh copy,

but may consume excessive bandwidth and would be particularly costly in mobile

environments. Further, calculating the delta may be non-trivial.
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Research reported in [40, 37] considers some of the limitations of TTL consis-

tency when there are multiple levels of caching. It studies the age penalty, which

occurs when cached data is obtained from another cache, e.g., a reverse proxy

cache close to a server. If cached data is obtained, its TTL will expire earlier

than if it is obtained from the remote server, which increases the likelihood that

the object will need to be validated. This research shows that the age penalty

increases the probability of unnecessary validations, or freshness misses. This re-

search shows another limitation of using TTL consistency and further motivates

the need to improve mechanisms to keep cached data fresh.

Finally, research reported in [39] considers pre-validation policies to proac-

tively validate expired cached objects before clients request them, which can

reduce the client-perceived latency caused by freshness misses. This work shows

that up to 30-50% of cache hits may result in freshness misses. The best policy

in [39] eliminates 25% of freshness misses (useless validations). However, they re-

place each online request with up to two o�ine requests, so the overhead on the

server increases. In contrast, in Chapter 4 and Chapter 7 we will show that using

pro�les can reduce 16%-45% of freshness misses, without any additional contacts

with remote servers. Therefore, it can reduce both latency and bandwidth con-

sumption, in contrast with [39] which reduces latency but increases bandwidth

consumption.

Push-Based Consistency There has also been much research in push-based

cache consistency [45, 78, 114, 116]. Research reported in [78] studies techniques

for strong cache consistency, i.e. guaranteeing fresh data. The authors show that

server-side invalidation is e�ective for maintaining strong cache-consistency, how-

ever this technique must be implemented by remote servers. Research reported
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in [78, 114] shows that push-based freshness is feasible and works well in many

cases. In[27] the authors evaluate existing strong consistency schemes and con-

clude that strong consistency policies such as server invalidation have comparable

communication overhead to weak policies such as TTL. However, this requires

additional storage and monitoring overhead for servers, and many servers may

be unwilling or unable to implement it.

More recently, research reported in [45, 114, 115, 116] proposes techniques

to improve the scalability of strong consistency policies. Research reported in

[116, 115] proposes using a hierarchical scheme. In [115] the authors study how

di�erent workloads a�ect the scalability of strong consistency policies, and pro-

pose using adaptive hierarchies that can adjust to changes in workloads. Research

reported in [116] uses application-level multicast to communicate invalidations.

This improves the scalability of hierarchical cache consistency policies.

Research reported in [114] shows how servers can limit the amount of informa-

tion they can store without signi�cantly impacting data consistency. The authors

show that maintaining leases on objects can improve scalability. Before a lease on

an object expires, it is the server's responsibility to notify clients of updates, but

after the lease expires clients must contact servers. The authors of [114] show

that maintaining short leases can reduce storage overhead without a negative

impact on performance. They also show that delaying invalidations, i.e. sending

invalidation messages to clients only when the server has suÆcient resources, can

improve performance and scalability without signi�cantly impacting the recency

of data delivered to clients. However, this research does not consider clients with

diverse preferences.

Research reported in [45] proposes an adaptive push-pull scheme where servers
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can adaptively push updates to some clients and require others to use a pull-

based policy depending on the available resources and the update frequencies of

objects. Servers can adaptively switch from push to pull to improve scalability

when necessary.

Research reported in [85] proposes scalable push-based consistency for content

delivery networks (CDNs). This research proposes cooperation among caches to

reduce the overhead of pushing updates from the server. For example, servers can

grant a single lease to multiple caches, which improves scalability. This research

also considers the diverse recency requirements of di�erent types of data, and can

guarantee that data is consistent within a time �. This is useful for placing a

bound on the amount of time by which an object is out of date. However, this

research does not consider objects with varying update frequencies or update

semantics.

Research reported in [100] also considers cooperation among caches. This

research considers both when servers and caches should push updates, and how

much cooperation (i.e., sharing update information) there should be between

caches. The goal is to maintain the desired level of consistency among caches

with minimal overhead in terms of both network delays and processing delays.

The authors show that when network delay is high, a high degree of cooperation

between caches improves consistency. However, when processing delay is high, in-

creasing cooperation between caches can negatively impact performance because

processing delays at caches add excessive overhead.

Cache Replacement We note that there has been much research in web cache

replacement policies, e.g., [26, 67, 71, 96, 97, 98]. While this research is orthogonal

to this dissertation, much of this research takes into account latency and recency
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of data to improve the e�ectiveness of caching. For example, there is typically

greater bene�t to caching objects with higher latency and less frequent updates.

Thus, ncorporating pro�les into cache replacement policies could further improve

the ability of caches to meet client preferences.

Research reported in [96, 113] incorporates the latency of objects into the

replacement decision, and shares our goal of reducing access latencies for clients.

Research reported in [97, 98] combines cache replacement with cache consistency

and aims to improve the recency of cached objects. However, this research does

not consider clients or applications that may tolerate stale data.

3.1.2 Approximate Caching

Research in approximate caching [8, 65, 88, 89] allows cached data values to dif-

fer from values at the remote server within a client-speci�ed bound. Like the

research in push-based consistency (e.g., [78]) described above, this research re-

quires servers to store information about clients and the objects in their caches,

as well as information about the client-speci�ed bounds for each data value. This

requires a considerable amount of storage and monitoring overhead at servers and

may not scale well. However, this research can reduce the number of communi-

cations between caches and servers, which can reduce bandwidth consumption

while still providing data within an acceptable degree of recency.

Research reported in [8] introduces the term quasi-copy, a cached value that

is allowed to deviate from a server value in a controlled way. For example, a

client querying stock prices may be satis�ed with cached stock prices that are

within 5 percent of actual prices. Research reported in [65] aims to reduce the

number of transmissions of an object from a server to a client. The authors
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propose a dynamic algorithm that optimizes the refresh rate between the client

and server based on the client's tolerance for stale data, the frequency of updates

to the object, and the frequency of requests for the object. This research uses

the number of updates as its recency metric, and does not consider the amount

that a value changes on each update. Research reported in [88] generalizes this

research to consider the precision of data values, and adaptively adjusts the degree

of precision of cached data values to achieve optimal performance under varying

workloads. Finally, research reported in [89] studies policies to prioritize refreshes

to minimize divergence between server data values and cached values. These

policies exploit server cooperation by considering the available bandwidth and

resources at both the server and the cache.

Approximate caching is useful when clients can tolerate staleness within cer-

tain bounds, but requires servers to push updates to clients and may not scale.

In contrast, the research we present in Chapter 5 on modeling updates at servers

can deliver data within client staleness bounds with a high probability, but does

not require the high server overhead of approximate caching.

3.1.3 Materialized Views

Research in the area of materialized views, e.g., [13, 56, 60] precomputes answers

to database queries to reduce query execution time. Queries can be answered

using these precomputed views, which is faster than querying the underlying

database. As in web caching, a key challenge in materialized view research is

keeping the views fresh when updates are made to the underlying database.

However, the challenge is to reduce the computational overhead of recomputing

views, rather than to reduce network latency. This research typically assumes full
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knowledge of updates to the underlying database, i.e., push-based consistency.

Therefore, they do not address the issue of how often to check for updates.

One relevant problem in research on materialized views is when to incorporate

updates into a view [59, 119]. Unlike our research, the issue is not when to

check for updates, but to determine the most eÆcient strategy for recomputing

the view given the update information [59]. Research reported in [52] allows

stale data to be incorporated into materialized views by adding an obsolescence

cost, and shares our goal of allowing clients to accept stale data in exchange for

lower latencies. Another problem in materialized views is view selection [13, 56,

60] , i.e., choosing a subset of views to materialize to minimize query response

time and/or the cost of maintaining the views. This is related to research in

cache replacement that caches web objects to minimize latency or bandwidth

consumption.

3.1.4 Caching Dynamic Content

A related problem in the context of web-accessible databases is caching dynam-

ically generated web content. As in materialized views, this research typically

assumes full knowledge of updates to the underlying database, i.e., push-based

consistency. Challenges include eÆciently propagating update information, de-

termining which pages are a�ected by updates, and eÆciently recomputing pages.

Research reported in [74, 73] addresses the problem of computing materialized

views for web-accessible databases. It di�ers from related research in materialized

views in that it considers the problem of where to materialize views, i.e. in the

underlying database or at the web server. As in other research in materialized

views, the web server is aware of all updates to the underlying database. This
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research determines when materializing a view improves performance, and where

to materialize it, assuming full knowledge of updates to the underlying database.

EÆcient strategies for the database to propagate updates to the WebView are

presented in [73].

Research reported in [25, 33, 118] cache dynamic data at the page level. This

research proposes techniques to determine which pages the server should inval-

idate when updates occur to the underlying database. The goal is determining

when to propagate updates to cached data, assuming full knowledge of updates to

the underlying database. In contrast, the research presented in this dissertation

aims to determing whether cached data meets client preferences.

In [25], pages are invalidated by two modules, a sni�er which maps the rela-

tionship between dynamic pages and the underlying queries that generate them,

and an invalidator which maps the relationship between queries and changes to

the database. In [33] a dependency graph maintains information about relation-

ships between dynamic pages and the underlying data, and a graph traversal al-

gorithm determines which pages need to be invalidated when the underlying data

is updated. Research reported in [118] proposes several techniques to reduce the

overhead of invalidation for dynamically generated web pages, and shares our goal

of reducing the overhead of maintaining cache consistency. It partitions dynamic

pages into classes that share similar patterns, so servers can invalidate pages

in groups rather than individually. It also proposes a lazy invalidation scheme

that does not invalidate a page until it is requested, to reduce the overhead of

computing which pages must be invalidated. Finally, it proposes precomputing

predictable pages that are updated frequently, to reduce the overhead of gener-

ating new pages after each update.
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There is also research in caching database tuples or page components rather

than entire pages. Research reported in [80] caches components of dynamically

generated web pages to exploit overlap in queries. However, this research does

not consider updates to the underlying databases. Research reported in [9] also

proposes techniques to cache database tuples to answer queries. Servers send

periodic refresh messages to notify caches of tuples that have changed, which

guarantees that cached data is consistent with a past database state within some

constant time limit. Research reported in [42] proposes dynamic proxy-based

caching. This combines the bene�ts of reverse caches and proxy caches by allow-

ing proxies to cache components of dynamically generated pages and generate

them on the 
y. They determine page layout on demand by contacting remote

servers. The focus of this research is on enabling proxies to cache components of

dynamic pages. This research assumes that server invalidates the cached compo-

nents when they are updated, and does not consider client preferences.

3.1.5 Prefetching

Previously we have discussed both pull-based consistency policies that refresh

objects on-demand, i.e., when they are requested by a client, and push-based

policies where servers notify caches when updates occur. In addition, there is

much research, e.g., [35, 36, 29, 34] that considers prefetching objects before they

are requested by clients to improve the availability and recency of cached objects.

These policies are all pull-based.

Research reported in [29, 35, 36] considers the problem of refreshing a large

set of objects, e.g., crawling pages for a web crawler. This is the AUC policy

described in Chapter 2. This research assumes that all requests are served from
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the cache, and does not consider client preferences for recency or latency. Cache

managers periodically sample servers to detect updates, so they may have in-

complete update histories. Research reported in [35] considers prefetching locally

cached objects to improve the overall recency of a cache. It determines which

objects to sample based on their observed update frequencies, and does not con-

sider object popularity. Research reported in [36] samples a subset of objects at

each server to detect which servers change most frequently. Research reported

in [29] incorporates object popularity into the decision of which objects to pre-

fectch. Since all this research assumes that requested objects are served from the

cache, these solutions may not meet client recency preferences. Further, these

techniques for modeling update patterns do not consider that an object's update

frequency may vary at di�erent times, as we do in Chapter 5.

Research reported in [34] considers pro�le-driven cache management. The

goal is to refresh a collection of cached objects for a client who is connected for a

limited time. There may be insuÆcient time or bandwidth to refresh all objects,

so the decision on what to refresh is made based on a client's pro�le. The pro�le

exploits both client preferences for recency and semantic relationships between

objects, and the goal is to refresh the subset of objects that will maximize utility

for the client. This research di�ers from the research in this dissertation because

its goal is to select a set of objects to refresh to maximize client utility. In contrast,

the goal of our pro�les is to meet a client's preferences with respect to latency

and recency of an individual object, and to reduce unnecessary communications

with servers whenever possible.

Prefetching for proxy caches to refresh objects before they are requested was

proposed in [41, 39, 47]. This research proposes validating cached objects when
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their TTL expires. To further reduce latency, research reported in [38] proposes

prefetching the means to document transfer. This can reduce the overhead of

DNS lookups and connecting to servers, without prefetching the actual docu-

ment. Research reported in [72] investigates the performance bene�ts of both

caching and prefetching and concludes that proxy caching can reduce latency up

to 26%, while prefetching can reduce latency by 57%, and a combined caching

and prefetching proxy can reduce latency by up to 60%.

Research reported in [66, 72, 90] uses predictive prefetching to prefetch objects

that are likely to be requested by clients in the near future. This research typically

exploits the relationships between links on a page. This research is orthogonal

to the research in this dissertation because the emphasis is on predicting client's

access patterns rather than improving the recency of data in the cache.

3.1.6 Caching in Other Contexts

There is a considerable amount of research in caching and cache consistency in

other contexts, e.g., caching on mobile devices, caching in distributed memory

and �lesystems. This research shares our goals of reducing latency and improv-

ing availability, but makes di�erent assumptions about available bandwidth and

connectivity than our research. These soutions are also designed for di�erent

applications, so they may have di�erent consistency requirements.

Mobile Environments Research in data caching on mobile devices aims to

maintain data consistency and improve data availability in the presence of limited

connectivity. Some of this work is for client-server environments, e.g., [1, 14, 63].

In [1, 2, 14] clients cache data on their mobile devices, and a server periodically
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broadcasts data to clients. These works aim to optimize use of the wireless

bandwidth for all clients and do not consider client preferences with respect to

latency and recency of data. In contrast, our research in mobile pro�les presented

in Chapter 6 focuses on caching on the �xed network to reduce client-perceived

latency. We discuss pull-based policies that can improve client-server data access

on mobile devices in Chapter 5.

Some research proposes proxy caching on �xed networks to improve wireless

web access. WebExpress [63] is a system that aims to reduce the latency of Web

access for mobile clients by caching data on both client devices and on the �xed

network. However, the focus of this research is on reducing wireless traÆc volume

and protocol overheads. Research reported in [58] considers mobility issues by

pushing portions of a proxy cache to neighboring cells, based on predictions of

clients' movement patterns. However, this research does not consider keeping

cached objects fresh, and does not consider the latency-recency tradeo� we study

in this dissertation.

There is also research in caching on mobile devices for peer to peer applications

[32, 44]. In this research, there is no centralized server, and updates to objects can

occur in multiple locations. The goal of this research is to improve data availabilty

while managing con
icting updates in the presence of limited connectivity. This

research emphasizes maintaining consistency while reducing communication costs

between devices, rather than meeting client latency and recency preferences as

in our research.

Distributed Filesystems and Databases There is a considerable amount

of research in caching and cache consistency in other contexts, e.g., distributed

�lesystems [64, 83], client-server databases [51], and distributed shared memory
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[68]. This research di�ers from research in web caching because it assumes clients

can both read and write to cached copies; in contrast, client caching in web envi-

ronments is read-only. Thus, this research typically requires stronger consistency

than in a web environment. Further, this research may assume higher bandwidth

between copies than in a web environment, and may not scale well to the web

where there may be many cached copies of an object.

3.1.7 HTTP Protocol

Finally, we note that the HTTP/1.1 Protocol [92] includes two cache control

mechanisms that allow clients to express recency requirements. Speci�cally, there

are two header �elds supported by HTTP/1.1 that can be used by clients who

wish to control the freshness of their data. The �rst is the max-age �eld. This

�eld can be used by either the client or server to indicate the maximum age that

a cached object is valid, where age is de�ned as the number of seconds elapsed

since the cached object was delivered or validated by the remote server. When

both the client and the server specify a max-age value, the smaller of the two

values is used. We note that a client who uses the max-age header will not accept

stale data unless a max-stale header (described below) is also present.

HTTP/1.1 also includes a max-stale �eld that can be used by clients to

indicate that they will accept stale data. It allows clients to specify the number

of seconds after the object's TTL expires that they will still accept a cached

object. max-stale can also be used with no value to indicate that a client will

accept a stale object of any age. When both max-age and max-stale values are

set, or when the client and server specify di�erent values for max-age, the smaller

value is used. However, most browsers do not provide an interface for clients to
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easily specify a max-stale value, and not all servers support this header.

While the max-stale header �eld is useful for clients who can tolerate stale

data, it has several limitations compared to the research presented in this disser-

tation. First, it supports only one recency metric, the number of seconds elapsed

since the object became stale as in [35]. This metric may not be appropriate

in all situations because it does not consider update frequency or the e�ects of

updates on the value of the cached data. Further, it may be diÆcult for a client

to specify the exact number of seconds after the expiration time that they will

accept stale data. For objects that are updated frequently, clients may prefer a

smaller max-stale value than for objects that are updated infrequently. Without

any knowledge of the update frequencies of the source, the client cannot choose

the appropriate values. Therefore, it may be more natural for a client to express

their pro�les in terms of the expected number of updates to the source, or some

other recency metric, e.g., obsolescence [52]. Since the proxy cache stores infor-

mation about the last time that the object was modi�ed at the remote server,

the proxy can make an informed estimate of the number of updates to the object,

and make an appropriate decision based on the client pro�le.

We note that as with the above HTTP/1.1 header �elds, our proposed frame-

work does not override the no-cache and must-revalidate �elds. These header

�elds are important for applications where both servers and clients require strong

consistency, e.g., for client-server transactions.

3.2 Scheduling

Related research in scheduling in both networking and systems shares our goal

of meeting the latency requirements of diverse applications. This includes re-
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search in packet scheduling on both �xed and wireless networks to provide fair-

ness or QoS guarantees. There is also research in supporting diverse applications

on wireless networks to adapt to limited resources including battery power and

bandwidth. Related research in mobile computing also considers how to improve

data delivery during hando�s. Finally, there is relevant research in scheduling for

data broadcast and scheduling in other contexts, e.g., real time systems.

3.2.1 Packet Scheduling and Bandwidth Allocation

There has been a considerable amount of research in the networking community

in packet scheduling to allocate bandwidth fairly among multiple clients, e.g.,

[15, 43, 54, 103, 117]. For example, Weighted Fair Queueing (WFQ) [43] guaran-

tees each client receives a fair share of the available bandwidth. However, it does

not consider the diverse bandwidth and scheduling requirements of di�erent ap-

plications. Research reported in [79] considers fair queueing on wireless networks

and will be discussed further below.

Providing support for diverse applications sharing a single network has been

considered for both �xed networks, e.g.,[15, 28, 48, 54, 62, 82, 93, 103] and wireless

networks, e.g.,[5, 16, 76, 77, 86]. The emphasis of this research is on allocation of

suÆcient bandwidth to support certain applications, e.g., real time and multime-

dia. These applications require a continuous bandwidth stream over a period of

time. In contrast, the goal of our pro�les is to ensure timely delivery of individual

objects rather than allocating bandwidth for streams of data. This ensures eÆ-

cient use of the available bandwidth and reduces the implementation overhead.

We discuss related research for both �xed and wireless networks below.
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Fixed Networks Research reported in [15, 54, 103] present fair queueing al-

gorithms for integrated services networks that must support a variety of applica-

tions such as multimedia, ftp, telnet, WWW, etc. Hierarchical Fair Service Curve

Scheduling (H-FSC) [103] describes a hierarchical bandwidth sharing model that

considers both fairness and QoS guarantees for diverse applications sharing band-

width. It aims to schedule packet delivery to meet requirements of real-time appli-

cations while allocating the remaining bandwidth fairly among multiple clients

and organizations. This scheme shares our goal of supporting diverse applica-

tions. However, it would be diÆcult to implement on wireless networks where

the clients and applications sharing the bandwidth is constantly changing.

There has also been research in bandwidth allocation on �xed networks to

meet the requirements of an application. Research reported in [82] introduces

a QoS broker which allocates bandwidth as well as application and operating

system resources to provide QoS guarantees to multimedia applications. This

research uses pro�les to allocate resources. While these are similar in spirit to

the pro�les in this dissertation, the emphasis is on QoS parameters for multime-

dia applications. Research reported in [28] considers �xed-network bandwidth

allocation to maximize the utility of diverse applications. This research shares

our goal of provisioning limited resources according to the needs of applications.

The service di�erentiation scheme described in Chapter 6 is similar in spirit to

the relative service di�erentation scheme described in [48]. This research di�eren-

tiates services for di�erent classes without the overhead of admission control and

resource reservation mechanisms. Clients can select the service class that best

meets their quality of service and pricing constraints. However, in our research

we speci�cally take cache and mobility issues into account, and do not provide
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the same strict set of guarantees as in [48].

Wireless Networks There is also much research in bandwidth allocation on

mobile networks which aims to adapt to variances in bandwidth availability and

reliability typical in these environments. This research typically considers trade-

o�s in QoS or data quality that result from varying bandwidth availability. These

tradeo�s di�er from the latency-recency tradeo� that we consider in this disser-

tation. Research reported in [76] describes a framework for adaptive service for

mobile multimedia applications. The goal is to provide consistent QoS in the

presence noise disturbance, varying distance between the client and the base sta-

tion, and hando�s. Utility-based adaptive bandwidth allocation is presented in

[16, 77].

Research reported in [79] describes packet scheduling on wireless networks.

This research aims to approximate fair queueing algorithms, e.g., [15, 43, 54] while

taking into account both mobility issues and varying signal strengths. Research

reported in [5] describes algorithms for scheduling data delivery for requests with

deadlines at a wireless base station. This research considers requests with varying

utility per byte delivered to client as well as clients with varying signal strength.

Online approximation algorithms are presented to maximize overall utility. These

algorithms are e�ective when requests have no utility after their deadlines, how-

ever, starvation is possible with this scheme. In contrast, the scheduling scheme

we present in Chapter 6 avoids starvation.

Adaptive support for mobile applications is also presented in Odyssey [86].

The aim is to adapt to changing network characteristics that are typical in mobile

environments. When available bandwith becomes limited, applications can trade

data quality for reduced resource consumption. For example, applications that
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download images may tolerate smaller images that consume less bandwidth. This

tradeo� di�ers from the latency-recency tradeo� that we consider in this disser-

tation. Finally, in [69, 102] the authors consider application-speci�c power saving

techniques for mobile devices. Research reported in [69] presents an application-

speci�c transport layer protocol that can suspend and resume communication to

save power while still meeting the latency requirements of an application.

3.2.2 Hando�s

There has also been a considerable amount of research in mobility support in the

presence of hando�s. This research shares our goal of reducing the overhead of

hando� during data delivery to mobile clients. Mobile IP[91] is a widely used

protocol that routes packets to mobile clients through a home agent. However,

packets may be lost during hando�s, so clients may experience some delays. Many

schemes aim to improve upon this by multicasting packets to neighboring base

stations, e.g., [11, 81, 94, 99]. However, implementing such techniques may add

excessive overhead on the �xed network, and multicast may not be available.

ICEBERG [108] aims to support mobility in the presence of diverse networks

and applications.

In contrast to the above solutions, the caching and scheduling scheme we

present in Chapter 6 can reduce latencies during hando�s without requiring mul-

ticast or other changes to the underlying network infrastructure.

3.2.3 Broadcast Scheduling

The goal of research in broadcast scheduling, e.g.,[1, 3, 6, 104, 107] is to minimize

the average latency of client requests. Some of this research is online or on-
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demand, e.g., [3, 6]. In this research, clients requests data objects and a server

broadcasts objects to clients based on these requests. Research reported in [6]

presents an online scheduling algorithm that can be tuned to trade o� average

and worst case latency assuming uniform object sizes. Research reported in

[3] proposes online algorithms that consider varying object sizes and aims to

minimize stretch, i.e., the ratio of the latency of the requests to its size. This

is shown to perform better when objects have varying sizes. This research does

not consider the varying latency requirements of di�erent applications and are

most appropriate in a broadcast setting. In contrast, this disseration considers a

unicast model.

Other research in broadcast scheduling is o�ine, e.g., [1, 104, 107]. This

research uses a priori knowledge of object's popularity to develop a broadcast

schedule. Since they rely on o�ine knowledge of an object's popularity, they

cannot adapt to varying workloads and are not appropriate for the types of ap-

plications we consider in this dissertation.

Most research in broadcast scheduling assumes that all data is available for

broadcast at the server, and does not consider updates to requested data objects.

Research reported in [7] considers the problem of data staging, i.e. bringing

requested objects into main memory so they can be broadcast to clients. However,

this research does not consider how to keep the cache fresh in the presence of

updates, and does not consider latency/recency tradeo�s.

3.2.4 Real-Time Scheduling

Finally, there is a considerable amount of research in scheduling for real-time

systems, e.g.,[21, 22, 101]. The goal of this research is to schedule a set of jobs
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such that each job will complete before its deadline. The Earliest Deadline First

(EDF) scheduling algorithm [101] has been shown to be optimal in the sense

that it is guaranteed to �nd a solution such that all jobs complete before their

deadlines, if such a solution exists. When a system is overloaded, i.e., it is

impossible to schedule all jobs to complete before their deadlines, some jobs

must be rejected. Utility functions are used to determine which jobs should be

rejected to maximize the overall utility of the system. For example, a job that

has no utility to the system if it completes after the deadline would have a utility

value of a constant if it completes before the deadline, and 0 if it completes

after the deadline. Research reported in [20] studies value functions for real-time

systems. In Chapter 6, we present a best-e�ort service di�erentiation scheme that

maps pro�les to deadlines and uses EDF scheduling at the wireless base station.
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Chapter 4

Latency-Recency Pro�les

We now present our framework to support Latency-Recency pro�les. Latency-

Recency pro�les are a set of application-speci�c parameters that allow clients to

specify their latency and recency preferences for di�erent applications [19]. Our

framework for pro�les enables clients to communicate this information to caches

and improve pull-based cache consistency. We �rst discuss issues important to

successfully deploying pro�les, and present the parameters and scoring function

used by the pro�les. We describe our pro�le based downloading policy (labelled

Pro�le). Finally, we present experimental results using both synthetic and trace

data.

Our main results are as follows:

� Using pro�les can signi�cantly reduce access latencies for clients who can

tolerate stale data.

� Using pro�les can signi�cantly reduce the number of unnecessary valida-

tions (freshness misses) while still providing fresh data in many cases.

� Pro�les can exploit increased cache size better than TTL or AUC. AUC

may deliver very stale data when the cache is large, and TTL cannot utilize

53



a larger cache to reduce latency.

� During surge periods, using pro�les can reduce latencies for all clients, even

those that require fresh data.

� We present extensive sensitivity analysis that shows the e�ects of tuning

pro�le parameters on both latency and recency, and shows that the perfor-

mance does indeed meet the preferences speci�ed by the pro�le parameters.

� Pro�les can be tuned to provide performance anywhere between the ex-

tremes of TTL and AUC, and can provide guarantees with respect to either

latency or recency of data.

4.1 Pro�les: Overview and Parameters

Latency-Recency Pro�les allow clients to express their preferences for their appli-

cations using a few parameters. Pro�les are set individually by each client, and

a single client can specify either a single pro�le or di�erent pro�les for di�erent

applications. In this section we present Pro�le, a pro�le-based downloading pol-

icy that is a generalization of the TTL and AUC policies presented in Chapter 2.

We �rst discuss several key issues that are crucial to successfully implementing

and using pro�les. We then describe how clients can choose target latency and

recency values, and present a parameterized decision function that can capture

the latency-recency tradeo� for a particular client or application. Finally, we

discuss upper bounds provided by our function, and describe how the parameters

can be tuned to meet client requirements with minimal overhead for the clients.
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4.1.1 Specifying Pro�les

There are several issues that are important to successfully implementing and

using client pro�les at a cache. The �rst issue is scalability. An implementation

of pro�les that requires a cache to store detailed information about each client

would add considerable overhead because clients would need to register pro�les

with the cache, and the cache would need to keep the information up to date. This

does not scale well to large numbers of clients. Our solution to this problem is

to implement a parameterized function at the cache, which is sensitive to pro�les

but does not require the cache to store any pro�le information. In our framework,

browsers append the pro�le parameters to client HTTP requests, and Pro�le uses

these parameters in the decision function. Thus, Pro�le can easily scale to a large

number of clients, with no additional communication overhead between the client

and the cache. This scalability is a key bene�t to using a parameterized function.

A second issue is 
exibility. Clients should be able to specify pro�les that

are appropriate for each of their applications, and they should be able to easily

adjust their pro�les as needed. To allow clients to use di�erent pro�les for di�er-

ent applications, clients can choose a default pro�le which they can override for

speci�c domain names or URLs. For example, a client requiring the most recent

stock quotes may specify that all requests to the domain finance.yahoo.com

[49] require the most recent data, but that all other requests can tolerate up to

1 update. Clients can easily change their pro�les using their browser, without

communicating with the cache.

The third issue is ease of implementation. It is straightforward to modify a

cache to implement Pro�le. Pro�le allows clients with diverse pro�les to share a

cache without adding any overhead to each other's requests. For each individual
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request, the cache will use Pro�le to choose how to serve the request based on

that client's pro�le. If clients with di�erent pro�les request the same object

simultaneously, the cache could serve one client's request from the cache while

downloading a fresh copy for the other client.

The �nal issue relates to guarantees. Pro�le is a generalization of TTL, which

aims to provide fresh data (assuming TTL estimates are accurate) but may have

high latency, and AUC, which guarantees low latency but may delivery stale

data. Pro�le can be tuned to provide performance anywhere between these two

extremes. In addition, Pro�le can support upper bounds on either latency or

recency, which other approaches do not support.

4.1.2 Parameters of Pro�les and Pro�le-Based Download-

ing

Recall from Section 2.5 that our problem is, given a request for an object Oi and

client preferences for the recency and latency of the object ri and li, to determine

whether or not the object meets the client preferences. We now present the

corresponding pro�le parameters and algorithms.

Pro�les include the following parameters:

Target Latency: The �rst parameter is a target latency (TL), which is the

desired end-to-end latency to download an object. For an object Oi, this corre-

sponds to li in Section 2.5. We note that the cache can estimate the latency Li

of downloading an object using techniques described in [4, 55], which have been

shown to be reasonably accurate in practice.

Target Recency (Age): Clients specify a target recency TA. For an object Oi,

this corresponds to ri in Section 2.5.
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There are many possible recency metrics that could be chosen. We choose as

our recency metric the number of times the object has been updated at the remote

server since it was cached. We refer to this metric as age. We brie
y discuss our

choice of recency metric. There have been many di�erent metrics described and

used in the literature, e.g., [8, 35, 52, 65]. One metric is the amount of time

elapsed since the cached object became stale [35]. Obsolescence measures age in

terms of the number of insertions, deletions, and modi�cations [52]. Research

reported in [65] considers age, the number of times an object has been updated

at the remote server. The choice of recency metric depends on the semantics of

the application and the types of updates that occur, so each of the above metrics

is useful in di�erent circumstances. We selected age as the recency metric [65]

because we believe this metric is useful for a variety of applications. In the

remainder of this dissertation, we use the terms recency and age interchangeably.

4.1.3 Pro�le: Parameterized Decision Function and Pro�le-

Based Downloading

Given a request for an object Oi, to determine if it needs to be downloaded we

must do the following:

1. Estimate the age of the cached copy of the object (Ri), and the latency of

downloading a fresh object (Li).

2. Compute scores for both using the cached object and downloading a fresh

object from a remote server. These scores are a function of Ri, ri, Li, and

li.

3. Choose whether to download a fresh object or deliver the cached object to
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the client.

We note that latency can be estimated using cost models such as those in

[4, 55]. We present a heuristic for estimating age Ri in Section 4.2.4, and we

consider more sophisticated policies for estimating age in Chapter 5. We now

describe how to compute scores and determine whether or not to download an

object Oi, given latency and recency estimates Li and Ri.

Scoring Function Pro�le uses a parameterized function that incorporates

client pro�les into the decision of whether to download a requested object or

to use a cached copy. First, we describe the decision function. We note that

there are many di�erent functions that could be used. We chose this particular

function because it has several desirable properties. First, it can be tuned to

provide an upper bound with respect to latency or recency. Second, when it is

impossible to meet both targets, two parameters can be set to re
ect a tradeo�,

i.e., the relative importance of meeting each of the targets.

Our function �rst calculates a score for both recency and latency as follows:

Score(T; x; K) =

8><
>:

1 if x � T

K=(x� T +K) otherwise

T is the target value of recency or latency, x is the actual value, and K is a

constant �0 that is used to tune the rate at which the score decreases. Let KL

be the K value used to control the latency score, and let KA be the K value used

to control the recency score. Note that the K values are set automatically by

the browser based on client preferences, using a graphical interface (described in

Section 4.1.4).
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Combined Weighted Score The decision function is a separable function

that combines the scores for recency and latency. It can also be tuned to capture

the latency-recency tradeo� for a client or application. This is done by assigning

(relative) weights to the importance of latency and recency. The sum of the

weights must equal 1. For some applications it may be more important to meet

the recency target; for others it may be more important to meet the latency

target. Let w be the weight assigned to meeting the latency target, and let (1 -

w) be the weight assigned to meeting the recency target. Given Age, the estimated

age of object Oi (corresponding to Ri), and Latency, the estimated latency of Oi

(corresponding to Li), we compute the combined score of an object as follows:

CombinedScore = (1 - w)*Score(TA, Age, KA) + w*Score(TL,Latency,

KL)

Pro�le-Based Downloading Our algorithm Pro�le uses the combined scoring

function to make the decision of whether or not to download an object. When

an object is requested, we compute the score of either downloading the object

(DownloadScore) or using the cached copy (CacheScore). The Pro�le policy is

as follows: When an object is requested, if DownloadScore > CacheScore, the

object is downloaded from the remote server. Otherwise the cached copy is used.

We compute DownloadScore for an object as follows: Recall that when an

object is downloaded, its Age is 0 because the remote server always provides the

most recent data. Therefore, Score(TA, Age, KA) is always 1.0. Latency is

the estimated latency of downloading the object from a remote server. We note

that latency can be estimated using cost models such as those in [4, 55]. Thus,

DownloadScore, the combined score of downloading an object, is
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DownloadScore = (1� w) � 1:0 + w � Score(TL; Latency; KL) (4.1)

We now consider CacheScore. Recall that when an object is read from the

cache, its Latency is 0. Therefore, Score(TL,Latency, KL) is always 1.0. Age

is the estimated age of the cached object. CacheScore, the combined value of

using a cached copy of an object, is

CacheScore = (1� w) � Score(TA; Age; KA) + w � 1:0 (4.2)

4.1.4 Choosing a Pro�le

The success of latency-recency pro�les depends on the ease of creating a pro�le.

If setting the parameters is complicated and time consuming, clients will be less

inclined to use pro�les. We describe an interface that allows clients to express

the most appropriate pro�les for their applications.

Default Pro�les The default pro�le has its targets set to provide identical

performance to TTL. This corresponds to settings of w=0 and TA=0. Note that

with these settings, the TL, KA, and KL values are irrelevant. This TTL setting

is what many caches currently provide, e.g., proxy caches [24]. For those clients

who wish to explicitly trade recency for improved latency, the browser will present

a small number of parameter settings to the client, and let the client choose the

settings that best suit their needs for each application. We describe how this

choice can be made using the graphical interfaces of Figure 4.1 and Figure 4.2.

Figure 4.1 illustrates the latency-recency tradeo�s of three possible parameter

settings. In these graphs, we plot the recency (age) of a cached object as x
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Figure 4.1: Behavior of (a) TTL (b) AUC (c) Pro�le with TA=TL=0, w=0.5,

and KA=KL=1
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number of updates on the x axis and the latency of downloading the object as y

seconds on the y axis. If a point (x,y) lies in the shaded area, then the object

is downloaded. If (x,y) lies in the white area, then the object is read from the

cache. Figure 4.1(a) displays the behavior of the default TTL pro�le (w=0, TA=0)

to the user. Note that when w=0, the values of TL, KA, and KL are irrelevant.

Any object with 0 updates is served from the cache, while any object with 1 or

more updates is downloaded. Figure 4.1(b) displays the behavior of AUC (w=1,

TL=0), where the client will tolerate any amount of staleness to minimize access

latency. AUC always uses the cached object (no shaded area), regardless of the

number of updates.

Tuning Pro�les For clients who desire performance between the two extremes

of TTL and AUC, there are many pro�les that can be chosen. An example of a

pro�le between these extremes has parameters (w = 0.5, KA =KL=1, and TA =

TL=0). Figure 4.1(c) displays the behavior of this pro�le. We see that the decision

function captures the latency-recency tradeo�. When objects have higher access

latencies, users may tolerate older cached objects (white area). Conversely, as the

cached object becomes more stale, users are willing to wait longer to download a

fresh object (gray area).

The pro�les illustrated in Figure 4.1 can be tailored further. This is straight-

forward to do in our framework. For example, consider a client who wishes to

receive data with recency of no more than 1 update. Such a client could choose

the default TTL as in Figure 4.1(a), but change the TA value from 0 to 1, i.e.,

(w=0, TA = 1). This would result in any object with 2 or more updates being

downloaded, rather than 1 or more updates as shown in Figure 4.1(a).
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Upper Bounds The pro�les of Figure 4.1 do not provide any upper bounds on

latency or recency. For clients who desire even greater control over the settings

of their pro�les, the values for w and KL and KA can be chosen to provide upper

bounds. Clients do not need to manually choose w and K values. Instead, clients

can choose an upper bound for either latency or recency. They are then aided

by a graphical interface (similar to Figure 4.2) that illustrates the tradeo� for

settings of w and K values, and allows them to make the appropriate choice.
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Figure 4.2: Upper Bounds on the Latency-Recency Tradeo�

An upper bound for either latency or recency can be chosen. In particular,

assigning a higher weight to latency (w > 0.5) places an upper bound on the

latency of a downloaded request, and assigning a higher weight to age (w < 0.5)

places an upper bound on the age of an object delivered to the client from the

cache.

We illustrate with an example. Suppose a client has a pro�le of (w = 0.6,

TA=0, TL=0). This means the weight of latency (w) is 0.6 and the weight of
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recency (1� w) is 0.4.

The combined score of downloading the object is:

0:6 � DownloadScore + 0:4 � 1:0

The combined score of using the cached object is:

0:6 � 1:0 + 0:4 � CacheScore

Note that when DownloadScore=0, the combined score of downloading the

object is 0.4, and when CacheScore=0, the combined score of using the cached

object is 0.6. These are lower bounds on the combined score. Therefore, when

the combined score of downloading the object is less than 0.6, it will always have

lower score than using the cached object. Therefore, the cached object will be

used, regardless of the value of CacheScore.

We solve for DownloadScore as follows:

0:6 � DownloadScore + 0:4 < 0:6

If DownloadScore < 1/3, the object will always be read from the cache,

regardless of the age of the cached data. This property allows clients to specify

a bound on latency. Let MaxLatency be the maximum acceptable latency. The

value of KL can be set such that Score(TL; MaxLatency; KL) = 1/3.

We solve for KL when xL=MaxLatency such that:

KL=(xL � TL + KL) = 1=3

When we solve the equation, we have:
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3KL = xL � TL + KL

KL = (xL � TL)=2 (4.3)

Therefore, when xL=MaxLatency, we have KL=(MaxLatency-TL)/2. This

value of KL gives a scoring function that guarantees the latency is � MaxLatency.

In Figure 4.2, w= 0.6 and TL, TA=0. MaxLatency is 4 seconds, so by Equation

4.3 we have KL=2. The choice of KA in Figures 4.2 (a) and 4.2 (b) illustrate the

latency-recency tradeo� that the clients can select that controls how the latency

asymptotically approaches the upper bound of 4 seconds. The choice of values

makes Pro�le more aggressive to download data as re
ected by the larger shaded

area.

4.2 Experiments

We use both trace data and synthetic data to compare Pro�le against three

algorithms, TTL, AUC, and SSI (described in Chapter 2. Our simulation models

the proxy cache architecture of Figure 2.2. These results also apply to browser

caches, and to CDNs and portals, if we do not consider the additional time to send

data from the cache to a client. We �rst describe the details of these algorithms.

We then describe the details of both the trace and synthetic datasets. Finally,

we present our results. Our key results are as follows:

� Pro�le signi�cantly reduces bandwidth consumption compared to all ap-

proaches for both trace and synthetic data. Compared to TTL, Pro�le

reduces bandwidth consumption with only a slight increase in the amount
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of stale data delivered to clients (trace data). Pro�le also provides better

recency than AUC (trace and synthetic data).

� Pro�le can bene�t from an increased cache size more than either TTL or

AUC (trace data). AUC cannot deliver recent data when the cache size is

large, while TTL cannot utilize a larger cache size to reduce latency. Pro�le

can exploit increasing cache size to reduce both age and latency.

� In the presence of surges, Pro�le improves latencies for all clients, even for

clients who require the most recent data.

� Our sensitivity analysis shows the e�ects of tuning pro�le parameters on

both latency and recency. When TA increases, Pro�le becomes less sensitive

to changes in TL because fewer objects need to be downloaded. When TL

increases, Pro�le becomes more sensitive to changes in TA because more

objects can be downloaded to meet TA. We also show how changing KA and

KL values a�ects the sensitivity of Pro�le to TA and TL values. Finally,

we show that Pro�le can provide upper bounds speci�ed by the pro�le

parameters.

4.2.1 Algorithms

We consider the following algorithms:

� TTL: This is the cache consistency mechanism currently used in most proxy

caches [24, 30, 47, 57]. Cached objects are assigned a TTL value which is

an estimate of how long they will be fresh in the cache. The TTL approach

guarantees that all cached objects are up-to-date if the TTL estimate is
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accurate. It uses two parameters, UpdateThreshold and DefaultMax; these

are explained in Section 4.2.2.

� AUC: We implemented a modi�ed version of the prefetching strategy pre-

sented in [35]. We relax their assumption that all objects must be in the

cache. Instead, we refresh objects that are currently in the cache in a

round robin manner. On a cache miss, objects are downloaded from a re-

mote server. This strategy has the advantage of being straightforward to

implement at the cache, and was shown to be near optimal in [35]. Objects

are validated in the background at a speci�ed PrefetchRate, and only vali-

dated objects that have been updated at the remote server are downloaded.

� Pro�le: This is implemented as was described in Section 4.1.3. The deci-

sion function uses the estimated latency of downloading objects, and the

estimated age of cached objects. We describe how to compute these for the

NLANR trace data in Section 4.2.2. The settings of the pro�le parameters

are described with the results in Section 4.2.4.

� SSI-Msg: We consider two variations of SSI. In the �rst, SSI-Msg the server

sends invalidation messages to a cache whenever an object is updated, but

does not send the actual object to the cache. If the cached object is subse-

quently requested, the updated object is downloaded from the server. Note

that this approach is comparable to TTL with accurate expiration times.

This approach was shown to consume a comparable amount of bandwidth

to TTL in [78].

� SSI-Obj: In the second variation, SSI-Obj, the server sends all updated

objects to the cache. This consumes more bandwidth than SSI-Msg but
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guarantees that all cached objects will be up-to-date, which reduces the

latency of requests.

4.2.2 Data

We now describe the trace and synthetic data used in our experiments.

NLANR Trace

We used trace data from NLANR [50]. We describe the details of the preparation

of this data in Appendix A. This data was gathered from a proxy cache in the

United States in January 2002. We considered approximately 3.7 million requests

made over a period of 5 days. We performed preprocessing on the NLANR

trace data to prepare it for the experiments. Speci�cally, the trace data did

not report on the times objects changed, which we need to make downloading

decisions and to determine the recency of cached objects. Our solution to this

problem was to create an \augmented" trace using the workload from the original

NLANR trace data. Over a period of 5 days, we replicated the trace workload

by sending requests to the servers in the traces at (approximately) the same time

of day as in the original workload. The requests were made from the domain

umiacs.umd.edu which is connected to its ISP via a high speed DS3 line with

a maximum bandwidth of 27 Mbps. When each requested object arrived, we

logged the latency of the request and the time the object was last modi�ed (when

available). We used the logging mechanism provided by the Squid cache[24] to

create the augmented trace, but did not cache any objects. This augmented trace

data provided the information we needed for this study. We describe additional

properties of this data in Appendix A. We summarize some key parameters in
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Parameter Value

trace duration 129 hours

mean request arrival 8 requests/sec

mean object size 2.1 KBytes

total objects 1365K

total requests 3707K

Table 4.1: Parameters in NLANR trace data

Table 4.1.

In our trace-based experiments, we cached only objects that had last modi�ed

information available and were not labelled uncacheable. For the TTL algorithm,

to estimate the TTL of an object, we use the policy implemented in Squid [24].

When an object's last-modi�ed timestamp is available, Squid estimates the life-

time of an object using the adaptive TTL technique [30, 57]. In adaptive TTL,

an object's TTL is estimated to be proportional to the age of the object at the

time it was cached. The exact value depends on a parameter UpdateThreshold.

We used an UpdateThreshold of 0.05, which is representative of values used in

practice [24].

We calculate an object's TTL as follows:

TTL = (CurrentTime � LastModifiedTime) � UpdateThreshold (4.4)

Given the value of TTL, an object is no longer valid after its ExpirationTime.

We compute an object's ExpirationTime as:
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ExpirationTime = CurrentTime + TTL (4.5)

If the estimated ExpirationTime exceeds a default maximum value DefaultMax,

then an object's TTL is estimated as DefaultMax. As in the Squid cache imple-

mentation we use a DefaultMax of 3 days.

For the Pro�le algorithm, we need estimates of the latency and recency of

objects to make a downloading decision. We estimated the latency of an object

as the average latency over all previous requests, which was shown to perform

well in [4]. We estimate the age of cached objects as follows: we �rst estimate

an UpdateInterval, the estimated length of time between updates. We de�ne

UpdateInterval as:

UpdateInterval = ExpirationTime � LastModifiedTime (4.6)

We de�ned the age of a cached object as:

Age = (CurrentTime � LastModifiedTime)=UpdateInterval: (4.7)

We describe more sophisticated policies to improve the accuracy of estimating

the age of objects in Chapter 5.

For AUC, all cache hits were served directly from the cache, and we validated

objects in the background at a speci�ed PrefetchRate. We considered AUC with

two di�erent prefetch rates, 60 objects per minute (AUC-60) and 300 objects per

minute (AUC-300). Note that for TTL and Pro�le we did not perform any

prefetching in this study.

On a cache hit, we need to determine if an object is fresh or stale. We

determined an object's freshness as follows:
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Parameter Value

mean request arrival 8 requests/sec

mean latency 500 msec

median latency 200 msec

mean object size 2-10 Kbytes

update interval 10 min - 2 hours

total requests 172800

world size 100000

� 0.7

Table 4.2: Parameters in synthetic trace

1. For all schemes, an object was fresh if the object's last-modified time

was unchanged since the previous request.

2. For TTL and Pro�le, an object was stale if its last-modified time had

changed.

3. For AUC, we also need to consider the e�ects of prefetching. If the object's

last-modified time had changed and was more recent than the time the

object was last prefetched, the object was stale. Otherwise it was fresh.

Synthetic Trace

To complement our trace results and study the performance of pro�les, we also

performed simulation studies using synthetic data, where we control updates at

remote servers, and use more accurate age information. We used the following

parameters to generate the synthetic data: they are summarized in Table 4.2.
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� Update Interval is the average length of time between consecutive updates.

In our simulation this value ranged from once every 10 minutes to once

every 2 hours.

� Estimated Latency is the expected end-to-end latency of downloading the

object from the remote server. We modeled the latencies of objects using

latency distributions from NLANR traces [50]. To reduce the e�ects of

network and server errors in this data we considered only requests with la-

tencies of less than 5000 msec. The distribution of these values was highly

skewed, with a median of approximately 200 msec and a mean of approxi-

mately 500 msec. 90% of the requests had latencies less than 1400 msec.

� Workload is the average number of requests per minute. We report on a

workload of 8 requests/sec (480 requests/minute), which is representative

of many cache workloads[50]. We ran simulations for 6 hours of simulation

time for a total of �172800 requests.

� World Size: We considered a world of 100,000 objects with a popularity fol-

lowing a Zipf-like distribution. The ith most popular object had popularity

proportional to 1/i�, where � is a value between 0 and 1.0. We generated

a distribution with �= 0.7, which was typical of traces analyzed in [17].

We note that for TTL and Pro�le, for the synthetic data we assumed that

the cache had accurate expiration times (TTL estimates) for all objects. We

use the trace data to compare TTL, AUC, and Pro�le in the real world case

where estimates are often inaccurate. We use the synthetic trace to compare

the performance of TTL, AUC, Pro�le, and SSI because it provides information

about when updates occur at servers.
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4.2.3 Setup and Metrics

We implemented our simulation environment in C++. We ran simulations and

experiments with trace data on a Sparc 20 workstation running Solaris 2.6. We

assumed the cache was initially empty.

For the synthetic trace, we ran simulations for 2 hours of simulation time to

warm up the cache, then ran them for an additional 6 hours. For the trace data,

we used the �rst 12 hours of the trace to warm up the cache, then collected data

on the remainder of the trace. We repeated each simulation 10 times to verify the

accuracy of our results, and validated that our results satis�ed the 95% con�dence

intervals. For both the NLANR and synthetic traces, we consider cache sizes

ranging from 1% of the world size to an in�nite cache. We �rst report on results

for an in�nite cache. We then consider the e�ects of varying cache size on the

performance of all approaches. We used the Least Recently Used (LRU) policy

to replace objects when the cache was full; this is commonly used in practice [24].

We report on the following metrics:

� Validation messages (vals): This is the number of messages that were sent

between cache and remote servers. For TTL, AUC, and Pro�le, a valida-

tion message is sent from the cache to a server to check for updates. The

requested object was only downloaded if it had actually been updated. For

SSI-Msg, a validation message is sent from a server to a cache to invalidate

cached objects. Messages are typically much smaller than the actual ob-

jects. We note that for SSI-Obj, the server sends the actual objects to the

cache, so no messages are sent.

� Downloads (Useful Validations): This is the number of requested objects
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that were validated and subsequently downloaded because they were stale

in the cache. For SSI-Obj, this includes all objects that were updated at

remote servers and sent to the cache. For SSI-Msg,TTL and Pro�le, this

includes requested cached objects that were not suÆciently recent in the

cache. For AUC, this includes objects that were prefetched (validated) in

the background and were downloaded because they were stale.

� Freshness misses: For the trace data, we also report on freshness misses

[40]. These are objects that were in the cache and were validated at the

remote server, but had not actually been modi�ed since they were cached.

Since freshness misses add unnecessary latency to requests, it is important

to minimize this number. In many cases the latency of a freshness miss can

be comparable of that to a cache miss [40].

� Stale Hits: For the trace data, this is the number of objects served from

the cache (without validation), but that had actually been updated at the

remote server.

� Age: This is the average age of objects delivered to clients, i.e., the num-

ber of times they were updated at the remote server. Objects that were

downloaded from a server always had an age of 0.

� Latency: This is the average latency of the requests in msec.

4.2.4 Comparison of Pro�le to Existing Policies

Our �rst set of results shows the bene�ts of using Pro�le for an in�nite cache.

We �rst show simulation results using the synthetic trace. We then use the

NLANR trace to compare Pro�le to TTL and AUC. The NLANR trace re
ects
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SSI-Obj SSI-Msg TTL

Val. Msgs 0 161768 67170

Downloads 161768 67170 67170

AvgAge 0 0 0

StaleHits 0 0 0

AUC-60 AUC-300 Pro�le

Val. Msgs 21600 100797 15932

Downloads 16158 75833 15932

AvgAge 2.09 0.61 1.38

StaleHits 112492 74548 96281

Table 4.3: Results for Experiments with Synthetic Trace

the situation when TTL estimates are inaccurate, which is often the case in

practice. We do not study SSI on the NLANR trace since the trace does not

provide a complete history of updates at remote servers. Objects at servers may

have been updated multiple times between two consecutive requests for the object

in the trace.

In these experiments, all clients used a single pro�le = (w = 0.5 TA =1

update, TL=1 second, KL, KA = 1). Recall that with w=0.5, neither latency nor

recency is favored in the tradeo�. We consider the e�ects of varying w, TA, TL,

KA, and KL in Section 4.2.7.

Synthetic Trace The number of validations and downloads for the simulation

study with synthetic trace is shown in Table 4.2.4. The �rst observation is that

SSI-Obj consumes the most bandwidth because it sends a large number of objects
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TTL AUC-60 AUC-300 Pro�le

Validation Messages 151367 378312 1891560 92943

Useful validations 24898 933 2810 22896

Freshness Misses 122074 279349 327776 67601

Avg Est.Age 0 18.4 11.1 0.87

Stale Hits 4282 31285 22897 7704

Table 4.4: Results for Experiments with NLANR Trace

to the cache to keep the cache up to date. This is shown in the Downloads row.

SSI-Msg and AUC-300 also consume signi�cant amounts of bandwidth compared

to Pro�le. While they download fewer objects than SSI-Obj, they still send

many validation messages. In contrast, Pro�le performs fewer validations and

fewer downloads than all other approaches. We will use the NLANR trace data

to further quantify the bandwidth savings of Pro�le relative to TTL and AUC.

The average ages of objects and number of stale hits are also shown in Table

4.2.4. These results show that while AUC-60 and Pro�le have a comparable

number of downloads, AUC-60 does so at the cost of delivering signi�cantly

less recent data. AUC-60 delivers objects with an average age of 2.09 updates

compared to 1.38 updates for Pro�le. AUC-60 also provides nearly 20% more stale

hits than Pro�le. AUC-300 provides better recency (0.61) than Pro�le. However,

it does so at the cost of validating 600% more objects than Pro�le (100797 vs.

15932) and downloading nearly 500% more objects(75833 vs. 15932).

NLANR Trace Our NLANR trace results further compare TTL, AUC, and

Pro�le in the real-world case where TTL estimates are often inaccurate. Table
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2 shows the number of validations for TTL, AUC, and Pro�le, for an in�nite

cache. The �rst observation is that both variants of AUC validate signi�cantly

more objects than either TTL or Pro�le. Recall that AUC validates objects at

the speci�ed PrefetchRate. TTL also validates many more objects than Pro�le.

The number of useful validations and freshness misses are shown in the second

and third lines of Table 4.2.41. We note that for AUC, for a fair comparison we

measured useful validations and freshness misses only for prefetched objects that

were subsequently requested.

A key observation is that TTL has nearly twice as many freshness misses as

Pro�le (122074 vs. 67601). In these cases, TTL adds latency to requests without

improving the recency. In contrast, Pro�le can signi�cantly reduce the number of

freshness misses by 45% ( � 60,000) with only a small increase in the number of

stale hits (� 4000 more than TTL). We note that these results do not include the

approximately 196,000 requests (described in Appendix A where we could not

accurately determine the cached object's freshness from the augmented trace.

Based on the original NLANR trace data, many of these appear to have been

freshness misses. Thus, the potential reduction in freshness misses from using

pro�les may be even greater than 45%.

Another key observation is that both variants of AUC perform many more

freshness misses than either TTL or Pro�le. Further, AUC performs very few

useful validations for objects that are subsequently requested (less than 3000 for

AUC-3000 vs. 24898 for Pro�le). Thus, AUC can consume large amounts of

bandwidth to keep the cache refreshed while doing little to improve the recency

1In some cases the trace did not contain a last modi�ed date to determine if a validation

was useful, therefore the sum of these values is less than the validation messages.
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of data delivered to clients. We note that a more intelligent prefetching policy

described in [39] can reduce the total number of freshness misses by 25%. How-

ever, this prefetching policy replaces each online request with up to two o�ine

requests, so total bandwidth consumption and server loads increase. In contrast,

Pro�le provides a greater reduction in the number of freshness misses (45%) and

reduces total bandwidth consumption and server load.

Since the NLANR trace does indicate how many times servers actually mod-

i�ed objects, we must estimate the age, i.e., number of times a stale object was

updated at a server since it was cached. We compute age= (CurrentTime -

LastModifiedTime)/UpdateInterval (equation 4.7), where UpdateInterval is

estimated as de�ned in equation 4.6. While this is an estimate, it gives an idea

of how out of date the stale objects were.

Both variants of AUC prefetch a large number of objects, while still delivering

many stale objects to clients. The average estimated age of the stale hits is shown

in the last line of Table 2, and show that AUC can deliver very out of date objects.

This is because the prefetching strategy for AUC prefetches all objects with equal

frequency, which may cause frequently updated objects to become very out of

date. While this prefetching strategy is near optimal for minimizing the number

of stale hits[35], our results clearly show that AUC may nevertheless result in

very stale data. Thus, prefetching may not be appropriate for applications that

cannot tolerate stale data, especially when the data is updated frequently.

Summary To summarize, our main results are as follows:

� Pro�le validates signi�cantly fewer objects than TTL, AUC, or SSI.

� Pro�le provides fresh data to clients in many cases due to conservative TTL
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estimates. The number of stale hits is not signi�cantly higher than for TTL.

� Pro�le provides more recent data than AUC. In contrast, AUC may not be

approriate when fresh data is required because it may deliver objects that

are signi�cantly out of date.

4.2.5 E�ect of Cache Size

We now use the NLANR trace to measure the performance of TTL, AUC, and

Pro�le for varying cache sizes. We varied our relative cache size from 1% of the

world size to 100% of the world size (i.e., an in�nite cache). We show that Pro�le

can better utilize cache size to reduce latency (compared to TTL) and to reduce

age (compared to AUC).
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Figure 4.3: E�ect of Cache Size on Average Latency

The average latency for Pro�le and the baseline algorithms are plotted in

Figure 4.3. The �rst observation is that both Pro�le and AUC better utilize

increased cache size to reduce latency. While increasing the cache size increases
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the number of objects that can be cached, objects that expire in the cache must

always be validated for TTL. Increasing the cache size does not decrease the

number of stale objects in the cache, so TTL does not bene�t signi�cantly from

a larger cache. In contrast, Pro�le and AUC can bene�t more from an increased

cache size. While objects in the cache may be stale, they may still be useful to

some clients.
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Figure 4.4: E�ect of Cache Size on Number of Stale Hits

Figure 4.4 shows the number of stale hits. As the cache size increases, the

stale hits for both AUC-60 and AUC-300 increase dramatically. This is because

prefetching for AUC does not scale well and a greater number of client requests

are being serviced by (possibly stale) cached objects, so the number of stale hits

increases. This shows that the reduced latency of AUC comes at the high cost

of delivering very stale data. In contrast, the number of stale hits for Pro�le

increases by a much smaller amount. In summary, AUC cannot utilize a large

cache size to reduce age and delivers very stale data. Similarly TTL cannot
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utilize a larger cache size to reduce latency. In contrast, Pro�le is 
exible and

can exploit increasing cache size to reduce both age and latency.

4.2.6 E�ect of Surges

Under normal workloads, there is typically suÆcient bandwidth and server ca-

pacity to handle all requests. However, from time to time networks or servers

may experience \surges", i.e., a period of time during which the available resource

capacity exceeds the demand. During surges, many request will be backlogged

and their processing may be delayed signi�cantly. As an example, we consider

the case where there is insuÆcient bandwidth between a cache and the servers. In

this case, the servers will attempt to deliver many objects simultaneously, which

will cause delays delivering the objects to the cache. This could occur in a proxy

cache if a surge in remote requests saturates the bandwidth between the Internet

and the cache. It could also occur in an application server cache if many clients

make requests to the server simultaneously.

Our next experiment is a simulation using a synthetic trace that compares

Pro�le to TTL in the presence of surges. A surge is represented by a capacity

ratio. The capacity ratio is the ratio of available resources per second to the

resources required per second. For example, during a surge period, if a server

can handle 10 requests per second and requests arrive at the rate of 20 requests

per second, then the capacity ratio during this period is 1/2. A capacity ratio

of 1 means there are suÆcient resources to handle all requests, and requests will

incur no extra delay as a result of the surge. However, if this ratio is less than 1,

performance can severely degrade.

We consider two groups of clients. The �rst group, MostRecent, has Pro�le =
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(w = 0.5, TA = 0 updates, TL = 1 sec, KL, KA = 1). The second, LowLatency,

has Pro�le = (w = 0.5,TA = 1 update, TL = 0 sec, KL, KA = 1). In our simulation,

we considered a surge with duration 30 seconds. The request rate is 100 requests

per second. We vary the available capacity from 20 to 100 objects per second, i.e.,

the capacity ratio varies from 0.2 to 1.0. For simplicity, we assume no requested

objects are evicted from the cache during the surge period. We warmed up the

cache for 10000 requests at a non-surge workload of 8 requests/sec, then began

the surge period and gathered data.
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Figure 4.5: Average. Latency during a 30-sec. surge period

Figure 4.5 plots the average latencies of all requests. For TTL, all requests are

treated equally, and all objects that have expired in the cache are downloaded.

As expected, the latency is very high, especially when the capacity ratio is below

0.5. However, Pro�le can distinguish between the two groups of clients and

better serve their requests. As expected, the latency for some LowLatency clients

is signi�cantly lower than for TTL. This is because, when a requested object is in
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Figure 4.6: Avg. scores during a 30-sec. surge period

the cache, stale data can be delivered to the LowLatency clients. Consequently,

there is more available bandwidth to serve the other clients. Thus, the latency

for the MostRecent clients also decreases compared to TTL. Thus, using Pro�le

during a surge can signi�cantly improve access latencies for all clients, not just

those that can tolerate stale data.

Figure 4.6 plots the scores for both groups of clients, using the scoring func-

tions presented in Section 4.1.3. This gives a measure of client satisfaction with

the data and service they receive. As expected, using either TTL or Pro�le

the scores of both groups of clients increase as the capacity ratio approaches

1. The key observation is that using Pro�le improves not only the score of the

LowLatency clients, but also the MostRecent clients. Pro�le reduces bandwidth

consumption under all workloads, which can reduce the e�ects of surge periods

and improve performance for all clients during surges.
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4.2.7 Sensitivity Analysis

In the previous experiments we have considered client pro�les with constant TA

and TL values and with w=0.5 and KA=KL=1. In this section, we explore the

e�ects of varying the TA and TL values on the average latency of requests and

average recency of data. We also consider the e�ects of adjusting the KA and KL

values to control the latency-recency tradeo�. Finally, we consider the e�ects of

varying w to provide an upper bound with respect to either recency or latency.

Setup We perform our analysis using the synthetic trace described in Section

4.2.2. In all experiments, we varied the cache size from 1% of the world size of

100,000 objects up to 35% of the world size. Increasing the cache size beyond

35% had little impact on performance for this trace. We ran all experiments for

40000 requests to warm up the cache, and then ran them for an additional 80000

requests and gathered data. Other simulation parameters are identical to those

in Table 4.1.

To measure the latency-recency tradeo�, in these experiments we set the

recency unit metric to one update, and the latency unit to 100 msec. This means

that when KL=KA, and w=0.5, clients would trade o� 100 msec of latency for

every update (rather than 1 second per update as in Figure 4.1).

In the following experiments we report on both average latency and average

number of updates for di�erent settings of TA, TL, KA, KL, and w.

E�ect of Varying TA Values We �rst consider the e�ects of varying the TA

and TL values with KA = KL and w = 0.5. This shows the sensitivity of pro�les

to TA and TL when there is no upper bound on either latency or recency. Figures

4.7 and 4.8 plot the latencies and recencies, respectively, for three di�erent TL
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Figure 4.7: E�ect of varying TA values on average latency for (a) TL = 0 (b) TL

= 1000 (c) TL = 2000, w=0.5, and KA=KL=1
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Figure 4.8: E�ect of varying TA values on average number of updates for (a) TL

= 0 (b) TL = 1000 (c) TL = 2000, w=0.5, and KA=KL=1
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values. Figure 4.7(a) plots the average latencies for di�erent TA values when TL

= 0. In this case, minimizing latency is important, thus the TA values have only

a small impact on the average latency. For all TA values the average number

of updates is greater than 0.5 as shown in Figure 4.8(a). In contrast, when TL

is 1000 msec (Figure 4.7(b)), Pro�le is more sensitive to the TA values because

it can tolerate higher latencies. The TA values determine when an object needs

to be validated. Figure 4.8(b) shows the recency of these requests. When TA =

0, the average number of updates is near 0 because clients can tolerate higher

latencies to download fresh data. However, when clients can tolerate stale data,

Pro�le is able to signi�cantly reduce average latencies as shown in Figure 4.7 (b).

We observe a similar trend in Figures 4.7(c) and 4.8(c). However, increasing TL

from 1000 msec to 2000 msec has a smaller impact on the average latencies and

recencies, because there are relatively few objects with latencies over 1000 msec.

E�ect of Varying TL Values Next, we consider the sensitivity of Pro�le to

varying TL values when KA = KL and w = 0.5. Figures 4.9 and 4.10 plot the

respective latencies and recencies (average number of updates) for three di�erent

TA values. When TA = 0 (Figure 4.9(a)), Pro�le is very sensitive to the TL values

when determining when to download fresh data. This is because clients will not

tolerate stale data, so it will always validate any object whose estimated latency

is within the TL value. Thus higher TL values signi�cantly increase the average

latency. When TL is 0 the average latency is about 50 msec, when TL is 3500 msec

the average latency is about 150 msec. In contrast, for higher TA values (Figures

4.9(b) and 4.9(c)), Pro�le is less sensitive to the choice of TL because clients

can tolerate stale data in many cases. The corresponding recencies are plotted

in Figure 4.10. When TL = 0, the average number of updates is high because
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Figure 4.9: E�ect of varying TL values on average latency for (a) TA = 0 (b) TA

= 1 (c) TA = 2, w=0.5, and KA=KL=1
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Figure 4.10: E�ect of varying TL values on average number of updates for (a)

TA = 0 (b) TA = 1 (c) TA = 2, w=0.5, and KA=KL=1
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Pro�le aims to minimize latency, independent of the value of TA. However, for

higher TL values, Pro�le aims to meet the TA values. Since most requests have

latency less than 500 msec, higher TL values have only a small impact on the

average number of updates.

E�ect of Varying K Values We now consider how varying the KA and KL

values controls the latency-recency tradeo� and impacts both the latency and

recency of client requests. Figure 4.11 shows the e�ect of varying TL values when

TA=0 for three di�erent pairs of K values. Note that Figure 4.11(a) is identical

to Figure 4.9(a), it is shown here for comparison purposes. When KL = 10 and

KA = 1 (Figure 4.11 (b)), the latency score approaches 0 more slowly than the

age score, so the average latencies are high for all values of TL. In contrast, when

KA = 10 and KL = 1 (Figure 4.11 (c)), the age score approaches 0 more slowly

than the latency score, so Pro�le can tolerate higher ages. Thus, for lower TL

values, the latency is signi�cantly lower in Figure 4.11 (c). Figure 4.12 plots the

recencies of the data. Note that the y-axis in Figure 4.12 (c) is 10 times that of

Figure 4.12(b). These graphs show that when KL is high the average age of the

data is low (Figure 4.12 (b)) and when KA is high the average age of the data is

high (Figure 4.12(c)).

We observe a similar trend in Figures 4.13 and 4.14. These graphs consider

the e�ects of varying the K values when TA=2. The key observation is that when

TA is higher, Pro�le is less sensitive in variations to TL values. When KL = 10

(Figure 4.13(b)), the performance is nearly identical for all values of TL.

E�ect of Varying w Values We now consider the e�ects of changing the w

values to provide upper bounds with respect to either recency or latency.
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Figure 4.11: E�ect of varying TL values on average latency for TA =0 (a)

KA=KL=1 (b)KA=1, KL=10 (c) KA=10, KL=1, TA = 0, w=0.5
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Figure 4.12: E�ect of varying TL values on average number of updates for TA

=0 (a) KA=KL=1 (b)KA=1, KL=10 (c) KA=10, KL=1, TA = 0, w=0.5

92



(a)

0 5 10 15 20 25 30 35
0

50

100

150

200

250

T
A
 = 2, W = 0.5, K

A
 = 1, K

L
 = 1

Relative Cache Size (%)

A
ve

ra
ge

 L
at

en
cy

 (
m

se
c)

T
L
 = 0

T
L
 = 500

T
L
 = 1000

T
L
 = 1500

T
L
 = 2500

T
L
 = 3500

(b)

0 5 10 15 20 25 30 35
0

50

100

150

200

250

T
A
 = 2, W = 0.5, K

A
 = 1, K

L
 = 10

Relative Cache Size (%)

A
ve

ra
ge

 L
at

en
cy

 (
m

se
c)

T
L
 = 0

T
L
 = 500

T
L
 = 1000

T
L
 = 1500

T
L
 = 2500

T
L
 = 3500

(c)

0 5 10 15 20 25 30 35
0

50

100

150

200

250

T
A
 = 2, W = 0.5, K

A
 = 10, K

L
 = 1

Relative Cache Size (%)

A
ve

ra
ge

 L
at

en
cy

 (
m

se
c)

T
L
 = 0

T
L
 = 500

T
L
 = 1000

T
L
 = 1500

T
L
 = 2500

T
L
 = 3500

Figure 4.13: E�ect of varying TL values on average latency for TA =2 (a)

KA=KL=1 (b)KA=1, KL=10 (c) KA=10, KL=1, TA = 0, w=0.5
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Figure 4.14: E�ect of varying TL values on average number of updates for TA

=2 (a) KA=KL=1 (b)KA=1, KL=10 (c) KA=10, KL=1, TA = 0, w=0.5
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Figure 4.15 plots the average latency when w = 0.4, i.e., there is an upper

bound on the age. In this case, when KA = 1, there is an upper bound of 2

updates. Figure 4.15(a) shows the average latencies when KL = 1, and Figure

4.15(b) show the average latencies when KL = 10. Since these parameter settings

require pro�le to download any object with more than 2 updates, the KL values

and TL values have little e�ect on the average latencies.
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Figure 4.15: E�ect of varying TL values on average number of updates for TA

=0 (a) KA=KL=1 (b)KA=1, KL=10, w=0.4

Figure 4.16 plots the average latencies when w = 0.6, i.e., there is an upper

bound on the latency. Figure 4.16 plots the average latencies for KA=KL=1, and

Figure 4.16 plots the average latencies for KA=1 and KL=10. By Equation 4.3,

when w = 0.6 and KL=1, the latency has an upper bound of 2 units, i.e., 200

msec (Figure 4.16 (a)). In this case, the average latency is very low for all TA

values because of this upper bound. In contrast, when KL=10, the latency has an

upper bound of 20 units, i.e., 2000 msec (Figure 4.16 (b)). In this case, Pro�le is

more sensitive to the TA values because it can download any object with latency

up to 2000 msec.
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Figure 4.16: E�ect of varying TA values on average number of updates for TL

=0 (a) KA=KL=1 (b)KA=1, KL=10, w=0.6

Figure 4.17 (a) plots the distribution of the latencies of validated objects for

a cache 30% of the world size when KA=KL= 1 and w = 0.6 (corresponding to

Figure 4.16(a)). In this case, the latency has an upper bound of 200 msec, so all

validated objects have latency �200. For comparison purposes, Figure 4.17 (b)

plots the distribution for the same K values when w=0.5, i.e., there is no upper

bound. In this case there is a similar latency-recency tradeo�. However, many

more objects are validated because meeting the target latency is less important,

and many requests have latency >200 msec because there is no �rm upper bound.

Figure 4.18(a) plots the distribution of latencies for a 30% cache when w=0.6,

KA=1, and KL=10. This corresponds to 4.16(b). In this case, the upper bound

on latency is 2000 msec, and all requests have latency below this upper bound.

In contrast, Figure 4.18(b) shows the distribution for the same K values when

w = 0.5. While the distributions are similar, some requests have latency higher

than the upper bound of 2000 msec.
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Figure 4.17: E�ect w on latencies of validations for TL =0, KA=KL=1 (a) w=0.6

(b) w=0.5

(a)

−500 0 500 1000 1500 2000 2500
0

5000

10000

15000

Latency (msec)

N
um

be
r 

of
 R

ef
re

sh
ed

 O
bj

ec
ts

w = 0.6, K
A
 = 1, K

L
 = 10 Total Refreshes = 47035 (b)

−500 0 500 1000 1500 2000 2500
0

5000

10000

15000

Latency (msec)

N
um

be
r 

of
 R

ef
re

sh
ed

 O
bj

ec
ts

w = 0.5, K
A
 = 1, K

L
 = 10 Total Refreshes = 49511

Figure 4.18: E�ect w on latencies of validations for TL =0, KA=1, KL=10 (a)

w=0.6 (b) w=0.5
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Summary To summarize, our sensitivity analysis shows the following:

� For higher TA values, Pro�le is less sensitive to changes in TL, and for

higher TL values, Pro�le becomes more sensitive to changes in TA.

� For w=0.5, tuning K values can signi�cantly impact the sensitivity of Pro�le

to TA and TL. When KA > KL, the age score approaches 0 more slowly

than the latency score, so Pro�le is more sensitive to changes in TL values.

Similarly, when KA < KL, pro�le is less sensitive to changes in TL values

and more sensitive to changes in TA values.

� Tuning K and w values is an e�ective way to control the latency-recency

tradeo� and provide upper bounds with respect to either recency or latency.

4.3 Summary and Open Problems

In this chapter, we have shown the following:

� When clients can tolerate stale data, pro�les can signi�cantly reduce the

latencies of their requests compared to using TTL.

� Due to conservative TTL estimates, pro�les can reduce the number of fresh-

ness misses while still delivering fresh data in most cases.

� Using pro�les provide better recency than AUC because prefetching cannot

keep cached data suÆciently fresh.

� During surge periods, pro�les can reduce latencies for all clients.

� For higher TA values, Pro�le is less sensitive to changes in TL, and for

higher TL values, Pro�le becomes more sensitive to changes in TA. Tuning
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K and w values is an e�ective way to control the latency-recency tradeo�

and provide upper bounds with respect to either recency or latency.

There are several areas for further exploration not covered in this chapter.

These include:

� Developing interfaces to help clients specify and choose the appropriate

pro�les for their di�erent applications. In Section 4.1.4 we presented pre-

liminary work in this direction, but more work is needed in developing an

interface that allows clients to easily specify and use pro�les.

� Studying what pro�les clients choose in practice, and the e�ects of these

pro�les on performance. In this chapter we have presented a framework

to specify and use pro�les for caching decisions. However, we have not

determined what values are most appropriate for di�erent clients and ap-

plications, and how much they improve the latency or recency of di�erent

applications.

� Learning pro�les based on client behavior, network conditions, and ob-

ject update patterns. This could improve the choice of default pro�les for

clients, and aid clients in choosing the appropriate pro�les for their di�erent

applications.

� Studying the e�ects of di�erent clients having di�erent pro�les for the same

object. If some clients prefer the most recent data while others prefer low

latency, an open question is how much will the low latency clients bene�t

because the cached data is fresh. Evaluating the impact of di�erent pro�les

on performance and developing schemes to ensure fairness is an area of

future work.
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Chapter 5

Modeling Updates

We now present our work in modeling updates patterns at remote servers. Our

work in client pro�les relies on knowledge of when updates occur at remote

sources. Clearly it is impossible to know exactly when an update occurs without

either contacting remote servers (i.e., poll-every-time) or being noti�ed by the

server (i.e., server side invalidation), and there are many challenges to accurately

modeling update patterns as discussed below. However, we show the exploit-

ing knowledge of update histories can improve existing consistency policies and

improve the e�ectiveness of using client pro�les.

There are many challenges to modeling update patterns and using this knowl-

edge to determine an appropriate consistency policy. The �rst challenge is pre-

dicting updates. As discussed in Chapter 2, sources can vary considerably with

respect to their update frequency, predictability, and burstiness. In addition, an

object may have a unique update pattern, or it may have similar update patterns

to other objects at the same server. Thus, an important challenge is determining

whether to model objects individually or aggregate similar objects. Aggregat-

ing objects may reduce accuracy but also has lower storage overhead. Another

challenge is identifying the length of update cycles. For example, some objects
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may have cyclic patterns that repeat daily, while others may have patterns that

repeat weekly. Finally, object update patterns must be continually monitored to

detect changes or bursts and change policies accordingly. To summarize, we need

eÆcient techniques to both identify and exploit update patterns to objects.

A related challenge is determining how much servers should cooperate with

clients and caches. By server cooperation we refer to how much information

servers provide to clients. As discussed in Chapter 2, existing pull-based con-

sistency policies assume that servers provide either the time the object was last

modi�ed or no information. At the other extreme are push-based policies where

the server noti�es clients of updates. In this chapter, we explore server cooper-

ation to improve pull-based policies. If servers provide clients and caches with

update histories, clients and cache managers can signi�cantly improve the ac-

curacy of their freshness estimates of objects compared to existing pull-based

policies, while scaling better than push-based policies. However, a single server

may contain thousands of objects, so server cooperation schemes must be scalable

at servers with respect to both storage and computational overhead.

A �nal challenge is for clients and caches to determine the appropriate con-

sistency policy to use, based on the level of server cooperation. Clients must

determine whether to use all the information a server provides or only a subset.

As discussed in Section 5.1, some objects can be modeled using their update his-

tories, while others can be better modeled using only the time of the last update.

Also, some policies may have a high computational overhead which is undesirable

when a policy with less overhead will provide a good approximation.

In this chapter, we address the above challenges to modeling updates and

server cooperation. We show that modeling updates and server cooperation can
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improve the e�ectiveness of using pro�les by increasing the probability that clients

will receive data that meets their acceptable degree of recency, and can also re-

duce the number of unnecessary contacts with remote data sources. This is useful

for many of the caching architectures presented in Chapter 2. In particular, mini-

mizing contact with remote servers is important when there is limited bandwidth

between the cache and the server and remote accesses are costly, e.g., a browser

cache or a cache on a mobile device.

We �rst present a categorization of update patterns that often occur in prac-

tice, and give examples from real datasets. We then describe two policies for

modeling updates. The �rst is using individual history (i.e., a single object),

which may improve accuracy for some objects but has high computational over-

head. The second is an aggregate history (i.e., multiple objects), using a Poisson

process as in [53]. This may be less accurate for some objects but has lower com-

putational overhead. We note that while this model does not provide a statistical

�t, our results show that it predicts updates more accurately than TTL on three

distinct datasets. We consider advantages and disadvantages of di�erent policies,

and discuss di�erent options for clients and cache managers depending on what

information servers provide. We also consider architectures and implementations

to support server cooperation and discuss tradeo�s for both clients and servers.

We evaluate our policies using data sets from two very di�erent applications, web

caching and email.

Our main results are as follows:

� For objects with cyclic update patterns, using either individual or aggregate

history information can signi�cantly improve the accuracy of estimating

when it is updated compared to using TTL.
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Figure 5.1: Degrees of Predictability of Update Patterns

� An adaptive policy that chooses between using update histories and using

TTL depending on the update behavior of the object can generalize well to

both more predictable (cyclic) and less predictable (bursty) objects.

5.1 Update Patterns

In general, objects can be classi�ed by the regularity and predictability of their

update patterns. At one extreme are objects updated at regularly scheduled

times; at the other extreme are objects with completely unpredictable updates.

In this section we present examples of real objects between these extremes. We

illustrate these varying degrees of predictability in Figure 5.1. Note that this is

not an exhaustive list. We consider more predictable (cyclic) objects that are

updated at similar times each day, but not necessarily at the exact same time

each day, so they are not completely predictable. We also consider less predictable

(bursty) objects that experience periods with a large number of updates that are

not consistent with earlier update patterns. While updates to these objects are

not completely random, the bursts of updates are diÆcult to predict. We analyzed

data from the 1998 World Cup website [10] as well as two email logs. The World

Cup log consists of all requests made to the World Cup website. The two email

logs each consist of all messages that arrived in a single client's mailbox. We
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report on the details of these datasets in Section 5.4.

5.1.1 World Cup

Our analysis of the World Cup data shows that many objects exhibited cyclic

or bursty update patterns, which are two examples of the di�erent degrees of

predictability. In the analysis below we classi�ed objects as either cyclic or bursty.

To identify objects in each category, we classi�ed objects o�ine using the update

histories from all 15 days of the trace. We note that there are many techniques to

de�ne bursts, e.g., using variance. We use the following straightforward technique

to classify objects: For each object, we counted the number of updates that

occurred on each day in the trace. We subtracted the average number of updates

per day from the maximum number of updates that occurred on any day. If this

di�erence was greater than 5, we assumed a burst had occurred on at least one

day and classi�ed the object as bursty. We classi�ed all other objects as cyclic.
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Figure 5.2: Updates to (a) Cyclic and (b) bursty objects in the World Cup trace

Figure 5.2 plots the updates to cyclic and bursty objects in the World Cup

trace that were updated at least 10 times in a 15-day trace period. In these

�gures, the x-axis is the time of day within a 15 day window, and each value on
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the y-axis represents a distinct object. An � in the graph at point (x,y) denotes

an update to object y at time x.

Figure 5.2(a) shows objects that exhibit cyclic behavior that is repeated daily.

For example, we observe in Figure 5.2(a) that many of the objects are updated

at the beginning of each day, although not necessarily at the same time. These

objects may correspond to pages that provided daily updates on World Cup scores

and events. Cyclic update patterns commonly occur at websites, for example a

weather site that updates the temperature at regular times every day.

Figure 5.2(b) shows objects with bursts of updates. In this trace, these are

objects where most of the updates occurred on the same day, and few updates

occurred before or after the burst. These objects may correspond to a speci�c

World Cup event such as the score of a match. Many updates to the object occur

on the day of the match, but few updates occur on other days. Bursty updates

also occur at other web sites, such as news web site that frequently updates an

article on the day of a breaking news event.

5.1.2 Email Traces
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Figure 5.3: Updates to two email traces
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We also considered two di�erent email traces (labelled DBWORLD and IN-

BOX). Figure 5.3 plots the arrival of email messages in these two traces. In

each graph, the x axis shows the day of the week (and relative time of day), and

each value on the y axis is a distinct week of the trace. An � value at point

(x,y) indicates that an email message arrived in the client's mailbox at time x

during week y. The �rst observation is that both mailboxes exhibit fairly regular

behavior from week to week, again showing cyclic update patterns. However,

both traces also exhibit occasional bursts of updates (for example, on Sunday

around week 50 of the INBOX trace). Another important observation is that the

update patterns repeat weekly, unlike the World Cup traces where most patterns

repeat daily. This shows that di�erent objects can have di�erent periodicity, and

illustrates another challenge to modeling updates.

5.2 Modeling Update Patterns

We model update patterns based on recurrent piecewise constant update inten-

sities, as suggested in [53]. The underlying assumption of such models is that

there is a time period, e.g., a day, whose update pattern is repetitive. Therefore,

one can partition an update history into equal time periods with similar update

pattern. To represent update patterns we use a time-varying parameter �(t),

representing the intensity of updates over time.

A basic model of update patterns that assumes a homogeneous update in-

tensity (�) over time is inadequate for many applications [53]. This is because,

as shown in the examples in Section 5.1, many objects have di�erent update in-

tensities at di�erent times of day or di�erent days of the week. Therefore, we

present a more re�ned analysis of �. Within a given repetitive time cycle, � may
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Figure 5.4: Homogeneous vs. nonhomogeneous update patterns
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vary, representing, for example, change of intensities between work hours and

after hours. Therefore, � becomes time-dependent. To simplify calculations, one

may assume that while � changes over time, it may be represented as a combi-

nation of intervals, in which � is constant, hence the term piecewise constant. To

demonstrate the di�erences between homogeneous and time-dependent �, con-

sider Figure 5.4. Figure 5.4(a) shows the changes to the intensity of updates

over a period of one day, using a piecewise-constant model. Figure 5.4(b) cor-

responds to a constant arrival rate of updates. Figure 5.4(c) and Figure 5.4(d)

demonstrate the accumulation of � (representing, in the case of a Poisson model,

the expected number of updates in the corresponding time period) over a period

of one day for the time-dependent and homogeneous �, respectively. While the

accumulation for the homogeneous model is linear over time, the accumulation

rate of the time-dependent � changes with 
uctuations in the update intensity

�(t).

Formally, given a time interval Q, suppose that the update rate �(t) repeats

every Q time units, that is, �(t) = �(t + Q) for all t. Furthermore, the interval

[0; Q) is partitioned into a �nite number of subsets J1; : : : ; JK, with �(t) constant

throughout each Jk, k = 1; : : : ; K. Finally, each Jk is in turn composed of a �nite

number of half-open intervals of the form [s; f). For instance, in Figure 5.4(a)

k = 7, with J1 = [0:00; 7:00); J2 = [7:00; 10:00); etc.

We next de�ne a speci�c recurrent piecewise constant model. The model is

stochastic since the repetitive nature of updates in a distributed autonomous

environment cannot be modeled in a deterministic fashion. We use a nonhomo-

geneous Poisson process [95, 106] with instantaneous update rate � : < ! [0;1)

to model the occurrence of update events. Each update event possibly consists of
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multiple updates (possibly to di�erent data objects) aggregated over an interval

in time. The number of update events occurring in any interval (s; f ] is a Poisson

random variable with expected value �(s; f) =
R f
s
�(t)dt: When � is constant

over time � = � � (f � s).

Using the notation given above, each interval Ji will be modeled by a homo-

geneous Poisson process with its own �i.
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Figure 5.5: An example of a bulk insertion process.

To make the model applicable to modeling simulataneous updates, we consider

a bulk update, the simultaneous update of objects. At update event i, a random

number of objects �i are updated. Figure 5.5 provides a pictorial example of a

bulk insertion process for the World Cup trace. The vast majority of the updates

arrive in quanta of 1, while some of the updates arrive in bigger bulks. Assum-

ing that the f�ig are independent and identically distributed (IID), then the

stochastic process fB(t); t � 0g representing the cumulative number of updates

through time t is a compound Poisson process (e.g., [95]). We let B(s; f) denote

the number of updates falling into the interval (s; f ]. The expected number of

updated objects during (s; f ] may be computed as:

E[B(s; f)] =

Z f

s

�(t) E[�] dt = E [�]

Z f

s

�(t)dt = E[�]�(s; f) (5.1)

Here, � represents a generic random variable distributed like the f�ig.
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Time � per hour

0-7 7:13

7-10 15:59

10-14,22-23 24:97

14-15 29:50

15-17 19:53

17-19 25:23

19-22,23-24 10:60

Table 5.1: Aggregate Update History ( ~Hag = (~T ;~�)) for the World Cup trace

5.2.1 Individual and Aggregate History

We now consider two ways to model update patterns using individual history

(updates to a single object) or aggregate history (updates to a set of objects

with similar update patterns). The use of individual history assists in forecasting

future updates more accurately, but may be costly in terms of storage overhead.

A server must maintain the individual history for a potentially large number of

objects, as well as indices to rapidly access the history. In addition, accumulating

suÆcient training data for modeling individual object history may take much

longer than the time required for modeling aggregate history. Aggregate history

is a less costly alternative in which aggregated data of the update pattern of

multiple objects with common update patterns at a site is used to obtain a model

of aggregate update pattern that is sent to the client. This provides a more

compact representation and is more scalable.

Next, we introduce models for aggregate history and individual history.

Aggregate History We illustrate how to model aggregate history using the

World Cup trace data. We constructed a nonhomogeneous compound Poisson
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process to model the update pattern aggregated over all cyclic objects in a train-

ing set of eight days of data (from June 10, 1998 to June 17, 1998). 10,074 update

times of 4,405 objects were analyzed. While this is a relatively low number of

objects, these objects were requested by many clients, and pushing updates to

all these clients could be very expensive.

We note that the log does not explicitly indicate the time an object is updated.

In Appendix B, we describe how we detect updates. Assuming a cyclic behavior

that repeats daily, we have identi�ed seven distinct segments. Table 5.1 provides

the aggregate history ( ~Hag = (~T ;~�)) (corresponding to Ui in Section 2.5), a vector

representing the e�ective � value for each time interval. To interpret this history,

each row gives the expected number of events per hour during the time interval.

For example, between 0:00 and 7:00, there are 7.13 expected events every hour.

Each event corresponds to a bulk update to all the objects. For the bulk update

part of the model, we aggregated updates within 30 seconds of one another into

a single update event. With this data set, there were an average of 3:34 updates

for each update event. We use this value in our aggregate update estimation

technique described in Section 5.3.3. To estimate the number of updates (recency

Ri) to an individual object Oi in each interval, we scale the � value by fo, the

fraction of all updates at the server that occurred to object Oi.

In general, models are an idealized representation of a process. It is well known

that Poisson processes model a world where updates are independent from one

another. Therefore, models such as the one presented above need to be veri�ed.

Using veri�cation methods, as suggested in [61], it becomes clear that the World

Cup data cannot be accurately modeled using a Poisson model, most likely due

to correlations of update events. However, as we show in Section 5.4, even an
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\inaccurate" model that considers aggregation over multiple objects can provide

a bene�t over using only the last modi�ed times of an individual object, and

performs on average almost as good as using individual object's history with less

overhead.

Individual History We construct individual history ( ~Hind = (~T ;~�)) (corre-

sponding to Ui) for object Oi in the same manner as we construct aggregate

history. However, the relatively small number of updates per object makes any

segment analysis error prone. For individual object history we partition the day

into 24 equal size intervals, and assume a constant � within each one hour inter-

val. As an example, we consider updates to a single object in the World Cup trace

over the 8 day period from June 10- June 17. During this 8 day period, the ob-

ject had 4 updates in the time period [10:00, 11:00) (which corresponds to �=0.5,

i.e., 0.5 updates/day), 1 update in the time period [11:00, 12:00) (�=0.125), 1

update in the time period [12:00, 13:00), 3 updates in [13:00, 14:00) (�=0.375), 2

updates in [14:00, 15:00) (�=0.25). No updates occurred between [17:00, 22:00).

Thus, this object experienced a period of high update activity in the morning,

moderate activity around noon, another period of high activity in the afternoon,

and no activity in the evening.

5.3 Server Cooperation and Pull-Based Consis-

tency Policies

We now consider di�erent levels of server cooperation and corresponding pull-

based policies that can be used by clients and caches depending on how much in-
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formation a server provides. Recall that in Chapters 2 and 3 we gave an overview

of existing pull-based consistency policies. These policies typically assume that

servers provide only the time an object was last modi�ed, and do not provide

any other update history information about the object.

In this section we present di�erent levels of server cooperation that provide

more detailed history information, and present new pull-based policies corre-

sponding to each level of cooperation. We discuss implementation issues and

architectures to support server cooperation in Section 5.3.2.

There are many reasons why a server would cooperate. First, by reducing the

number of times an object needs to be validated, it can reduce the workload at

the server and improve performance. Also, if the server and cache belong to the

same organization (e.g., a reverse cache or a CDN as described in Chapter 2),

server cooperation can improve consistency without the high server overhead of

push-based solutions.

5.3.1 Architectures for Server Cooperation

Server cooperation is a term that describes multiple activities of servers. This

includes the storage and computational overhead to maintain history information,

and the amount of data the server must send to clients.

Figure 5.6 shows the di�erent levels of server cooperation. Levels 0-3 corre-

spond to pull-based policies. Pull-based policies do not require servers to store

any client information, and vary by how much information servers provide on

past updates to objects. This information is typically piggybacked on a client's

request for the object. Levels 0 and 1 correspond to the cases where a server give

no information or only the time that the object was last modi�ed. These two
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2. Server provides an aggregated update history

3. Server provides complete update history

0. Server provides no information
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Figure 5.6: Levels of Server Cooperation

levels are what most web servers currently provide. Levels 2 and 3 increase the

amount of information the server provides. At level 2, servers provide an update

history aggregated over all objects rather than individual update histories. This

can reduce bandwidth consumption and server and client overhead at the cost

of providing less accurate information to the clients. At level 3, servers provide

a complete update history of the object. We discuss the details and tradeo�s of

these di�erent policies further in Section 5.3.3.

Levels 4-6 are push-based techniques that require the server to store informa-

tion about what objects each client has in their cache. Level 4 requires servers

to send invalidation messages to clients whenever an object is updated (e.g.,

[78, 114]). Clients can then request an updated object from the server. Level

5 can further improve consistency by having servers push the updated object to

clients. However, this policy consumes signi�cantly more bandwidth than level
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4. Finally, level 6 allows an object cached at the client to deviate from the object

at the server within a speci�ed bound (e.g., [8, 65, 88, 89]). This can reduce the

amount of data a server needs to push to a client compared to level 5. However,

this also requires servers to store information on the level of staleness a client will

tolerate, and to compute when the server value exceeds this level. Thus, there is

more overhead compared to level 5.

5.3.2 Implementation Issues

We have assumed that servers can either compute an aggregate history over

multiple objects, or provide clients with a history of updates to an individual

object, and clients can use either the individual or aggregate history to compute

the expected number of updates to an object. However, this ignores practical

implementation challenges such as the storage and computational capacity of

clients. Depending on the power and storage capacity of the client, it may be

more appropriate to have a server or intermediate proxy use the update history

to compute an expiration time for a client. For example, if an object is cached

on a mobile device, doing the computation at the server or proxy would conserve

the limited battery power of the mobile device.

In this section we brie
y consider implementation issues concerning where

computations are performed and tradeo�s in terms of both performance and


exibility. We discuss levels of server cooperation in terms of how much com-

putation is performed at a server or proxy vs. how much is performed at the

client, and discuss scenarios where each level of cooperation is most appropriate.

We present di�erent options for servers/proxies and clients, in order of increasing

amount of overhead for servers or proxies and decreasing overhead for clients:
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1. Server provides history to client.

2. Server provides � values to client, either for individual object or aggregated

over multiple object.

3. Server provides expiration time to client, based on server-de�ned � value

(i.e., time that expected number of updates to the object will exceed �.)

4. Server provides expiration time to client, based on client-de�ned � value.

5. Server provides individual or aggregate history to an intermediate proxy,

and proxy computes expiration time based on client-de�ned � value.

Levels 1 and 2 are most appropriate when the server has many objects and

the client has suÆcient capacity to compute the expected number of updates,

and they give the client the 
exibility to determine when to validate cached

objects based on their tolerance for stale data. Level 3 requires no computational

overhead for clients and minimal overhead for the server, however, it does not

give clients any 
exibility. Level 4 gives clients greater 
exibility but requires

more cooperation and computation at the remote server. Clients can pass their

desired � value to servers in the header of their requests, as described in Chapter

4. Finally, performing the computation at an intermediate proxy may be most

appropriate when the client desires greater 
exibility but the server is unable

or unwilling to perform the computation, e.g., mobile clients. A mobile service

provider can perform the computation at an intermediate proxy to compute an

expiration time before delivering the data to clients.
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5.3.3 Pull-Based Policies

Next, we provide the details of di�erent levels of server cooperation and describe

policies that clients can choose based on the level of cooperation. Clients must

develop appropriate policies depending on the server's level of cooperation as well

as the expected bene�t. We present four categories of policies based on the level

of server cooperation. We summarize these levels in Figure 5.3.3, and describe

each level and its corresponding policies below.

S1: Last Modi�ed If servers provide only the time an object was last modi�ed

(S1 in Figure 5.3.3), the client can use TTL, or if they are willing to tolerate stale

data, they can use Last Modi�ed Staleness Estimation. We describe each of these

below.

The advantage of these policies is that they require minimal compuational

and storage overhead at the client. The disadvantage is that they do not consider

previous updates to the object, and cannot exploit knowledge of update patterns

to cyclic objects. As we will show in Section 5.4, this may lead to less accurate

estimates.

C1a: TTL Using only the time an object was last modi�ed, clients or caches

can use TTL, a pull-based policy widely used in practice. TTL estimates how

long an object remains fresh in the cache as a function of its last modi�cation

time. Any object that is estimated to be stale must be validated. TTL can be

tuned using a parameter �, which is typically a real number between 0 and 1. If

an object is cached at time tcache and was last modi�ed at time tlastmod, its TTL

is estimated as:

TTL = tcache + � � (tcache � tlastmod)
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Server options:

S1: Last Modi�ed

S2: Aggregate History

S3: Individual History

Client options:

S1: Server provides Last Modi�ed Time

Client can choose:

C1a: TTL

C1b: Last Modi�ed Staleness Estimation

S2: Server provides Aggregate History

Client can choose:

C2a: Aggregate Based Staleness Estimation (AggHist)

S3: Server provides Individual History

Client can choose:

C3a: TTL

C3b: Last Modi�ed Staleness Estimation

C3c: Individual History Based Staleness Estimation (IndHist)

C3d: An adaptive strategy

Figure 5.7: Options for client and server cooperation

118



The TTL policy works as follows: If a cached object is requested before the

TTL time expires, it is served from the cache without validation (i.e., contact

with the remote server). If the object is requested after the TTL time expires, the

cache validates the object at the remote server before delivering the object.

Note that smaller values of � generate more conservative TTL estimates,

which improve data freshness, but increase the number of validations.

C1b: Last Modi�ed Staleness Estimation (LMSE) Another pull-based

policy that caches can use if servers provide the last modi�ed time is Last Modi�ed

Staleness Estimation (LMSE). This policy can be used if clients can tolerate some

staleness, e.g., they will accept an object with no more than two updates. LMSE

uses a heuristic to estimate the expected number of times an object has been

updated since it was cached as in [19]. If an object is cached at time tcache and

was last modi�ed at time tlastmod, we compute ExpUpdates(tcache; t), the expected

number of updates at time t as:

ExpUpdates(tcache; t) =
t�tlastmod

(TTL�tlastmod)
= t�tlastmod

(1+�)(tcache�tlastmod)

where TTL is calculated using tcache. If the expected number of updates

exceeds a threshold �, then the object is validated, otherwise it is served from the

cache without validation. � represents the client's tolerance towards staleness.

The higher � is, the more willing the client will be to accept stale data.

S2: Aggregate History (AggHist) If a server provides aggregate history

information (S2 in Figure 5.3.3), the client can compute the expected number

of updates to object Oi using the aggregated intervals and � values Ui=( ~Hag =

(~T ;~�)) provided by the server (AggHist). Recall that each � value corresponds

to the expected number of bulk events per hour in interval T . The server scales
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the aggregate history by the fraction of updates of each object with respect to

the total number of updates at the server. This requires less computational

overhead for the clients than history-based estimation. It can also reduce both

bandwidth consumption and storage overhead for clients if clients cache many

objects from the same server. If a client already has the aggregate history for a

server, the server needs to provide only the fraction of updates to each object.

This can provide signi�cant savings if a client accesses many objects from the

same server. However, it also provides less accurate estimates. We note that

servers could also provide aggregate histories for individual objects; however,

this would signi�cantly increase computational overhead at the server and may

not scale to a large number of objects. A good compromise would be for servers

to group objects with similar update patterns and compute aggregate lambda

values for every group. We discuss this further in Chapter 8.

If servers provide an aggregate history but do not provide an individual history

or a last modi�ed time, clients cannot use TTL or LMSE as shown in Figure 5.3.3.

We note that if servers provide both an individual update history and aggregate

history, clients could use an adaptive strategy that switches between multiple

options, e.g., aggregate and TTL (or LMSE). We do not consider the adaptive

aggregate policy in this dissertation.

C2a: AggHist The aggregate based policy (AggHist) uses the aggregate his-

tory ( ~Hag = (~T ;~�)) that is learned from the past updates to a set of objects.

Table 5.1 gives an example aggregated over all objects in the World Cup trace.

Recall that for a given interval, � denotes the update intensity in that interval.

According to Equation 5.1 the expected number of updates accumulated to an
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object in an interval (s,f) is

E[B(s; f)] = E [�]

Z f

s

�(t)dt (5.2)

To estimate the update pattern of an individual object from the aggregate

update history, servers scale the aggregate � values by the relative fraction of

server updates that occurred to that object. Without loss of generality, assume

that time s falls in interval 0 and time f falls in interval n. Therefore, whenever

n > 0, we can rewrite Equation 2 to be

E[B(s; f)] = E [�]

0
BBBB@

(Upper (T (0))� s)� (0)+

Pn�1

i=1
(Upper (T (i))� Lower (T (i)))�(i)+

(f � Lower (T (n)))�(n)

1
CCCCA

(5.3)

where Upper (T (i)) and Lower (T (i)) represent the upper bound and lower

bound of T (i), respectively.

The AggHist policy works as follows: Given an initial time tm, an aggregate

update history ~Hag = (~T ;~�), the fraction of updates of an object Oi with respect to

the total number of updates at the server fo, and the expected number of updates

per bulk update event �, calculate the expected number of updates (recency Ri).

If Ri exceeds a threshold �, then validate the object at the server.

We illustrate with an example from the World Cup trace. Suppose an object

Oi is cached at 1:00 and requested at 8:00. We use the � values from Table 5.1.

If 1% of all updates at the World Cup site occur to object Oi, i.e. fo= 0.01, the

corresponding � values for the intervals from 1:00 to 8:00 in Table 5.1 are scaled

as follows:

Time [1:00 - 7:00]: 7.13 * 0.01 = 0.0713

Time [7:00 - 8:00]: 15.59 * 0.01 = 0.1559
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Recall from Section 5 that for each bulk update event at the World Cup site,

there were an average of �=3.34 updates per hour. Therefore, for object Oi, the

expected recency Ri is:

ExpUpdates(1; 7) + ExpUpdates(7; 8) = (0.0713 * 3.34 * 6 hours) + (0.1559 *

3.34 * 1 hour) = 1.95

S3: Individual History If a server provides the complete individual update

history of an object, the client has several options. First, it can use TTL (C3a) or

LMSE (C3b) as described above, because the individual history includes the time

of the last update. This is straightforward to compute for the clients and reduces

the overhead of storing update histories, at the cost of possibly less accurate

update estimates. Alternately, clients could use the history to perform history-

based staleness estimation. This has the advantage of using the individual update

history of an object, but requires more overhead for clients.

C3c: IndHist The individual history policy (IndHist) uses the individual his-

tory Ui= ( ~Hind = (~T ;~�)) to estimate the recency Ri of a cached object Oi based

on its update history. There are many methods to estimate the number of updates

using the individual history. In our evaluation, we calculate ~Hind by partitioning

all past updates to an individual object into constant intervals as described in

Section 5.2.1.

The IndHist policy works as follows: First, use ~Hind to estimate the expected

number of updates to the cached object. Use formula 5.3 to compute the expected

number of updates, with E[�] = 1. If the expected number of updates exceeds a

threshold �, validate the object.

Using our example object from Section 5.2.1, if the object was cached at 11:30
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and is requested at 14:00, its expected number of updates Ri is:

1
2
ExpUpdates(11; 12)+ExpUpdates(12; 13)+ExpUpdates(13; 14) = 1

2
�0:125+

0:125 + 0:375 = 0.5625.

C3d: Adaptive Policy Finally, if servers provide individual history informa-

tion, clients can use an adaptive policy and adaptively choose between TTL or

LMSE and history based estimation. Adaptive policies require individual histo-

ries in order to compare the actual number of updates to an object in a given

time window to its expected behavior.

We hypothesize that the AggHist and IndHist policies may perform poorly

during bursts because the bursts are inconsistent with the update histories. In

contrast, TTL may perform well during bursts because it estimates that an object

that was recently updated is likely to be updated again soon.

Given an individual history, an adaptive policy uses heuristics to detect bursts

online and dynamically choose between TTL and IndHist. Thus, it can generalize

well to di�erent types of update patterns, and requires no prior knowledge of

whether an object is cyclic or bursty. We describe the details of detecting bursts

and the adaptive policy in Section 5.4.4.

5.4 Experiments

We now evaluate the AggHist, IndHist, and TTL policies on data traces that

exhibit both cyclic and bursty behavior. We use trace data from two di�erent

applications, web caching and email, to show that using history information can

improve the accuracy of estimating the freshness of cached objects and signi�-

cantly reduce the number of validations. We �rst compare the e�ectiveness of
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the AggHist and IndHist policies against TTL on objects with cyclic behavior

in the two email traces and the World Cup trace. We then present an adaptive

history policy (IndHist-AD) that can generalize to di�erent types of objects, and

evaluate its performance on both cyclic and bursty objects in the World Cup

trace.

5.4.1 Data Traces

World Cup Data The trace data from the 1998 World Cup Web Site [10]

contains a log of all requests to the site. The World Cup site had servers in four

di�erent geographical locations: Paris, France; Herndon, VA; Santa Clara, CA;

and Plano, TX. The entire trace consists of 1.3 billion requests made from May

1, 1998 to July 23, 1998. In our experiments we used a 15-day subset of this trace

from June 10, 1998 to June 25, 1998. This corresponds to the �rst 15 days of the

World Cup event and includes about 333 million requests. In our experiments,

we report separate results for cyclic and bursty objects. To identify objects in

each category, we classi�ed objects o�ine using the update histories from all 15

days of the trace, using the techniques described in Section 5.4.4.

For each request, the trace contains the following:

� ClientID: Unique ID of the client making the request. Note that this may

be a proxy.

� ObjectID: Unique ID of the requested object.

� Timestamp: The time the request was made.

� Size: Size of the object in bytes.
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The trace does not explicitly give information on updates to objects, however,

we can infer updates when an object changes size as described in Appendix B.

In the 15-day trace, 42 million requests were for cyclic objects and 11 million

requests were for bursty objects. The remaining 280 million requests were for

objects that did not change during the 15 days, most of which were static images.

If all clients had suÆcient cache space (see below), 9 million of the requests for

cyclic objects would be cache hits, as would be 1 million of the requests for

bursty objects. Note that the percentage of requested bursty objects that are in

the cache (�11%) is smaller than for cyclic objects (�21%). This is because the

bursty objects are most interesting to clients during a short interval (during the

bursty period), so they are less likely to be cached prior to the update burst.

Email Data Our �rst email trace (DBWORLD) includes email noti�cations

of postings to the DBWORLD electronic bulletin board and other messages. The

data were collected over seven months and consists of more than 6400 insertions,

from November 9, 2000 through June 17, 2001. Our second email trace (INBOX)

is taken from messages to a client's inbox from March 3, 2001 - December 24,

2002 and consists of about 10,000 insertions. We collected the data for both these

traces using a capture program (similar to the way the vacation program works

on Unix) to capture messages and process them.

5.4.2 Setup

World Cup Experiments Our experiments with the World Cup trace model

a traditional web caching scenario. We compared the TTL, IndHist, and AggHist

policies. For each of these policies, when a client requests a cached object, the
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cache uses the policy to determine whether or not to validate the object. Using

TTL, an object is validated if it is requested after it expires. Using IndHist and

AggHist, it is validated if the expected number of updates exceeds a speci�ed

threshold �.

We maintained separate caches for each client ID, which may correspond to

either an individual client or a proxy. For each client ID, we assumed an initially

empty cache. To simplify our presentation, we assume all clients had suÆcient

space to cache their objects and no objects were evicted from client caches during

the trace period. This is a reasonable model because cache size a�ects only the

hit rate of the cache. Therefore, a limited cache would have equal impact on

the performance of all estimation policies, and would not change their relative

accuracy. Each experiment included a training period to gather object update

history information, followed by a test period during which we collected data.

We give the length of the training and test periods when reporting the results of

each experiment.

Email Experiments Our experiments with the email traces model a scenario

where a client has a locally cached mailbox, e.g., on their mobile device, that needs

to be refreshed in the background to promptly notify the client of new messages.

The goal is to minimize the time elapsed between when a new message arrives and

when it appears in the client's mailbox while maintaining a reasonable network

resource consumption. This di�ers from the above web caching application where

objects are refreshed only when they are requested (and the cached copy is not

suÆciently fresh).

For the email application, we compare the TTL and IndHist policies.1 After

1Note that since a mailbox corresponds to a single object, we do not consider the AggHist

126



each refresh, for the TTL policy, we computed the time of the next refresh as a

function of the time the last message arrived. For the IndHist policy, after each

refresh we computed the time of the next refresh as the time that the expected

number of updates (i.e., new messages) would exceed some threshold �. We

used the �rst week of each trace as a training period to gather a history, and

continuously updated the history during the experiments.

Metrics We use the following metrics:

� Total Validations: This is the number of times requested objects that

were in the cache needed to be validated at the remote server.

� Stale Hits: For the World Cup trace, this is the number of objects that

were served from the cache without validation but had actually been up-

dated at the remote server.

� Average Delay: For the email traces, this is the average amount of time

elapsed between the arrival of a new message and the time it appears in

the client's mailbox.

5.4.3 Results for Cyclic Objects

Our experiments show that using either aggregate histories or individual histories

of cyclic objects can signi�cantly improve the accuracy of estimates of an object's

freshness. In web caching, this can increase the number of objects served from the

cache without validation, which reduces costly remote server accesses for clients

and reduces the load on servers. In email applications, this can reduce the delay

policy.
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of new messages appearing in a client's mailbox without increasing the mailbox

refresh rate, which is of particular importance to mobile devices.

Accuracy of Estimates

World Cup Trace We �rst compare the accuracy of estimating the number

of updates to cyclic objects in the World Cup Trace using LMSE, IndHist, and

AggHist. Each time a client requests a cached object, we compare the actual

number of updates to the object against the estimated number using each policy.

Using LMSE, we estimate the number of updates to an object at time t as (t �

tlastmod)=(TTL�tlastmod) [19], where tlastmod is the last modi�ed time of the object,

and use an � value of 0.05, which is commonly used in practice [24].
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Figure 5.8: Comparison of three policies for Cyclic objects in the World Cup

Trace

Figure 5.8 compares the estimated updates to the actual value for each policy.

A value of 0 means the estimate was accurate. A positive error value means the

actual value exceeded the estimated value, and a negative value means the actual
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� (expected) actual (DBWORLD) actual (INBOX)

0.01 0.010 0.011

0.05 0.049 0.057

0.1 0.098 0.114

0.2 0.196 0.229

0.3 0.295 0.344

0.4 0.394 0.457

0.5 0.493 0.575

0.6 0.592 0.687

0.7 0.691 0.799

0.8 0.790 0.913

0.9 0.886 1.034

1.0 0.980 1.145

Table 5.2: Comparison of the expected and actual number of updates using

IndHist

value was less than estimated. AggHist and IndHist have more than twice as

many accurate estimates as TTL. This shows that using histories can signi�cantly

improve the accuracy of freshness estimates for cyclic objects.

Email Traces We next consider the accuracy of the IndHist policy for the email

application. Recall that for the email application, using IndHist we refreshed the

mailbox whenver the expected number of updates (new messages) exceeded �.

In Table 5.2 we compare the expected number of updates per validation (�)

against the actual number of updates per validation. We report results for both

the DBWORLD trace and the INBOX trace. For all values of �, the expected

number and actual number are very close, which shows that IndHist is accurately

estimating the expected number of updates.
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Number of Validations

We now report on the number of validations required to maintain a given level

of freshness using IndHist, AggHist and TTL for the World Cup trace and the

DBWORLD and INBOX traces.

World Cup Trace We �rst compare the TTL, IndHist, and AggHist policies

in terms of both number of validations and data freshness of cyclic objects in the

World Cup trace. In these experiments, we used all 15 days of trace data. We

used the �rst 8 days to construct histories, and ran the experiments on the next

7 days.

We varied the � parameter for TTL, and the � parameter for IndHist and

AggHist. For TTL, we varied � from 0.05 to 0.55. This range is typical of what

is used in practice [57]. For IndHist, we varied � from 0.05 to 0.30. For AggHist,

we varied � from 0.07 to 0.50. We report on the number of useful and useless

validations and stale hits for each of the three policies.

Policy Total Useful Useless Stale

Vals Vals Vals Hits

TTL �=0.10 3345399 880977 2464422 129048

Agg �=0.10 3028941 888252 2140689 97931

Hist �=0.10 2297665 873456 1424209 129078

TTL �=0.20 2603697 840095 1763602 288646

Agg �=0.20 2249506 864662 1384844 215165

Hist �=0.20 1819490 851922 967568 229994

Table 5.3: Validations and Stale Hits for Cyclic objects
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We show the results for selected � and � values in Table 5.3. The �rst obser-

vation is that AggHist and IndHist perform signi�cantly fewer validations than

TTL, without a signi�cant increase in the number of stale hits. When � = 0.20,

AggHist and IndHist have both fewer validations and fewer stale hits than TTL �

=0.20. AggHist reduces the number of validations by 14%, and IndHist reduces

the number of validations by 30%. When � =0.10, AggHist reduces the num-

ber of validations by 9% and IndHist reduces the number of validations by 31%

compared to TTL with � = 0.10. Thus, policies that consider past updates to

objects can signi�cantly reduce bandwidth consumption compared to TTL while

providing fresher data to clients.
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Figure 5.9: E�ect of Tuning TTL, AggHist, and IndHist on data freshness and

validations

In Figure 5.9 we report on the number of stale hits given similar levels of total

validations. Note that the lines for IndHist and AggHist do not extend beyond

2,500,000 and 3,500,000, repectively, because both of these policies perform fewer

validations than TTL even for small values of �.
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For each of the three policies, this graph shows the bene�t of increasing the

total number of validations. Given a number of validations, both AggHist and

IndHist deliver signi�cantly fewer stale objects than TTL. This is because the

improved accuracy of the freshness estimates of objects reduces the number of

unnecessary validations. This is especially true when there are relatively few

validations, i.e., higher values of � and �. For example, when each of the policies

has about 1,500,000 total validations, TTL (� �0.5) provides �800,000 stale

hits while AggHist (� �0.5) provides �500,000 stale hits and IndHist (� �0.3)

provides �300,000 stale hits. Another important observation is that the IndHist

policy o�ers an improvement over the AggHist policy because it can model the

individual update patterns of objects that may di�er from the average behavior.

To summarize, for objects with cyclic update patterns, the AggHist policy can

o�er signi�cant improvements over TTL. Therefore, the AggHist policy is a good

alternative to TTL. It can reduce computational overhead (compared to IndHist)

while still providing reasonable estimates of the freshness of cached data.
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Figure 5.10: E�ect of Tuning TTL and IndHist on average delay and validations
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Email Traces We now consider the DBWORLD and INBOX traces. Recall

that we use the average delay as our metric. For TTL, we varied � between

0 and 1 and for IndHist, we varied � between 0 and 1. We plot the number

of validations against the average delay for TTL (for di�erent � values) and

IndHist (for di�erent � values) for both traces in Figure 5.10. As expected, as

the number of validations increases, the average delay decreases for both. The key

observation is that for a given average delay, IndHist performs signi�cantly fewer

validations than TTL. For example, in Figure 5.10(a), to provide an average delay

of about 500 seconds, TTL must perform about 170,000 refreshes while IndHist

performs about 80,000. Similarly, for the dataset in Figure 5.10(b), to provide

an average delay of 500 seconds TTL performs about 50,000 validations while

IndHist performs about 20,000. Thus, IndHist can reduce the total number of

refreshes by more than half. This can provide signi�cant savings in terms of both

power and bandwidth to clients who read email on their mobile devices.

5.4.4 Adaptive Policy

In Section 5.1 we presented update patterns observed in several traces. In the

World Cup trace, we observed both cyclic and bursty objects. The email traces

also generally experience cyclic update patterns but may experience occasional

bursts. In this section, we present an adaptive policy that uses heuristics to detect

bursts online and dynamically choose between IndHist and TTL. We evaluate its

performance on both cyclic and bursty objects, and show that the adaptive policy

can generalize well to both.
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IndHist-AD We now describe an adaptive policy (IndHist-AD) that can (a)

detect bursts and (b) dynamically choose between policies. Thus, it can generalize

well to di�erent types of update patterns, and requires no prior knowledge of

whether an object is cyclic or bursty. We �rst describe how we identify bursts.

We then describe the adaptive policy (IndHist-AD) which dynamically chooses

between the IndHist and TTL policies depending on whether or not an object

exhibits bursty behavior. Thus, for objects with no bursts, it has comparable

performance to the IndHist policy.

Identifying Bursts

We use the term burst to refer to the case where the number of actual updates

to an object is considerably higher than that approximated by IndHist. Consider

an object that is cached at time t and created at time t0. We estimate that a

burst occurs when the actual number of updates in a window of size W prior to t,

i.e., all updates in the interval [t�W , t], exceeds the expected number of updates.

The expected number of updates is estimated by the IndHist policy, using only

updates that occurred in [t0, t�W ] prior to the current cycle.

The adaptive history policy works as follows: Given an intensity function �

for the interval (t0, t - W ), and �� for the interval (t�W , t), a distance function

f(�; ��), and a threshold T , IndHist-AD identi�es a burst if f(�; ��) � T . On

each request, if f(�; ��) � T , IndHist-AD assumes a burst is occuring and uses

TTL. Else, if f(�; ��) < T , IndHist-AD assumes a burst is not occuring and uses

the IndHist policy.

We next provide a distance measure f . This was empirically evaluated to

provide a good estimation of bursty periods in the World Cup trace data. We
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note that more research is needed to identify distance measures that will work on

several traces. Let the expected number of updates (�) in [t�W , t] with respect

to time t be �(W; t), and the actual number of updates (��) in [t � W , t] be

��(W; t). Then,

f(�; ��) =

8>>>><
>>>>:

��(W;t)
�(W;t)

if �(W; t) > 0 (a)

T if �(W; t) = 0 and ��(W; t) > 0 (b)

0 otherwise (c)

Intuitively, condition (a) covers the case when at least one update was expected

(�(W; t) > 0). A burst occurs when the ratio of observed updates to expected

updates exceeds T . Condition (b) covers the case when no updates were expected

(�(W; t) = 0) and at least one update occurs.

Bursty Objects in the World Cup Trace

Most bursty objects in the World Cup trace had a \burst" of updates on a single

day, and few (if any) updates on other days, as shown in Figure 5.2(b). For

these objects (or any object with no history available), TTL is likely to provide

more accurate freshness estimates compared to the IndHist based policy. A more

interesting case occurs when an object that normally has cyclic update patterns

experiences a burst in updates. This could occur at a news web site that is

normally updated at regular intervals but experiences a burst of updates during

a breaking news event. For these objects, IndHist is likely to do well during cyclic

periods, but TTL may do better during a burst. This requires an adaptive policy

that could choose between di�erent policies, such as our IndHist-AD.

Few objects in the World Cup trace exhibited this behavior of cyclic patterns

and bursts. We modi�ed the trace data as follows to generate such objects.
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We randomly selected 55 of the most popular bursty objects with respect to

client requests and mapped them to 55 of the most popular cyclic objects. In

our experiments, we treated each bursty/cyclic pair as a single object. These

55 merged objects exhibited cyclic update patterns for most of the 8 days, but

experienced bursts of updates on one day.

Policies

We compare TTL, the non-adaptive IndHist policy (IndHist-NA), and the adap-

tive IndHist (IndHist-AD) policy described above. We evaluate the policies on

a \combined" trace of 55 merged objects and the cyclic objects. We ran these

experiments on the �rst 8 days of our 15 days of trace data. We used the �rst 4

days to gather history information, and report results on the remaining 4 days.

For comparison purposes, we also report on results for the cyclic objects during

the same period.

For IndHist-AD, recall that we estimate when a burst occurred by considering

the number of updates in a window W . IndHist-AD will use TTL whenever

f(�; ��) in a window of size W exceeds the threshold T . In our experiments, we

report results for W = 1 hour and W = 24 hours, and T= 2.

Results

We show the number of validations and stale hits for selected values of � (TTL)

and � (IndHist) when W= 1 in Table 5.4. In the �rst 3 rows of Table 5.4, the

number of useful validations are similar for each of the three techniques, while

TTL has many more total validations. IndHist-AD has fewer stale hits than

IndHist-NA. In the next 3 rows, the total number of validations of all three
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Policy Total Useful Useless Stale

Vals Vals Vals Hits

TTL �=0.05 1368170 371353 996817 14936

Hist-AD �=0.05 988331 357034 631297 76115

Hist-NA �=0.05 932469 351317 581152 94010

TTL �=0.30 755100 350135 404965 136092

Hist-AD �=0.30 798578 348986 449592 116855

Hist-NA �=0.30 764919 341186 423733 139349

Table 5.4: Validations and Stale Hits for Bursty objects when W=1 hour

techniques are similar. We note that IndHist-AD has fewer stale hits than TTL.

It also has fewer stale hits than IndHist-NA, and is thus better suited to bursts.
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Figure 5.11: E�ect of Tuning TTL, IndHist-AD, and IndHist-NA on data fresh-

ness for (a) bursty and (b) cyclic objects

We compare the performance of TTL, IndHist-NA, and IndHist-AD. For all

policies, we varied the tuning parameter from 0.02 to 0.7. We plot the number of

stale hits versus the total number of validations in Figure 5.11(a). As expected,
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TTL outperforms IndHist-NA for the bursty objects. This is because TTL as-

sumes that objects that have been updated recently are more likely to be updated

in the near future, so it is well-suited for bursty data. In contrast, IndHist-NA

assumes that an object's update patterns will be consistent with its past update

history, so it cannot handle bursts as well. However, IndHist-AD o�ers some

improvement over IndHist-NA, especially as the total number of validations in-

creases. This shows that IndHist-AD can detect some bursts in updates and

chooses TTL when appropriate. IndHist-AD with W=24 can provide fewer stale

hits, and in most cases even provides fresher data than TTL for the same number

of validations. This suggests that larger values of W may be more e�ective at

detecting bursts.

We also compare the performance of IndHist-NA and IndHist-AD on the cyclic

objects. Our goal is to ensure that IndHist-AD performs well on cyclic objects as

well as IndHist-NA. We plot these results in Figure 5.11 (b). The key observation

is that IndHist-AD has comparable performance to IndHist-NA for cyclic objects,

so it can generalize to both cyclic and bursty objects.

5.5 Summary and Open Problems

In this chapter we have shown how to improve pull-based cache consistency using

server cooperation. Speci�cally we have shown the following:

� For cyclic objects, using either individual or aggregate update history in-

formation improves the accuracy of the estimates of the number of updates

to a cached object.

� For cyclic objects, for a given level of freshness, using either individual or
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aggregate histories performs signi�cantly fewer validations than TTL.

� An adaptive policy that can choose between individual history and TTL

performs well for both cyclic and bursty objects.

There are several areas for future work. These include the following:

� Grouping Objects: An open problem is determining the best way to

group objects for modeling aggregate history. Smaller groups of objects

may improve the accuracy of the approximation but also increase storage

overhead, so there is a tradeo� between storage overhead and accuracy.

� Identifying Bursts: In this chapter we presented heuristics to identify

bursts of updates, however, additional research is needed to �ne tune these

heuristics. Di�erent heuristics and parameter settings may be most e�ec-

tive depending on the degree of frequency, predictability, and burstiness of

object update patterns.

� Distributed Updates: In many systems updates may occur in multiple

locations rather than at a single server. These updates may be independent,

or they may be related, so modeling updates introduces new challenges.

E�ective techniques to model updates in these contexts is an area of future

work.

� Data Recharging: Another problem that relates to modeling updates is

data recharging. If a client is connected to the Internet for a limited period

of time, a challenge is determining which objects are most likely to be

refreshed during the connection period and schedule refreshes accordingly.

For example, if an object is most likely to be updated near the end of
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the connection period, it should be scheduled to be refreshed at this time.

Con
icts could occur if many objects are likely to be updated near the end

of the connection period, in this case techniques to prioritize objects based

on both client preferences and the accuracy of the model are needed.

� Server Cooperation Issues: There are many open problems related to

implementations and architectures for server cooperation. One area of fu-

ture work is studying the e�ect of di�erent server cooperation schemes on

the performance of both clients and servers. If a policy requires too much

work at the server, it could have a negative impact on performance and

increase latencies for all clients. Similarly, if a policy requires too much

work at the client, it could reduce the bene�ts of caching. A related area

of future work is developing server cooperation architectures that place an

appropriate load on both clients and servers.
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Chapter 6

Pro�les in Mobile Environments

In Chapter 4 we showed the bene�ts of using client pro�les for caching decisions

on �xed networks. In this chapter we present a framework for mobile clients to

communicate pro�les to proxy caches and base stations, and for base stations and

caches to support diverse mobile applications [18]. Pro�les can improve mobile

data access in two ways. First, using pro�les in caching decisions at a proxy cache

at the wireless base station can reduce �xed network latencies by increasing the

number of requests served from the cache. Second, using pro�les for scheduling

decisions at the wireless base station can provide di�erent priorities to di�erent

classes of applications, and can reduce the latency of high priority applications.

We �rst describe our framework for pro�le-based data delivery in mobile envi-

ronments, including possible deployment scenarios, parameters, and our pro�le-

based data delivery algorithm (labelled Pro�le). Finally, we present simulation

results (we present implementation results in Chapter 7).

Our main results are as follows:

� Using pro�les for both caching and scheduling decisions at a wireless base

station can reduce end-to-end latencies and di�erentiate services for mobile

clients.
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� Clients who have too many high priority applications increase the latencies

of all applications, which gives all clients an incentive to cooperate.

� Using hando� pro�les can mitigate the e�ects of delays when clients migrate

to a neighboring cell by giving outstanding requests higher priority in the

new cell and/or using cached data.

6.1 Pro�le-Based Data Delivery

Our framework for mobile client pro�les allows clients or service providers to

provide di�erent levels of service for di�erent applications. It is based on the ob-

servation that mobile clients typically have di�erent QoS requirements for di�er-

ent applications. Some applications, e.g., instant messaging, require low latency,

while others, e.g., �le transfer, email, will tolerate higher latencies. In addition,

our framework includes hando� pro�les, which can give higher priority to requests

during hando�s and mitigate the e�ects of hando� delays. Unlike prior work in

this area, e.g., [81, 94, 99], our pro�le-based scheme does not require any changes

to the network layer.

We �rst describe potential deployment scenarios and granularities of pro�les.

We then describe the pro�le parameters, and how to choose values for them.

Finally, we describe the details of the pro�le-based data delivery algorithm.

6.1.1 Pro�le Deployment and Granularity

Pro�les can be set by either clients or wireless service providers. If clients set

their pro�les, parameter values can be appended to requests and passed to the

base station, assuming that pro�les can be encoded suitably succinctly (see Sec-
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application site TA TL Priority

1.E-mail - - - Low

2.IM - - - High

3.Stock finance.yahoo.com 0 2 sec High

4.Sports www.espn.com 0 2 sec Low

5.News www.cnn.com 2 1 sec High

6.Weather www.weather.com 2 1 sec Low

7.Default - 0 10 sec Low

Figure 6.1: An Example Pro�le

tion 6.1.4). Thus, the base station does not need to store any pro�le speci�c

information, and the pro�les themselves do not add extra storage or retrieval

overhead at the base station. Also, clients can set and tune their pro�les locally,

without the overhead of communicating with the base station.

We present an example pro�le in Figure 6.1.1. In this example, a client

accesses both instant messages and email on her PDA (rows 1 and 2 in Figure

6.1.1), as well as several cacheable web applications. We note that, as in Chapter

4, clients can distinguish between di�erent applications of the same request type,

e.g. HTTP requests, by setting di�erent pro�les for di�erent domain names. We

will discuss the details of the pro�le parameters in Section 6.1.3.

Alternatively, service providers could set pro�les. In this case, the service

provider could map pro�les to either clients or applications. If the service provider

maps clients to pro�les, the scheme is pricing-based, with higher paying clients

receiving relatively better service. If the service provider maps applications to

pro�les, the scheme is performance based, and the aim is to provide low latency

to time sensitive applications. In the remainder of this dissertation, we assume
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that clients set their own pro�les.

For each application, clients set two pro�les, regular and hando�. Initially, a

client makes a request using the regular pro�le for the application. However, if

the client migrates to a neighboring cell before the request is served, the client's

mobile device can communicate the hando� pro�le to the new base station. The

request will be served using the hando� pro�le in the new cell. We describe how

to choose parameters for hando� pro�les in Section 6.1.3.

6.1.2 Assumptions and Restrictions

We make the following assumptions:

� Clients share the available wireless downlink bandwidth, and objects are

unicast from the base station to the clients. This is how cellular providers

currently serve mobile clients on a data channel.

� We assume that base stations are equipped with functionality to make

caching and scheduling decisions based on pro�les. Another feasible alter-

native is to implement the pro�le speci�c functionality at a host colocated

with the base station. We do not consider such implementation-speci�c

issues further in this dissertation; instead, we use the generic term base

station to refer to the entity with the caching and scheduling functionality.

� We assume that every object has a Time-to-Live (TTL) [57], either assigned

by a remote server or estimated using heuristics. We do not consider the

e�ects of inaccurate TTL estimates on our results. Our implementations of

the di�erent downloading polices rely on the same estimates of the update
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frequencies of objects; therefore the e�ects of inaccurate TTL estimates on

all policies are comparable.

� We assume that the time to read an object from the cache is negligible;

therefore all cached objects are available to be sent to clients immediately.

This assumption is reasonable because latency on a wide area �xed network

is typically much higher than the latency of accessing a local cache.

� We do not consider the cost of sending requests on the wireless uplink,

as the sizes of these requests are typically much smaller than the objects

transmitted on the downlink.

6.1.3 Pro�le Parameters

Our pro�les include three parameters: a target latency TL and a target age TA

as described in Chapter 4, and a priority. Given a request for an object Oi, TL

corresponds to li from Section 2.5, TA corresponds to ri, and priority determines

the object's position in the service queue Q (described further in Section 6.1.5).

We describe how to choose these parameters for speci�c applications.

Choosing Priority

The �rst parameter is a priority which is used to schedule objects that are avail-

able for delivery on the wireless downlink. We specify the priority for applications

as either LowPriority (e.g., casual web browsing, email) or HighPriority (e.g., in-

stant messaging). In our example in Figure 6.1.1, the client prefers to receive her

instant messages as quickly as possible, but for her email she will tolerate some

delay. Therefore, she sets her email to LowPriority and her instant messages to
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HighPriority. She assigns priorities to her cacheable web applications in a sim-

ilar manner. The stock and news are HighPriority, and the sports and weather

are LowPriority. Intuitively, HighPriority should be used for requests where it is

important to deliver data as quickly as possible, and LowPriority should be used

for requests that can tolerate higher latencies if necessary. We describe how use

these priorities for scheduling in Section 6.1.5.

Choosing Target Latency

Clients assign a target latency TL to each request as in Chapter 4. TL indicates

how long a client is willing to wait for fresh data, and is used to determine when

to download an object and when to use a cached copy. It di�ers from priority

which is used for scheduling objects that are available for delivery to clients. The

TL parameter is used only to determine when to deliver a cached object to clients

and when to download a fresh copy.

Note that both HighPriorty and LowPriority applications can have either

high or low TL values. For example, consider the weather application on row

6 of Figure 6.1.1. The weather application has its TL set to 1 second, (i.e.,

lower latency), but a priority of LowPriority (i.e., higher latency). Intuitively,

LowPriority means that the request has lower priority than requests such as

instant messaging where low latency is critical. A lower TL value means that the

client will tolerate stale cached data if it can be delivered quickly.

Choosing Recency

In addition to specifying a target latency TL, clients specify a target age TA.

Recall that age is de�ned as the number of times an object has been updated at
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the remote server since it was cached. Clients who require the most recent data

set TA to 0.

In our example, the client sets the TA of the stock and news applications to 0

to indicate that she prefer more recent data, and set the TA of sports and weather

to 2 updates to indicate that she will tolerate some staleness.

Choosing a Hando� Pro�le

Clients can choose hando� pro�les for each application. These allow requests

to be served more promptly in the new cell and mitigate the e�ects of hando�

delays.

Clearly, the choice of hando� pro�le is linked to the choice of pro�le for

non-hando� requests to be e�ective. For example, a hando� pro�le may choose

HighPriority for an application whose non-hando� pro�le was LowPriority. Al-

ternatively, one may choose a higher TA value to indicate that stale cached data

is acceptable, or both. We present example hando� pro�les in Section 6.2.2.

6.1.4 Con�guring and Communicating Pro�les

As described in Section 6.1.1, pro�les can be speci�ed at a granularity determined

by the client and/or service provider. Clients can communicate their pro�les to

the base station assuming the pro�le parameters can be encoded succinctly, for

example by including them in a request's HTTP header or in the IP TOS byte

[84]. This eliminates the overhead of storing pro�les at the base station and gives

greater 
exibility to the client.
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0 − low
1 − high

0 − low
1 − high

IP TOS byte

(5 bits)
Profile?
0 − no
1 − yes

Priority
0 1 2 3  −  7

Latency
Age

Figure 6.2: Using an IP TOS byte to communicate pro�les

A Possible Implementation

Pro�le could be implemented by adapting the IP TOS byte as in Di�Serv[84].

Setting this byte in each request packet would allow pro�le parameters to easily

be communicated to a base station. A possible scheme for doing so is shown

in Figure 6.2. The �rst bit indicates whether or not this byte contains pro�le

information. The second bit indicates whether the request is HighPriority or

LowPriority. The third bit indicates whether TL is HighLatency or LowLatency.

The remaining 5 bits indicate the value of TA.

Clearly this scheme would not be feasible in a Di�Serv[84] network. However,

such a network would provide QoS beyond what we are proposing. Further, in this

scheme, we use a network header �eld to specify application preferences, However,

recall that the TOS byte was initially designed to specify service classes for IP

datagrams[46], which is essentially what we are using it for. If layer violations

are a concern, an application layer shim encoder can be used to carry pro�le

information.

6.1.5 Pro�le-Based Data Delivery Algorithm

The pro�le-based data delivery algorithm (Pro�le) combines making a caching

decision at the base station proxy cache with scheduling data delivery on the
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wireless downlink. Recall that in Chapter 4 we presented a pro�le-based down-

loading scheme on �xed networks that relies on scores of how well the latency and

the age of an object meet the client's target values. However, in mobile environ-

ments, the latency score of an object must consider the delay on the wireless link

in addition to the �xed network latencies. In this section we de�ne a modi�ed

pro�le-based downloading scheme for mobile clients that incorporates traÆc on

the wireless downlink into its latency scores.

We �rst describe the pro�le-based downloading and pro�le-based scheduling

schemes, then present the combined algorithm.

Pro�le-Based Downloading

When a request arrives for an object Oi, the base station must �rst make a

decision about whether to validate a cached object at the remote server or deliver

a possibly stale cached copy without validation.

We de�ne a combined decision function that considers latency on the wire-

less downlink as the weighted average of Score(TL, Latency, KL), where TL

corresponds to li in Chapter 2 and Latency corresponds to Li, and Score(TA,

Age, KA), where TA corresponds to ri and Age corresponds to Ri. We modify

the formulas for DownloadScore and CacheScore from Equations 4.1 and 4.2 as

follows:

We de�ne Svc(Q) as the expected amount of time it will take to serve out-

standing requests in Q with higher priority on the wireless downlink. We use

this information, combined with the object's size and downlink bandwidth, to

estimate the transmission time of an object. Since downloading always provides

the most recent data, Score(TA, Age, KA) is always 1.0. Therefore, we modify
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Equation 4.1 to compute DownloadScore as:

DownloadScore = (1�w) � 1:0+w � Score(TL;max(Svc(Q); Latency); KL) (6.1)

We estimate the latency to be the maximum of the service time of objects

remaining in the queue ahead of this object and the �xed network latency of

downloading the object.

We now consider CacheScore. Recall that when an object is read from the

cache, its �xed network latency is 0. However, in mobile environments we must

also consider the latency on the wireless downlink. Therefore, we modify Equation

4.2 and compute CacheScore as:

CacheScore = (1� w) � Score(TA; Age; KA) + w � Score(TL; Svc(Q); KL) (6.2)

Note that when Svc(queue) is greater than the �xed network latency, DownloadScore

> CacheScore. This means that when the downlink is congested, more recent

data can be downloaded in response to client requests because clients have to

wait for their data anyway.

Pro�le-Based Scheduling

When a requested object becomes available at the base station, it is added to the

service queue Q and is scheduled to be sent to the client via the wireless downlink.

In our pro�le-based scheme, the base station transmits objects sequentially using

a scheduling algorithm that considers priorities. We �rst discuss some issues in

develiping a priority-based scheduling algorithm. We then present our algorithm.
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Issues and Challenges In general, there are several desirable qualities for

scheduling algorithms. First, we want to avoid starvation and ensure that all

requests will eventually be served. Second, any scheduling scheme should be

deployable with minimal overhead at the wireless base station. A third desirable

quality is fairness. All clients should have a fair share of HighPriority requests.

In addition, the performance should degrade gracefully in heavy workloads, i.e.,

when it is impossible to meet the desired latencies of all requests, we should be

able to control how the algorithm behaves. A �nal desirable quality is 
exibility.

In this chapter we present a scheme that allows clients to map their applications

to two di�erent classes of priority, and provides the same level of service to all

applications in each class. However, a scheme that allows clients to set their own

deadlines for di�erent classes of applications and to have more than two levels

of priority would be useful. We discuss preliminary work in this direction at the

end of this chapter.

Scheduling Algorithm Our scheduling algorithm is based on EDF scheduling

[101]. This is straightforward to implement and guarantees that all requests will

eventually be served. We discuss fairness issues in Section 6.2.2.

Our EDF based scheduling scheme maps HighPriority and LowPriority re-

quests to deadlines, then uses Earliest Deadline First (EDF) scheduling [101]

to schedule objects for delivery at the base station. The object is inserted into

the service queue Q in position Qj such that for all i < j, deadline(Qi) �

deadline((Qj), and for all i > j, deadline(Qi) > deadline((Qj). This scheme

assures that LowPriority requests will not get starved.

We use two parameters, �1 and �2, to set the deadlines of HighPriority and

LowPriority requests. Let t be the time that a request for an object arrives
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Profile-Based Data Delivery(Object O, Pro�le P )

if O is in cache

use P to compute CacheScore and DownloadScore

f using equations 6.2 and 6.1 g

if DownloadScore > CacheScore

Request O from remote server

When O arrives:

Enqueue EDF(O, Q)

Refresh O in cache

else

Enqueue EDF(O, Q)

end if

else f O is not in cache g

Request O from remote server

When O arrives:

Enqueue EDF(O, Q)

Insert O in cache

if cache is full

replace using LRU

end if

end if

Figure 6.3: Pro�le-Based Data Delivery Algorithm
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at the base station. We map requests to deadlines as follows. If the request

is HighPriority, we set its deadline to t+�1. If the request is LowPriority, we

set its deadline to t+�2. Note that the di�erent between �1 and �2 controls

the relative latencies of each type of request. Under heavy workloads, when �2

is much larger than �1, HighPriority latencies will stay low while LowPriority

latencies will increase. When �1 = �2, LowPriority and HighPriority requests

have identical priorities and are processed in a �rst come, �rst served manner.

Under lighter workloads, most requests will meet the deadlines set by their

�1 and �2 values. Under heavier workloads, these values will a�ect the relative

latencies of HighPriority and LowPriority requests and determine how many of

each group will meet their deadlines. We study the a�ects of varying � values

in Section 6.2.2.

All of the components described above are integrated into a single algorithm

at the base station. This algorithm is shown in Figure 6.1.5.

6.2 Simulation Results

Our simulation results show that using pro�les for both caching and schedul-

ing can reduce end-to-end latencies and di�erentiate service for HighPriority and

LowPriority applications. We �rst describe our simulation environment and pa-

rameters. We then present our results. (We present implementation results in

Chapter 7). Our key results are as follows:

� Pro�les are e�ective at di�erentiating service of di�erent applications.

� E�ective use of the proxy cache can improve the latency of requests, even

when there is contention on the wireless downlink.

153



� Too many HighPriority requests increase the latency of all requests. This

gives clients or service providers an incentive to di�erentiate applications

into HighPriority and LowPriority, and ensure that there are not too many

HighPriority applications.

� Using hando� pro�les can signi�cantly improve the latency of hando� re-

quests compared to a naive approach that does not use pro�les. The hando�

pro�le can bene�t from both using cached data and assigning higher priority

to hando� requests.

6.2.1 Simulation Model and Environment

We modeled a wireless downlink of 128 kbps, which is representative of emerg-

ing Third Generation (3G) [105] wireless networks. This is a dedicated data

channel shared by multiple clients at a base station. Client requests were uni-

formly distributed between the 4 applications shown in Table 6.2.1, with about

25% of requests for each type of application. We discuss the e�ects of varying

distributions later in Section 6.2.2.

Parameters

We considered a world of 100,000 objects. We used the following parameters in

our simulation; they are summarized in Table 6.2.1.

� Object Size and Popularity: We ran experiments with both variable and

uniform object sizes. For simplicity, we report on the results for the uni-

form object size; results for variable sizes were comparable. We considered

objects with size 12.8 kbits. These are representative of data that web sites

currently provide to wireless web clients [31].
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We skewed object popularity using a Zipf-like distribution. Work reported

in [17] showed that web accesses typically follow a Zipf-like distribution,

where the ith most popular object has popularity proportional to 1=i�,

where � is a value between 0 and 1.0. We generated a distribution with �=

0.7, which was typical of the web traces analyzed in [17].

� Request Arrival Rate: We generated requests with exponential interarrival

times, and considered mean request arrival rates between 0 - 10 requests per

second. This corresponds to 0 - 100% utilization on the wireless downlink,

assuming no channel error. Studying the e�ects of varying signal strengths

and channel errors is an area of future work and will be discussed in Chapter

8.

� Fixed Network Latency: This is the estimated time to download an object

from a server on the �xed network. To model �xed network latencies, we

used trace data from NLANR [50]. The data was gathered from client-

side web proxy caches at several sites on June 27, 2001 and consisted of

approximately 1.3 million requests. To reduce the e�ects of network and

server errors we considered only requests with latencies of less than 5000

msec. The distribution of these values was highly skewed, with a median

of approximately 200 msec and a mean of approximately 500 msec. 90% of

the requests had latencies less than 1400 msec.

� Priority: We considered two di�erent priority values, HighPriority and Low-

Priority. We present the corresponding �1 and �2 values in Table 6.2.1.

� Update Rate: This is the frequency with which an object is updated. In our

simulation this value was uniformly distributed in the range of once every
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10 minutes to once every 2 hours.

� Cache Size: We considered a default cache size of 160 MB (about 10% of

the world size).

Setup

We implemented a request-level simulation environment in C++. We ran all

simulations on a Sun Sparc 20 workstation running Solaris 2.6. We assumed an

initially empty cache. When the cache was full, we evicted objects using the Least

Recently Used (LRU) policy. To keep cached objects up to date, we refreshed

objects in the background at a rate inversely proportional to the workloads.

This ensured that even at low workloads, the cache was reasonably fresh and

increased the number of requests that could be served from the cache. The cache

was refreshed in a �xed order in a round-robin manner; this strategy was shown

to be near-optimal in [35].

We ran each simulation for 40000 requests to warm up the cache, then ran the

simulation for an additional 80000 requests to collect measurements. We repeated

each experiment 10 times and ran 95% con�dence intervals. These intervals were

very small in all cases and we do not show them in our plots. The settings of

the pro�les are shown in Table 6.2.1. Note that for the uncacheable requests,

there is no need to set values for TA and TL, because these objects will always be

downloaded.

Algorithms and Metrics

We compare Pro�le, our pro�le-based downloading approach combined with EDF

scheduling, against a pro�le-unaware scheme (No Pro�les), which uses traditional
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Parameter Range

Request Rate 0 - 10 requests/sec

Downlink Bandwidth 128 kbps

Object Size 12.8 Kbits

Downlink Latency 100 msec

Workload 0 - 10 requests/sec

Update Rate 10 min - 2 hrs

Cache Size 160 MB

Fixed Netwk Latency 0 - 5000 msec

Median Fixed Netwk Lat 200 msec

�1 300 msec

�2 900 msec

Table 6.1: Simulation Parameters

Application TA TL priority

1 (stock) 0 900 msec HighPriority

2 (news ) 2 300 msec LowPriority

3 (IM) N/A N/A HighPriority

4 (email) N/A N/A LowPriority

Table 6.2: Application Pro�les
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TTL[30, 57] cache consistency and FIFO scheduling. For the No Pro�les ap-

proach, if a requested object is in the cache, it is delivered to clients only if its

TTL has not expired. Otherwise a fresh copy is downloaded from the remote

server.

We report on the following metrics:

� Average End-to-End Latency This is the time elapsed from when a

request arrives at the base station to when the last bit is delivered to the

client.

� Average Wireless Latency This is the time elapsed from when the data

becomes available for delivery at the base station to when the last bit is

delivered to the client.

6.2.2 Results
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Figure 6.4: E�ect of Using Pro�les
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E�ect of Using Pro�les

Our �rst set of results compares the latency of the two non-cacheable applications

(IM and Email) both with and without pro�les. Recall that when pro�les are not

used, objects are scheduled for delivery using FIFO scheduling. The results are

plotted in Figure 6.4. The key observation is that Pro�le e�ectively di�erentiates

services for the two applications. Under light workloads, there is little contention

for the wireless downlink and all applications have the same average latency

regardless of the use of pro�les. However, as the workload increases, the latency

of both the Email and the IM requests increase at the same rate when FIFO

scheduling is used. In contrast, Pro�le trades o� the email response time to

maintain a low latency for IM requests. The important observation is that at up

to 80% utilization, the latency of the IM requests does not increase signi�cantly.

When the utilization increases beyond 80%, even Pro�le cannot maintain constant

response time, but the relative gain from using pro�les increases.
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Figure 6.5: Average Latencies for Di�erent Applications
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We now consider how Pro�le di�erentiates services for all four applications.

Figure 6.5 plots the latencies for all applications as a function of utilization on the

downlink. The �rst observation is that at less than 50% utilization, the cacheable

applications (stock and news) have lower latencies than the non-cacheable appli-

cations (IM and Email) because the cache reduces the �xed network latencies.

Thus, under lighter workloads, caching data at the base station can signi�cantly

reduce the latencies of cacheable objects. A second observation is that using

cached data improves the latencies of the cacheable applications (stock and news),

independent of priority. At less than 50% utilization, the news requests have a

slightly lower average latency than the stock requests. This is because the news

application can tolerate stale cached data, while the stock requests require the

most recent data.

As the workload increases, however, Pro�le is able to maintain the low latency

of stock requests due to their HighPriority deadline. In contrast, the latency of

the news requests increases. Thus, Pro�le can di�erentiate services and keep the

latencies of the HighPriority stock requests relatively constant while the latencies

of the LowPriority requests increase. At up to 80% utilization, both cacheable

applications (stock and news) have lower latencies than both non-cacheable ap-

plications (IM and email). Thus, caching is bene�cial even for LowPriority ap-

plications.

We now consider the bene�ts of using Pro�le priorities in EDF scheduling.

Figure 6.6 plots the wireless downlink latencies for all four applications, i.e. the

amount of time to deliver data to clients after the data becomes available at the

base station. For comparison, we plot the latency of No Pro�les (TTL cache

consistency and FIFO scheduling) for all requests. Recall that we use a �xed �le
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Figure 6.6: Average Wireless Downlink Latencies for Di�erent Applications Using

Pro�les

size of 12.8 kbits and a downlink bandwidth of 128 kbps, so the minimum latency

on the wireless downlink is 100 msec, shown by the horizontal dotted line. The

key observation is that the HighPriority requests (stock and IM) have latencies

within 25% of 100msec at up to 50% utilization. Thus, scheduling delay at the

wireless base station has a minimal e�ect on the latency of these requests. We

conclude that under reasonable workloads, EDF scheduling at the base station

can control the wireless downlink latencies of di�erent applications.

E�ect of Percentage of HighPriority requests

Previously we assumed that all clients are cooperative and assign LowPriority to

applications such as email and news that can tolerate higher latencies. We now

consider the e�ects of the number of HighPriority requests on the performance

of the system. Our results show the need for either clients or service providers to

assign di�erent priorities to di�erent applications to fully exploit the bene�ts of
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Figure 6.7: E�ect of the Percentage of HighPriority Requests on Latencies

pro�les.

We vary the percentage of HighPriority requests from 0-100%, and plot the

latencies of all four applications when the downlink is at 80% utilization in Figure

6.7. For a given percentage of HighPriority (or LowPriority) requests, there was

an equal number of cacheable and non-cacheable requests. For example, when

40% of requests were HighPriority, this corresponds to 20% IM, 20% stock, and

the 60% LowPriority requests were 30% email, and 30% news.

We plot the results in Figure 6.7. As the percentage of HighPriority requests

increases, the latency of all applications increases. We �rst compare the perfor-

mance of the non cacheable applications (IM and Email). When all requests are

LowPriority (i.e., 0% HighPriority), the latency of Email is 750 msec. When 0 -

40% of requests are HighPriority, the average latency of the IM requests is in the

range 600-650 msec. As the percentage of HighPriority requests increases, the

latency of the IM requests reaches the lowest latency of email.
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We observe similar behavior for the cacheable requests. Consider the lowest

latency of the LowPriority news requests. When all requests are LowPriority,

the latency is 600 msec. If we consider the latency of the HighPriority stock

requests, as the percentage of HighPriority requests increases, the latency of the

stock requests exceeds 600 msec.

These results indicate that when there is a high percentage of HighPriority re-

quests, pro�les can no longer provide service di�erentiation and meet application

requirements. This is because pro�les trade o� latencies of LowPriority requests

to better serve HighPriority requests. This implies that in a network with only

HighPriority requests, a relative service di�erentiation scheme such as pro�les is

not useful and some other mechanism such as per 
ow scheduling is required.

E�ect of Varying � Values

We now consider how changing the �1 and �2 values a�ects the latencies of

both HighPriority and LowPriority requests, for varying percentages of HighPri-

ority and LowPriority requests. In these experiments we consider only wireless

latencies, i.e., the amount of time it takes to deliver an object to a client after

it becomes available at the base station. We consider workloads with di�erent

percentages of HighPriority and LowPriority deadlines and study the e�ects of

varying � values. We do not consider the e�ects of �xed network latencies or

caching.

Figure 6.8 plots the HighPriority and LowPriorityLatencies for three di�erent

distributions of HighPriority and LowPriority requests. In all experiments �1 =

0 and we considered the e�ect of increasing �2 values. Figure 6.8 (a) plots the

latencies when 25% of the requests are HighPriority. In this case, increasing the
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value of �2 has a signi�cant impact on the average latencies of the HighPriority

requests (solid lines) but little impact on the latencies of the LowPriority requests

(dashed lines). This is because there are relatively few HighPriority requests, so

it is easier to maintain low latencies for them. Increasing the �2 value decreases

the latencies of HighPriority requests under heavy workloads without a signi�cant

impact on the latencies of the LowPriority requests. For larger values of �2,

the latencies of the HighPriority requests decrease. For higher percentages of

HighPriority requests (Figures 6.9 (b) and 6.9 (c)), increasing the value of �2

has a signi�cant impact on the latencies of LowPriority requests, but less impact

on HighPriority requests. This shows that when there is a high percentage of

HighPriority requests, the average latency of HighPriority requests is high for all

� values. Further, increasing �2 values can signi�cantly increase the latency of

the LowPriority requests.

Next, we consider the e�ects of varying �1. Figure 6.9 plots the latencies

of HighPriority Requests for varying � values. The key observation is that the

di�erence between the two � values controls their relative latencies. For example,

the latencies are identical when �1 = 0 and �2 = 500, and when �1 = 100 and

�2 = 600. When the di�erence between the two values is larger the latencies

of the HighPriority requests decrease and the latencies of LowPriority requests

increase.

E�ect of Pro�les on Hando� Requests

Finally, we consider the e�ect of using Pro�les to improve the latencies of hando�

requests. For this experiment, we consider a single cacheable application. All

non-hando� requests have priority set to LowPriority, TA=0, and TL=900 msec.
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Figure 6.8: E�ect of Varying � values for (a) 25% HighPriority Requests (b) 50%

HighPriority Requests (c) 75% HighPriority Requests
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Figure 6.9: E�ect of Varying �1

This corresponds to casual web browsing where the client prefers the most recent

data.

To study the potential bene�ts of exploiting both HighPriority and TA (serving

hando� requests with possibly stale cached data), we consider several possible

hando� pro�les as follows:

� HighPriority, LowAge: This hando� pro�le has priority=HighPriority, TA=0,

and TL=900 msec. This pro�le has the bene�ts of giving hando� requests

higher priority in a new cell and always uses fresh data.

� LowPriority, HighAge: This hando� pro�le has priority=LowPriority, TA=2,

and TL=300 msec. This pro�le possible has the bene�t of serving hando�

requests with stale cached data in the new cell.

� HighPriority, HighAge: This hando� pro�le has priority=HighPriority, TA=2,

and TL=300 msec. This pro�le has the combined bene�ts of serving hando�
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requests with possibly stale data and giving them higher priority in the new

cell.

� naive: In this case, no hando� pro�le is used. Hando� requests are treated

as new requests when they enter the new cell, i.e., they do not receive

higher priority than other requests, and use the non-hando� pro�le. Note

that we make no assumptions about the underlying �xed network and do

not assume the availability of multicast, e.g., [81, 94, 99] to reduce the

e�ects of hando� delays.
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Figure 6.10: E�ect of Pro�les on Latencies of Hando� Requests

We plot the results in Figure 6.10. We show non-hando� average latency

for comparison. As expected, the naive approach performs worse than all three

hando� pro�les. In contrast, pro�les can o�er up to 25% improvement over the

naive approach. At up to 50% utilization, the LowPriority, HighAge has similar

latency to the HighPriority, HighAge. Thus, at lower utilization, serving hand-

o� requests from the cache signi�cantly improves their latency. Recall that in
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our simulation, in 
ight packets were lost during hando�s and were re-sent from

the remote server. Thus, assigning higher priority to hando� requests does little

to mitigate the e�ects of this delay, so HighPriority, LowAge does not bene�t

because it cannot serve stale data from the cache. In contrast, using the cache

can mitigate this delay, allowing hando� requests to be served promptly. When

the load on the downlink is greater than 60%, there is a greater bene�t to giving

hando� requests higher priority due to increased congestion on the wireless down-

link. However, there is still some bene�t to using the cache. A �nal observation

is that the HighPriority,HighAge pro�le continues to have lower latency than the

other hando� pro�les under all workloads, which shows the bene�ts of combining

both caching and higher priority to improve the latency of hando� requests.

6.3 Summary and Open Problems

In this chapter we have shown how pro�les can improve data delivery for mobile

clients. Speci�cally, we have shown the following:

� At lower workloads, caching can signi�cantly reduce end to end latencies,

independent of priority. At higher workloads, using priorities for scheduling

can di�erentiate services for di�erent classes of applications, but caching is

still helpful under all workloads.

� Uncooperative clients that have too many HighPriority applications in-

crease the latency of all requests. This motivates the need for a scheme

to ensure that clients do not have more than their fair share of HighPrior-

ity requests.
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� Using hando� pro�les can mitigate the e�ects of delays when clients migrate

to a neighboring cell before all their requests are served. Combining caching

and higher scheduling priority improves the latencies of hando� requests

under all workloads.

There are several open areas for future work. These include:

� Fairness Issues: As we showed in Section 6.2.2, clients who have a large

percentage of HighPriority requests have a negative impact on the laten-

cies of all requests. Thus, a mechanism to enforce fairness could improve

latencies for cooperative clients who have a small number of HighPriority

requests and punish clients who have a large number of such requests, which

would improve latencies of all requests and give all clients an incentive to

cooperate.

� Adapting to Varying Workloads: Under heavier workloads, the laten-

cies of di�erent applications may increase. To maintain the desired latency

of the high priority applications, the deadlines of di�erent applications may

need to be adjusted according to the current workload.

� Multiple Classes: The scheduling scheme presented in this chapter pro-

vides only two classes of service, HighPriority and LowPriority, for all

clients. This scheme does not consider clients who desire more than two

classes. It also does not take into account that di�erent clients may prefer

di�erent latencies for their di�erent classes. For example, one client may

prefer a higher �2 value for their LowPriority applications in exchange for

more HighPriority applications, while other clients may prefer a lower �2
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value (lower latency for the LowPriority applications) and fewer HighPrior-

ity applications. A scheme that takes into account these types of preferences

could improve pro�le-based scheduling. We discuss preliminary work in this

direction below.

� Implementation Issues: In this chapter we have not considered some

common challenges on wireless networks such as varying signal strengths,

disconnections, and packet loss, all of which could a�ect the performance

of our algorithms. For example, a scheduling algorithm that takes into

account both priority and the signal strength of the client could improve

link utilization.

We brie
y discuss preliminary work on a scheduling scheme that can enforce

fairness, adapt to changes in workload, and support multiple classes. The idea is

to allow clients to specify the desired stretch (i.e., ratio of the actual completion

time of a request to its length) for di�erent applications, then attempt to schedule

data delivery to meet these target values.

Research reported in [3] presents a scheme to minimize the average stretch

of all requests in a broadcast setting, but does not consider applications with

di�erent requirements. In [3], the scheduler guesses a target stretch value for all

requests, and maps each request to a deadline based on this value. It then tries

to schedule the request using EDF scheduling [101]. If it is impossible to meet all

deadlines, the algorithm picks a new target using binary search, and continues

until all deadlines are met.

This scheme could be adapted to accomodate requests with di�erent target

stretch values as follows. For each request, clients can choose a target stretch.

Thus, each client can choose the latency most appropriate for each application,
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and can have more than two di�erent classes of applications. These values are

mapped to deadlines and scheduled using EDF scheduling as in [3]. When it is

impossible to meet all deadlines, the scheduler adjusts the deadlines proportional

to the average latency of prior requests by that client. Thus, clients who have had

many requests with low stretch will have their deadlines increased more. This

can enforce fairness while aiming to meet the target stretch values of di�erent

applications.
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Chapter 7

Implementation

In this chapter we report on our implementation of pro�les using the Squid Proxy

Cache [24]. Our implementation allows us to measure the impact of caching on

end-to-end latencies for clients on both �xed and mobile networks. We consider

the impact of caching on both �xed network latencies and recency of data, and

study the e�ects of both caching and scheduling on data delivery to mobile clients.

Our main results are as follows:

� Using pro�les for caching decisions can signi�cantly improve cache utiliza-

tion and reduce the number of freshness misses, while still providing fresh

data in most cases.

� Using pro�les for caching can signi�cantly reduce end-to-end latencies for

clients, even when there is congestion on the wireless downlink.

� As in our simulation results in Chapter 6, we show that using pro�les for

scheduling is e�ective at di�erentiating services under heavy workloads.
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7.1 Setup

In our implementation, we consider a set of mobile clients in a single cell. We

have implemented a prototype of our system consisting of two processes: a client

to generate requests, and a base station to receive requests, access data from

the �xed network or the cache, and schedule data delivery to the clients. The

client and base station communicated using TCP. To simulate the low bandwidth

wireless downlink between the base station and the clients, we controlled the rate

that the base station sent data to the client. In our experiments we modeled

a wireless downlink bandwidth of 128 Kbps. We ran all experiments on a Sun

Blade in the domain umiacs.umd.edu. This machine was connected to its ISP

via a high speed DS3 line with a maximum bandwidth of 27 Mbps.

We augmented the popular Squid [24] cache to include pro�les. We modi�ed

the Squid refreshing mechanism to use pro�les to make downloading decisions.

To communicate the pro�les to Squid, we created three new HTTP header �elds:

Target-Age, Target-Latency, and Priority. These parameters were appended

to each request and used by Squid and the base station to make caching and

scheduling decisions.

7.1.1 Parameters

We use the following parameters in our implementation (summarized in Table

7.1.1).

� Request Arrival Rate: We considered varying request rates from 1 re-

quest/sec to 25 requests/sec. We used the same trace for all experiments,

and adjusted the workload by using a subset of the requests.
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Parameter Value

Request Rate 1-25 requests/sec

Downlink Bandwidth 128 Kbps

Avg. Object Size 4.8 Kbits

Cache Size 1 GB

�1 1 sec

�2 3 sec

Table 7.1: Implementation Parameters

� Priority: We considered two di�erent priority values, HighPriority and Low-

Priority. The corresponding � values are shown in Table 7.1.1.

� Cache Size: We considered a default cache size of 1 GB. When the cache

was full, we evicted objects using LRU replacement. We do not consider

the e�ects of cache size and cache replacement policies.

7.1.2 Comparing Alternative Approaches

An important challenge to evaluating our implementation was providing a fair

comparison between Pro�le and a pro�le-unaware policy. In particular, when

both policies download the same object, they should have the same �xed net-

work latency for the object. Since an object's �xed network latency may vary

considerably depending on factors such as network traÆc and server workloads,

it is impossible to reproduce �xed network latencies across multiple experiments.

Our solution to this problem was to run two di�erent experiments simulta-

neously. We ran two base stations in parallel. For each requested object, the

client generated two requests simultaneously, one for each base station. This
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architecture is shown in Figure 7.1.

To ensure that a downloaded object would have the same �xed network la-

tency in both experiments, we implemented a proxy between the base stations and

Squid. All communications between the base stations and Squid went through

the proxy. If a requested object was downloaded in both experiments, the proxy

would simultaneously deliver identical copies of a single downloaded object to

both base stations. This ensured they would have comparable latencies. In our

results, the �xed network latencies of objects downloaded in both experiments

usually di�ered by less than 10 msec. This implementation also allowed us to

compare the relative freshness of data delivered by the di�erent policies. If an ob-

ject was validated using TTL but served from the cache using Pro�le, the Squid

logs indicated whether or not the object had actually changed at the remote

server as described in Section 7.2.3

7.1.3 Workload Generation

We generated a workload using trace data from NLANR [50]. This data contains

HTTP requests to a proxy cache in the United States in June 2002. We used a

3 hour portion of the trace that contained about 500,000 requests. The average

�le size was small: 75% of requests were for objects smaller than 5 Kbytes, 57%
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% util objs downloaded objs from cache % downloaded % from cache

Pro�le No Prof. Pro�le No Prof. Pro�le No Prof. Pro�le No Prof.

15% 17338 20746 8911 5773 66% 79% 34% 21%

57% 39098 44772 25429 19755 61% 69% 39% 31%

75% 54584 64051 52270 42803 51% 60% 49% 40%

Table 7.2: Comparison of Hit Rates with and without pro�les

of requests were under 2 Kbytes.

We adapted this trace to model a wireless workload as follows. First, we con-

sidered only objects that were smaller than 3.2 Kbytes (about 68% of the requests

in the trace). The average object size was about 600 bytes (4.8 Kbits). This en-

sured that large objects would not cause congestion on the limited downlink

bandwidth, and this size is representative of objects from existing WML-enabled

sites [31]. The trace had a fairly heavy workload of about 25 requests/sec (for

objects under 3.2 Kbytes), which was near 100% utilization on the downlink. To

model lighter workloads, we used a subset of the trace chosen uniformly at ran-

dom over the same 3 hour period. We assumed an initially empty cache. We ran

the experiments for 1 hour to warm up the cache, then collected measurements

for the remaining two hours.

7.2 Results

We consider the e�ect of pro�les on both HighPriority and LowPriority cacheable

applications. We compared using pro�les that could tolerate some staleness

against using the traditional TTL approach as implemented in Squid. When pro-

�les were used, we used parameters Target-Age= 1 update and Target-Latency=

1000 msec.
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7.2.1 E�ect of Pro�les on Cache Utilization

Table 7.2 shows the number of requests downloaded and served from the cache at

varying levels of downlink utilization. At lower utilization levels, objects in the

cache get refreshed less frequently, and more objects need to be downloaded. As

the utilization level increases, the percentage of requests served from the cache

also increases. At both high and low utilization levels, pro�les can increase the

number of requests served from the cache by more than 20%. Thus, using pro�les

can potentially reduce the latency of a signi�cant number of requests at both high

and low workloads. Further, these results show that using pro�les can reduce the

total number of validations by up to 16%. As we will discuss in Section 7.2.3,

nearly all of this reduction is due to useless validations.

7.2.2 E�ect of Caching and Scheduling on Latency
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Figure 7.2: E�ect of Using Pro�les

We consider objects that were validated using TTL but served from the cache
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using pro�les. This shows the potential improvement in the latencies of cacheable

requests when clients will tolerate stale data. Figure 7.2 plots the latencies as a

function of utilization on the downlink. The �rst observation is that at less than

75% utilization, the objects served from the cache have lower latencies than the

validated objects because the cache reduces the �xed network latencies. Thus,

under lighter workloads, caching data at the base station can signi�cantly reduce

the latencies of cacheable objects. A second observation is that using cached data

improves the latencies of the cacheable applications independent of priority.

As the workload increases, however, pro�les are able to maintain the rela-

tively low latency of the cached HighPriority requests. In contrast, the latency of

the cached LowPriority requests increases. At higher levels of utilization, High-

Priority requests have lower latency than the LowPriority requests, regardless of

whether or not caching is used. This shows that EDF scheduling is e�ective at

di�erentiating the latencies of di�erent applications when there is congestion on

the wireless downlink. However, for both HighPriority and LowPriority applica-

tions, cached objects have lower latency than validated objects. Thus, caching is

bene�cial even for LowPriority requests.

We now consider the latencies of individual requests, both with and with-

out pro�les. We ran an experiment where the request rate changed every 60

seconds. The request rate alternated between low (5 requests/sec, about 20%

utilization), medium (10 requests/sec, about 35% utilization), and high (15 re-

quests/sec, about 55% utilization). We consider a 3-minute period of the exper-

iment starting at 7200 seconds (2 hours).

We plot the latencies of the HighPriority cacheable requests in Figure 7.3,

and the LowPriority cacheable requests in Figure 7.4. In both of these graphs,
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Figure 7.3: Comparison of Latencies of Cacheable HighPriority Requests

the x axis shows the request timestamp, i.e., the time the request was made, and

the y axis shows the latency of the request. The �rst 60 seconds correspond to

the low workload, the second 60 seconds the medium workload, and the �nal 60

seconds the high workload. The solid line indicates the latencies of the requests

that used pro�les, and the dotted line indicates the requests that used TTL.

We �rst consider the HighPriority requests in Figure 7.3. The �rst observation

is that EDF scheduling is e�ective at maintaining low latency for the HighPriority

requests. Even at high utilization, most requests have latencies under 500 msec.

Another important observation is that caching signi�canly improves the latency

of many requests under all workloads.

We now consider the LowPriority requests in Figure 7.4. As expected, fewer

LowPriority requests bene�t from caching due to congestion on the wireless down-

link. However, some requests still bene�t from caching, especially under lower

workloads. Another observation is that while pro�les reduce latencies on average,
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Figure 7.4: Comparison of Latencies of Cacheable LowPriority Requests

they may increase the latency of some individual requests, especially LowPriority

requests. However, on average, pro�les reduce the latency of most requests.

7.2.3 E�ect on Age

We used the Squid logs to measure the age of the data returned to clients using

pro�les. Clearly we cannot know exactly how many times an object was updated

at the remote server. However, the Squid logs indicate whether a validated object

had actually changed at the remote server between two requests. Therefore, we

can use these logs to measure the number of times pro�les returned stale data to

clients.

In the above experiment, over the 3-hour trace period, 10020 objects were

validated using TTL but served from the cache using pro�les. Of these objects,

only 748 had actually changed at the remote server. Thus, even when pro�les were

used, clients received stale data only 7% of the time. This shows an additional
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bene�t to using pro�les: they can reduce the overhead of freshness misses due to

conservative TTL estimates, and is consistent with the trace data results from

Chapter 4. This signi�cantly improves latency while still providing fresh data in

many cases.

Another key observation is that most of the validations using TTL were fresh-

ness misses. This means that the objects were not actually downloaded from the

servers because they had not changed. However, our results in Figures 7.3 and

7.4 show that validating objects can increase access latencies by several hundred

milliseconds in many cases. This supports the observation in [40] that validat-

ing objects may have latency as high as downloading the objects in many cases,

and further motivates the need to reduce the number of times cached objects are

validated.

7.3 Summary

In this chapter we have presented our implementation of pro�les and evaluated

their performance using a real web cache and real �xed network latencies. Specif-

ically, we have shown the following:

� Using pro�les for caching decisions can signi�cantly reduce the number of

freshness misses and increase cache utilization by more than 50%.

� Using pro�les for caching decisions can reduce �xed network latencies, even

though most validations are for objects that did not change and therefore

do not need to be downloaded. This shows that validations can signi�cantly

increase access latencies, even when the object hasn't changed, and further

motivates the need to reduce the number of validations.
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� Using pro�les for both caching and scheduling reduces end-to-end latencies

for mobile clients, even when there is congestion on the wireless downlink.

This is especially true for HighPriority requests, but caching can improve

the latency of LowPriority requests as well.
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

The increased number and diversity of applications and services available on the

Internet requires data delivery technologies that can be customized to meet the

needs of clients while scaling to a large number of clients. This dissertation

has addressed these challenges through client pro�les and server cooperation.

Client pro�les provide a 
exible, scalable framework for clients to communicate

application-speci�c latency and recency preferences to a cache, and caches use

these pro�les to determine when to validate cached objects, and to determine

the relative priority of delivering the data to mobile clients. Server cooperation

enables servers to provide resource information to caches about the update histo-

ries of objects. This improves the ability of caches to estimate when objects will

be updated at servers and improves the e�ectiveness of using pro�les. Together,

these two complementary techniques provide a framework for scalable customized

data delivery for clients on both �xed and mobile networks.

Speci�cally, we have made the following contributions:

� We presented a 
exible, scalable framework to support client pro�les and
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server cooperation.

� We have shown that using pro�les for caching decisions on �xed networks

can signi�cantly reduce the number of object validations, while still deliv-

ering fresh data to clients in most cases. Using trace data we have shown

that pro�les can reduce the number of freshness misses by 16%-45%.

� We have evaluated the e�ects of server cooperation on maintaining data

consistency and shown that using either individual or aggregated history

information can signi�cantly reduce the number of validations required to

keep cached data fresh. This can provide bandwidth savings when con-

nectivity is limited. We have also presented an adaptive policy to detect

unpredictable bursts in object update patterns and choose between TTL or

a history-based policy depending on the observed object behavior. While

our model is not a statistical �t, experiments with trace data from 3 distinct

datasets have veri�ed the e�ectiveness of history-based policies. Using an

object's update history to estimate freshness can reduce the total number

of validations compared to using only the last update by 10%-36%, while

providing a comparable level of freshness.

� We have shown that using pro�les for both caching and scheduling data

delivery on wireless networks can di�erentiate mobile applications without

the overhead of end to end QoS deployment. Pro�les can also mitigate the

e�ects of hando� delays without requiring multicast or other changes to the

underlying �xed network.

� We have presented an implementation of pro�les for clients on both �xed

and wireless networks using the Squid Proxy Cache [24]. Our implemen-
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tation results show that pro�les can signi�cantly improve cache utilization

and reduce �xed network latencies, while still delivering fresh data in most

cases. This shows that validations can add signi�cant overhead, even when

a new object does not need to be downloaded, and provides further motiva-

tion to reduce the number of unnecessary validations. Further, our imple-

mentation results show that using pro�les for both caching and scheduling

can di�erentiate service for mobile clients, even when there is congestion

on the wireless downlink.

8.2 Future Work

We plan to explore the following directions for future work:

8.2.1 Pro�les

There are several areas of future work related to enabling clients to successfully

use pro�les. These include:

� Usability: In Section 4.1.4 we brie
y discussed how a graphical interface

can help users choose the appropriate settings for their pro�les. However,

more work is needed to develop an interface that is easy to use and allows

clients to choose the most appropriate pro�les for their applications.

� Pro�les used in Practice: A related area of future work is studying what

pro�les clients use in practice, and their e�ect on performance. Determining

what settings are most appropriate for di�erent clients and applications

and how much they improve latency and recency would help quantify the

bene�ts of using pro�les in practice.
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� Learning Pro�les: Another interesting area of future work is learning pro-

�les based on past client behavior, network conditions, and object update

frequencies. This could improve the choice of default pro�les for clients,

and aid clients in choosing the appropriate pro�les for their di�erent appli-

cations.

� Fairness: A �nal area of future research in pro�les is studying fairness

issues. For example, if there are bandwidth constraints, a challenge is

meeting the requirements of as many clients as possible subject to these

constraints. Another problem related to fairness is studying the e�ects of

clients having di�erent pro�les for the same object. If some clients prefer the

most recent data while others prefer low latency, an open question is how

much will the low latency clients bene�t because the cached data is fresh.

Evaluating the impact of di�erent pro�les on performance and developing

schemes to ensure fairness is another area of future work.

8.2.2 Modeling Updates

Our work in modeling updates presented in Chapter 5 also presents several in-

teresting areas of future work. We summarize each of these below.

� Grouping Objects: In Chapter 5 we showed that aggregating the update

patterns of mutliple objects with similar behavior can provide an approx-

imation of individual object update patterns. However, an open problem

is determining the best way to group objects. Smaller groups of objects

may improve the accuracy of the approximation but also increase storage

overhead, so there is a tradeo� between storage overhead and accuracy.
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Determining when there is a bene�t to having smaller groups of objects,

and how to identify similar objects that should be grouped together is an

interesting area of future work.

� Identifying Bursts: Another area of future research is in identifying

bursts. In Chapter 5 we presented heuristics that can improve upon non-

adaptive policies, however, additional research is needed to �ne tune these

heuristics. Di�erent heuristics and parameter settings may be most e�ec-

tive depending on the degree of frequency, predictability, and burstiness of

object update patterns.

� Distributed Updates: A related problem is studying update patterns

in distributed environments, for example peer to peer systems or related

objects at multiple servers. In Chapter 5 we studied techniques to model

update patterns when objects are updated at a single location. However,

in many systems updates may occur in multiple locations, and updates in

di�erent locations may or may not be correlated. One example is a peer to

peer systems where di�erent clients may update the same object. Modeling

update patterns in this context could reduce the overhead of maintaining

consistency. Another example is when related objects reside on multiple

servers. For example, several news sources may update related objects, e.g.,

a story about a news event. These updates may be independent, or they

may be related, so modeling updates introduces new challenges. E�ective

techniques to model updates in these contexts is an area of future work.

� Data Recharging: Another problem that relates to modeling updates is

data recharging. This problem has received a considerable amount of atten-
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tion in the literature, e.g., [34]. If a client is connected to the Internet for

a limited period of time, a challenge is determining which objects are most

likely to be refreshed during the connection period and schedule refreshes

accordingly. For example, if an object is most likely to be updated near

the end of the connection period, it should be scheduled to be refreshed at

this time. Con
icts could occur if many objects are likely to be updated

near the end of the connection period, in this case techniques to prioritize

objects based on both client preferences and the accuracy of the model are

needed. This problem futher motivates the need for modeling updates, and

introduces new problems in this area.

8.2.3 Server Cooperation

In Chapter 5 we showed that using update histories to estimate the freshness

of cached objects can signi�cantly reduce the number of validations at a remote

server, which can potentially provide signi�cant savings in terms of power and

bandwidth for mobile clients. However, this increased accuracy may come at the

cost of additional computational overhead for clients. Thus, an important area

of future work is evaluating the computational overhead of di�erent policies for

both servers and clients, and developing architectures appropriate for di�erent

environments.

Speci�c areas include the following:

� Performance: One area of future work is studying the e�ect of di�erent

server cooperation schemes on the performance of both clients and servers.

If a policy requires too much work at the server, it could have a negative

impact on performance and increase latencies for all clients. Similarly, if a
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policy requires too much work at the client, it could reduce the bene�ts of

caching.

� Architectures: A related area of future work is developing server coopera-

tion architectures that place an appropriate load on both clients and servers.

Di�erent architectures for server cooperation may be appropriate in di�er-

ent contexts. For example, a cache on a desktop machine has considerably

more power than a cache on a mobile device. The desktop machine may be

able to perform aggregations or compute expiration times without a nega-

tive impact on performance, but this may not be true for the mobile device.

For the mobile device, it may be more appropriate to perform the compu-

tations at a server or intermediate proxy. Developing 
exible and scalable

architectures that meet the computational requirements of di�erent servers

and clients is an important area of future work.

8.2.4 Scheduling

Our work in mobile client pro�les in Chapter 6 showed that using pro�les for

scheduling decisions at a wireless base station is an e�ective way to di�erentiate

services for mobile clients. However, there are several open problems to improve

scheduling and service di�erentiation in this environment.

� Fairness: As shown in Chapter 6, clients who have a large number of

high priority applications increase the latency of all requests. This is un-

fair to clients who have fewer high priority applications. Thus, a fairness

mechanism that can limit the number of high priority requests per client is

needed.
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� Adapting to Varying Workloads: Under heavier workloads, the laten-

cies of di�erent applications may increase. To maintain the desired latency

of the high priority applications, the deadlines of di�erent applications may

need to be adjusted according to the current workload.

� Multiple Classes: In Chapter 6 we presented a scheme that maps appli-

cations to two classes, HighPriority and LowPriority. A useful extension to

this would be to allow more than two classes of applications, and to allow

clients to specify the desired latency for each of their classes. However, such

a scheme needs to enforce fairness to ensure that clients do not have a large

number of applications requiring low latency.

� Implementation Issues: Finally, an important area of future work is

how to adapt the proposed scheduling scheme to handle features of wireless

networks such as varying signal strengths, disconnections, and packet loss.

For example, clients who have good signal strength can receive their data

more quickly than clients with weaker signals, so an algorithm that considers

signal strength can make more eÆcient use of the available bandwidth and

ensure fairness to all clients.
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Appendix A

Preparation of NLANR Trace Data

We performed preprocessing on the NLANR trace data to prepare it for the

experiments. Speci�cally, the trace data did not report on object modi�cation or

expiration times, which we need to make downloading decisions and to determine

the recency of cached objects. Our solution to this problem was to create an

\augmented" trace using the workload from the original NLANR trace data.

Over a period of 5 days, we replicated the trace workload by sending requests to

the servers in the traces at (approximately) the same time of day as in the original

workload. The requests were made from the domain umiacs.umd.edu which is

connected to its ISP via a high speed DS3 line with a maximum bandwidth of

27 Mbps. When each requested object arrived, we logged the latency of the

request and the time the object was last modi�ed (when available). We used

the logging mechanism provided by the Squid cache[24], but did not cache any

objects. This augmented trace data provided the information we needed for this

study. In our trace-based experiments, we cached only objects that had last

modi�ed information available and were not labelled uncacheable.

We gathered the augmented trace data from 16:48 on January 21, 2002 to 1:53

on January 26, 2002. We note that there were several gaps in our augmented
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Start time End time

Jan 22, 13:22 Jan 22, 13:27

Jan 23, 14:58 Jan 23, 15:22

Jan 24, 18:39 Jan 24, 19:13

Jan 24, 22:34 Jan 24, 22:46

Jan 25, 7:11 Jan 25, 10:11

Jan 25, 18:00 Jan 25, 18:13

Table A.1: Gaps in Augmented NLANR trace (GMT)

trace when errors occured and data was not collected. Most of these gaps lasted

less than 30 minutes and did not signi�cantly impacte our results. We report on

the dates and times of these gaps in Table A.

A.1 Classi�cation of Objects

In Table A.1 we show the number of requests made to di�erent types of objects

in the trace. Our NLANR trace contains 3707K requests total. In the trace we

observed about 308K requests to objects that changed at least once during the

trace period. Of these requests, about 196K (5% of all requests) were requests to

objects that appeared to change when the last modi�ed time changed to a time

before the time they were cached. This could occur for many reasons, possibly

due to an inaccurate clock at the remote server. We refer to such objects as

invalid objects. A challenge to the trace analysis in Chapter 4 was how to handle

invalid objects. Clearly, the last modi�ed time of such objects is inaccurate, so

we had no way of knowing when an update had actually occured. Any update
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estimation policy that uses the last-modi�ed time is likely to perform poorly for

such objects. However, to ensure that our results are accurate, we analysed these

objects in greater detail.

Table A.1 describes the content types of the 192 requests to invalid objects.

The �rst observation is that most of these requests (96K) were to small GIF and

JPG images. It is unlikely that these objects actually changed between consec-

utive accesses, thus, maintaining consistency of these objects is not a concern.

Similarly, of the 30K accesses to HTML documents, at least 27K were requests to

the domain web.icq.com. These objects were not accesses to traditional HTML

data, but were linked to advertisements that changed on every access. The same

holds for the 37K requests to ads.web.aol.com and the 19K JavaScript requests.

To summarize, most of the 196K requests to invalid objects were either dy-

namic advertisements or images that rarely changed. Since most of the perceived

\updates" to these 196K objects did not actually change the objects, we believe

that omitting these objects did not signi�cantly impact the results in Chapter 4.

193



Object Type Entire Trace Invalid Objects

GIF 1606K 90K

JPG 748K 6K

HTML 406K 30K

TXT 113K <1K

JS 82K 22K

aol 180K 37K

Other 572K 10K

Total 3707K 196K

Table A.2: Characterization of Requests in NLANR trace
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Appendix B

Preparation of World Cup Trace Data

We performed some preprocessing on the World Cup trace data [10] to detect

updates to objects. We assumed an update occurred whenever an object's size

changed in the trace. However, there were several challenges to detecting changes

to objects. First, some changes to an object's size were not due to updates. Many

apparent changes in an object's size were caused by temporary inconsistencies at

servers in di�erent geographic locations. Recall that the trace contains requests

to 33 servers in four locations. When an update occurred at one server, it often

took several minutes to propagate to other servers at all locations. During this

time, clients would receive di�erent objects depending on which server handled

their request. Therefore, our update detection technique needs to avoid these

\false" changes due to temporary inconsistencies at di�erent server locations.

Our solution to this problem was to only consider an object changed when

the majority of requests to the object had the new size, and when the object

had this size for at least two minutes. This allowed enough time for updates to

propagate to servers in all four locations, to eliminate the e�ects of false changes

due to server inconsistencies.
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