
DYNAMIC DATA CONSISTENCY
MAINTENANCE IN PEER-TO-PEER

CACHING SYSTEM

Gao Song

(B.S., FUDAN University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgement

I would like to express my profound gratitude to my supervisor, Prof. Ooi Beng

Chin, for his brilliant guidance and continuous encouragement throughout these

years. The sharing of his intellectual talents and his research dedication will be

the treasure in my life. Besides, he has given me much invaluable advice on many

other aspects and become more than my major professor.

I would also like to thank Prof. Tan Kian-Lee, Dr. Chi Chi Hung, Dr. Ng

Wee Siong and Dr. Qian Weining who have volunteered their time and great

effort during the course of my thesis research. My appreciation also extends to

all the members of the NUS Database Group for countless helpful suggestions. In

particular, I would like to thank the following individual NUS Group members:

Cai Wenyuan, Cao Xia, Cui Bin, Li Hanyu, Shu Yanfeng, Wang Qingliang, Wang

wenqiang, Xia Chenyi, Yin Jianfeng, Zhang Rui, Zhou Yongluan, and others for

their technical assistance and dear friendship. Further, I would like to thank the

University for providing me with a scholarship for my research study.

Finally, many thanks, which are beyond words, go to my beloved parents for

the love, encouragement, and understanding throughout of my life.

CONTENTS

Acknowledgement i

Summary viii

1 Introduction 1

1.1 Motivation . 4

1.2 Contributions . 4

1.3 Organization . 5

2 Background and Related Work 7

2.1 P2P System Architectures . 8

2.2 P2P Open Problems from Data Management Perspective 10

2.3 Data Consistency Schemes Taxonomies 17

2.3.1 Consistency Models . 18

2.3.2 Update Propagation . 19

2.3.3 Data Consistency Protocols 23

2.4 Existing Consistency Work in P2P 30

ii

iii

2.5 Summary . 34

3 PeerCast Building Blocks 35

3.1 BestPeer Platform . 35

3.2 Application-Level Data Multicast 37

3.3 Maintaining Consistency in Distributed Cooperative Manner 39

4 PeerCast Framework Design 42

4.1 Motivation Revisit . 42

4.2 PeerCast Framework Overview . 43

4.3 PeerCast Maintenance Policies . 45

4.3.1 Dissemination Tree Construction Policies 49

4.3.2 Peer Leave/Recover Policies 54

4.3.3 Self-Adaptive Policies . 56

4.3.4 Source Peer Recovery . 58

4.4 Summary . 59

5 PeerCast Implementation Issues 60

5.1 Heuristic Optimization for Resource Usages 60

5.2 Preventing Churning Problem . 63

6 Experimental Evaluation 65

6.1 Experiment Methodology . 65

6.1.1 Environment Setup . 65

6.1.2 Testing Data Setup . 66

6.1.3 Network Setup . 66

6.1.4 Simulation Metrics . 68

6.1.5 Simulation Procedure . 68

iv

6.2 Experimental Results and Analysis 69

6.3 PeerCast VS. Gtk-Gnutella Protocol 78

6.4 Conclusions . 88

7 Conclusion 90

7.1 Future Work . 91

LIST OF FIGURES

2.1 P2P Systems Classification . 9

3.1 BestPeer Network Architecture . 36

3.2 Multicast Vs. Unicast . 39

3.3 Distributed Cooperative Consistency Maintenance 40

4.1 PeerCast Overview . 43

4.2 PeerCast System Architecture . 44

4.3 Self-Adaptive Policies Load Balancing 58

5.1 A Sample Network for Reconfiguration 62

5.2 Heuristic Policy for Optimization 63

6.1 Redirect Message Latency . 70

6.2 Tree Construction Cost . 71

6.3 Average time to join in the overlay 72

6.4 Performance comparison . 73

6.5 Impact of client peer bandwidth capacity 74

v

vi

6.6 Impact of Peer Departure to Topology of PeerCast 75

6.7 Impact of the peer departure . 76

6.8 Impact of different consistency requirements 77

6.9 Impact of heterogenous peer capacity 78

6.10 Impact of number of backups . 78

6.11 PeerCast Vs. GtK-Gnutella . 81

6.12 Network Traffic Consumption . 82

6.13 Impact of Ratio between update and query 83

6.14 Impact of Update Rate on Message Overhead 83

6.15 Impact of TTL values . 84

6.16 Workload on Servers . 85

6.17 Average Workload on Peers . 85

6.18 Network Reorganization . 87

6.19 Effect of Peer Adaption . 88

LIST OF TABLES

2.1 Main Issues Comparison between Push and Pull 21

2.2 Approaches Classification by Consistency Model 23

2.3 Approaches Classification by Update Propagation Way 23

4.1 Metadata Structure . 46

6.1 Parameters Derived from the Prototype 66

6.2 Characteristics of the Traces Used for the Experiments 67

6.3 Parameters for Experiments . 80

vii

viii

Summary

Peer-to-peer (P2P) systems have emerged as a popular way to share huge volumes of

data, because of the many benefits they offer: adaptivity, self-organization, load-

balancing, fault-tolerance, high availability through massive replication, and the

ability to pool together and harness large amounts of resource. On-line decision

making often involves significant amount of time-varying data, which can be re-

garded as dynamic data. Examples of such data include financial information such

as stock prices and current exchange rates, real-time traffic and weather informa-

tion, and data from sensors in industrial process control applications. Most of these

applications are built over centralized systems due to easy management and im-

plementation. However, centralized systems suffer from huge population and scale

problems in the dynamic data applications. Due to the advantages P2P technology

could offer, it is regarded as a possible solution to replace the centralized models.

Unfortunately, previous P2P research has predominantly focused on the static files

management. To our best knowledge, maintaining dynamic data consistency in

existing P2P systems is often inefficient. We focus on the solution to maintaining

dynamic data consistency in an overlay network of cooperative peers.

ix

We present PeerCast, an adaptive framework for efficiently disseminating dy-

namic data in a P2P caching system. Peers maintain their cached data consistency

by participating in the framework. PeerCast combines application-level multicas-

ting techniques and demand-driven dissemination filtering techniques to provide

efficiency and load balancing utilizing cooperation between peers.

We have made the following contributions. First, we have implemented Peer-

Cast prototype layered on our P2P platform, BestPeer [58]. Second, we have

provided a set of policies on PeerCast topology maintenance. They are designed to

address overlay construction, recovery from peer departure or failure and network

adaption problems. Third, we have proposed heuristic approaches to optimize the

network resource usages and to prevent the churning problem efficiently. Fourth,

we have evaluated our strategies using a combination of experiments over BestPeer

infrastructure and our simulator to collect results in large-scale network scenario.

Real-world traces of dynamically changing Web data are used to examine the per-

formance of our approach. We analyze the results and examine each impact factor

in our approach. Furthermore, comparison experiments are done between PeerCast

and previous research, Gtk-Gnutella [53]. The results show that our approach is

more efficient than Gtk-Gnutella in several aspects and achieve significant benefits.

In summary, our techniques can efficiently satisfy the consistency requirements

by different peer users. Since PeerCast is simple in design and implementation, it

can be easily incorporated into existing systems for immediate impact.

CHAPTER 1

Introduction

The Internet was designed with peer-to-peer (P2P) applications in mind, but as it

grew, the network became increasingly asymmetric. Asymmetric bandwidth and

early commercialization of the Internet disrupted the chance for network nodes to

function together as peers. Consequently, the Internet has long been dominated by

the client/server computing model. Client/server computing works on the basis of

powerful servers providing various kinds of services in a centralized manner. The

client initiates a connection to a well-known server, downloads the data, and discon-

nects. However, with the booming population of Internet users, the client/server

model now suffers from overloaded servers and single-point failures.

Napster [7] is the first system to recognize that popular content need not be

requested from central servers but could be downloaded from peers that already

possess the content. With the dismissal of the assumption of asymmetry upon

which traditional ADSL and cable modem providers rely, and the increasing use of

broadband connections, decentralized P2P systems have also spread out across the

1

2

Internet. The success and popularity of Gnutella [5] and Freenet [27] bring a good

start to further research on P2P technology. Indeed, P2P technology has become a

hot research topic. Because of the advantages and benefits of P2P technology, some

tough problems may eventually be resolved with the deployment of the technology.

More and more applications, such as Web caching (like Squirrel [44] and Buddy-

Web [76]), multimedia sharing (like P2Cast [37], music retrieval [80]) and database

applications (like PeerOLAP [47], PIER [43], PeerDB [59], BuddyCQ [57], PeerCQ

[34], range queries [38, 70]) are being deployed on P2P systems. P2P technology is

an emerging paradigm that is now viewed as a potential technology that could re-

shape distributed architecture. We will further discuss the current P2P technology

developments in Chapter 2 as background knowledge to our study.

The applications of online dynamic data processing have exponentially grown

in recent years. They are different from the traditional applications, since dy-

namic data assume the form of continuously changing value with the variation of

time. Data change frequently and unexpectedly in applications such as network

measurement monitoring, stock prices and current exchange rates, real-time traf-

fic and weather information, and data from sensors in industrial process controls.

Effective handling of dynamic data becomes a very important task in recent years.

Due to cost effective implementation and convenient data management, most of

dynamic data applications have been built over centralized systems. However, cen-

tralized systems suffer from the problems of single-point failures, extensibility and

scalability.

P2P technology has many advantages over the centralized systems, including

alleviating the single-point failure problem and reducing the workload of centralized

servers. However, current existing P2P systems are ill-equipped to handle dynamic

data.

3

As important strategies in P2P systems, caching and replication techniques are

well-studied topics in the context of distributed systems as a means to achieve

easy data access, minimize query response time and raise system performance.

For instance, in the Web scenario, Web proxy caching and content distributed

networks, can scale up the origin server1 by reducing overall load on the server.

Likewise, caching and replication techniques have also been widely studied in the

P2P environment in recent years [28, 78, 13, 79, 29, 22]. Quite a few of replication

strategies have been proposed to increase the performance of data search and access,

such as “owner replication” and “path replication” [28]. Freenet [27], OceanStore

[51], PAST [69], etc., are global persistent data stores designed to scale to billions

of users. They provide a consistent, highly-available and durable storage utility

over an infrastructure comprised of peer nodes. Caching and replication create

numerous copies of data objects scattered throughout the P2P overlay network.

They bring benefits only when the cached object rarely changes. If data objects

are updated frequently, the cache hierarchy becomes virtually worthless. The origin

server becomes heavily loaded with new document requests, updates and missed

requests that could not be met by the lower level caches. Consequently, the benefits

of cache and replication decrease. These problems become the obstacles for P2P

technology to further develop in the applications of online dynamic data processing.

Maintaining dynamic data consistency is difficult in P2P and it has not been well

addressed.

1The Web server where a Web object ultimately resides is called the origin server for that
object. Origin servers act as authoritative sources of Web content.

4

1.1 Motivation

A key issue in deploying P2P technology in managing dynamic data is the data

consistency problem. The current techniques used to solve the data inconsistency

problem in P2P systems are often inefficient [36]. For example, measured activ-

ity in Gnutella and Napster indicates that the median up-time for a node is 60

minutes [21]. Peers join the overlay and leave at will, and network links discon-

nect sometimes. Moreover, the message disseminating scope is limited by the TTL

scope, which leads to a large number of peers not being reachable. Maintaining

dynamic data consistency in a P2P environment is challenging. So, the goal of our

work is to design a high-scalable, fault-tolerant and efficient framework to maintain

cached data consistency on P2P systems. In this thesis, we focus on maintaining

the consistency of dynamic data in an overlay network using cooperative peers.

1.2 Contributions

In order to handle the dynamic data applications deploying P2P technology, we

aim to provide a framework to maintain dynamic data consistency in P2P systems.

In summary, we seek to make the following research contributions:

• Implement an adaptive data consistency framework prototype PeerCast lay-

ered on the P2P infrastructure, BestPeer [58]. PeerCast provides graphic

user-interface for peer users to set their data of interest and the associated

consistency requirements. Working on the basis of peer heterogeneity in data

consistency requirements, peers in PeerCast cooperate with each other to

maintain cached data consistency by pushing updates.

• Provide a set of policies on PeerCast topology maintenance. For overlay

5

construction, we provide three dissemination tree construction policies: ran-

domized, round-robin and locality-biased. In order to address peer departure

or failure problems, PeerCast provides failure detection and robust recovery

techniques. Once peer users change their accessing behaviors, PeerCast also

provides self-adaptive procedures to adjust the network.

• Propose heuristic approaches to optimize network resource usages by network

reconfiguration and prevent the churning problem by characterizing unstable

peers.

• Evaluate the above proposed methods by conducting experiments over the

BestPeer infrastructure, and by simulation of a large-scale network scenario.

We will evaluate our approach using real-world traces of dynamic Web data.

We will analyze the impact factors of PeerCast, and we will compare Peer-

Cast with an existing approach: Gtk-Gnutella [53]. We will demonstrate

that PeerCast not only increases efficiency but also reduces the overhead for

maintaining the data consistency in P2P environment.

1.3 Organization

The rest of this thesis is organized as follows:

• Chapter 2 presents a literature review on related work. We give an overview

of the P2P development history and discuss issues in current P2P research.

We classify and generalize popular data consistency techniques, and present

recent research results.

• Chapter 3 describes the BestPeer infrastructure, the platform on which our

framework is built. We also briefly review application-level multicasting tech-

6

niques. We further present distributed cooperative consistency maintenance

techniques. These techniques are the building blocks of PeerCast.

• Chapter 4 provides the design issues of the PeerCast framework. This is

the main part of our research. We introduce the three different policies for

dissemination tree construction, and the recovery mechanisms to handle peer

departure and failure. We also discuss the self-adaptive mechanism of the

PeerCast, and present the source peer recovery policy.

• Chapter 5 provides heuristic policies to improve the performance and effi-

ciency in PeerCast.

• Chapter 6 presents the methodology for conducting the experiments. We

report our experiment results and analyze every impact factor to our ap-

proach in details. In the first part, we mainly examine the impact factors

to our approach. In the second part, we also set up the current cache con-

sistency protocol in P2P, Gtk-Gnutella, for comparison with our framework.

We present the advantages and disadvantages of both approaches. Results

of simulation experiments indicate that our approach outperforms previous

research.

• Chapter 7 summarizes the contributions of our research and discusses future

research.

7

CHAPTER 2

Background and Related Work

The Internet as originally conceived in the late 1960s was a peer-to-peer (P2P)

system. Because of clients’ poor bandwidth and limited computation ability, P2P

models could not be developed until recent years. Hardware performance has im-

proved greatly. Even personal computers can accomplish some heavy computing

tasks. Meanwhile, broad-bandwidth connections are widely established. Current

P2P applications generally would benefit from the Internet like the original network.

In a P2P computing model, peers can be regarded as servants, which act as servers

and clients at the same time. Peer nodes can cooperate with each other to un-

dertake huge computation tasks by pooling resources together such as SET@home

[8], or share their storage such as Napster [7], Gnutella [5] and Freenet [27]. The

first generation of P2P systems is for media resources sharing among thousands

of nodes. MP3 and video clips are such examples. The second generation of P2P

systems is based on structured overlay which provides more powerful query routing

techniques. Since P2P computing architectures provide data-centric model, which

8

is superior to the traditional network placement model [74], it is considered to re-

place the client/server model in the near future. Indeed, the advent of large-scale

ubiquitous computing makes P2P a natural model for interaction between devices.

Over the last few years, all kinds of distributed applications, especially database

applications and web services, are developed and deployed on the P2P environment.

2.1 P2P System Architectures

According to research achievements so far, P2P systems can be classified into three

different categories [28]. Some P2P systems, such as Napster [7], are centralized as

illustrated in Figure 2.1 (a). Centralized P2P systems have central servers playing

the query routing and maintaining all the peer information. The centralized P2P

systems suffer from the central server failure and the problem of scalability. Other

P2P systems are decentralized and have no centralized server. Of these decentral-

ized designs, some are structured in that they have tight coupling between the P2P

network topology and the location of data, such as Chord [75], CAN [62], Pastry

[68], etc. The design of these systems are based on distributed hash table (DHT),

which maps the data objects and peer nodes into the same identifier space. As

illustrated in Figure 2.1 (c), each data object is assigned to a specific node. Other

decentralized P2P systems, such as Gnutella [5] and Freenet [27], and hybrid sys-

tem KaZaA [9], are unstructured with loose coupling between topology and the

location of data. In these systems, peers are more autonomous and querying are

normally depending on message flooding because of lack of routing information.

Both structured and unstructured P2P systems have their own advantages and

shortcomings. First, since DHT -based structured P2P systems keep the routing

table to facilitate key search, they outperform unstructured P2P systems in terms

9

of object searching efficiency. Unstructured P2P systems have to use messages

flooding to search, which leads to lowering search efficiency and wasting huge net-

work traffic. Second, churning problem [21], which is referred to peers frequently

coming in and going out, does cause more significant overhead for structured sys-

tems than unstructured P2P system does. In order to preserve the efficiency and

correctness of routing, most DHT s require O(logn) repair operations after each fail-

ure (e.g., Chord and CAN). In contrast, churn causes little problem for Gnutella

and other P2P systems that employ unstructured overlay networks as long as peer

node doesn’t become disconnected by the loss of all of its neighbors. Third, DHT

searching techniques use the exact search key, which always map a data object

into a key, consequently, peer uses get the exact data object. On the other hand,

unstructured P2P systems use keywords and often can get many answers related to

the keywords, which is more preferred by Internet users. Recently, some popular

P2P-based sharing softwares use unstructured P2P system, such as eDoneky [4]

and BT [3], etc. PeerCast is built on the decentralized unstructured P2P systems.

S S

S S
P

P

P

P

PP

Q

A D

(a) Centralized

P P

PP P

P PQ
Q

A

Q

Q

Q

A

D

(b) Unstructured

P

P

P

P

P

P

P

P Q

R

Q

R

D
D

(c) Structured

� ����

� ������

� ����	���
���� � �
���

� �����
� �������

(d)

Figure 2.1: P2P Systems Classification

10

2.2 P2P Open Problems from Data Management

Perspective

In this section, we review P2P systems from the perspective of data management.

Despite of many benefits, P2P systems present several challenges that are currently

obstacles to their widespread acceptance and usage. The P2P environment is dy-

namic and sometimes ad hoc. Peers are allowed to join the network at any point of

time and may leave at will. This results in an evolving architecture where each peer

is fully autonomous. With such a dynamic environment, the need of maintaining

inter-operability among peers is a great challenge.

Due to the particular nature of P2P, many techniques previously developed

for distributed systems of tens or hundred of servers may no longer apply. We

describe some open problems of P2P research in perspective of data management,

and discuss some current solutions and tough issues that need to be addressed in

the near future.

• Data Placement and Query Routing: Data placement and query routing

are two challenges to be resolved for sharing objects on any P2P systems.

Data placement is the assignment of a set of objects to be stored at each peer

in the network. It defines how data or metadata is distributed across the

network of peers. Given the name of an object, after finding the corresponding

object’s location, query routing is to address how to route the query to the

location.

Napster [7] uses a centralized design to resolve these issues. A central server

maintains the index for all objects in the system. New peers joining the sys-

tem know the identity of the central server while the server keeps information

about all the nodes and objects. After it sends the request (e.g., name of the

11

object) to the central server, the server returns the IP addresses of the peers.

The requesting peer then uses IP routing to pass the request to one of the

returned peers and downloads the object directly from that peer.

Gnutella [5] follows a different approach in order to get around the problem

of the centralized design. There is no centralized server in the system. Each

peer in the Gnutella network knows only about its neighbors. A flooding

model is used for both locating an object and routing the request through

the peer network. Peers flood their requests to their neighbors, which causes

a high overhead on the network as a result of flooding and the possibility of

missing some requests even if the requested objects are in the system.

Peer node stores only its own collection of data either in Napster or in

Gnutella. However, in another group P2P systems such as Chord [75], CAN

[62], Pastry [68], data or metadata is carefully placed across nodes in a deter-

ministic fashion. These systems are based on implementing a distributed data

structure called DHT, which supports a hash-table-like interface for storing

and retrieving objects. CAN uses a d -dimensional virtual address space for

data location and routing. Each peer in the system owns a zone of the vir-

tual space and stores the objects that are mapped into its zone. Each peer

stores routing information about O(d) other peers, which is independent of

the number of peers, N, in the system. Likewise, Chord assigns unqiue iden-

tifiers to both objects and peers in the system. Given the key of an object,

it uses these identifiers to determine the peer responsible for storing that ob-

ject. Each peer keeps routing information about O(logN) other peers, and

resolves all lookups via O(logN) messages, where N is the number of peers in

the system.

• Schema Mediation and Data Integration: Since peers pool their storage

12

together, varieties of data may exist with in each peer’s data repository, e.g.,

images library, music files, document collections or relational database tuples.

In order to exchange information efficiently in a semantically meaningful way,

data management and data integration tools should be provided. Although

conventional schema mediation techniques have been studied for decades,

unfortunately, they suffer from two significant problems. First, they require

a comprehensive schema design before they can be used to store or share

information. Second, they are difficult to extend because schema evolution is

heavyweight and may break backwards compatibility. Due to the dynamics

and large-scale nature of P2P systems, the assumption of traditional schema

mediation may not be feasible in a P2P data management scenarios. Research

efforts such as Piazza [40, 41], Hyperion [48] and PeerDB [59] address the

problem of schema mediation in P2P data sharing systems.

Piazza [40, 41] has provided a flexible formalism, called Peer-Programming

Language (PPL) for mediating between peer schemas, which deploys two

commonly used formalisms: global-as-view (GAV) and local-as-view (LAV)

to specify local mappings. Reformulation takes as input a peer’s query and

the formulas describing semantic relationships between peers, and it outputs

a query that refers only to stored relations at the peers. Bernstein et al. [16]

introduce the Local Rational Model (LRM) as a data model specifically de-

signed for P2P applications. LRM assumes a set of peers in which each of the

peer is a node with a relational database. It exchanges data and services with

acquaintance, i.e., other peers. The set of acquaintances changes often due

to site availability and changing usage pattern. Peers are fully autonomous

and there is no global control or uniform view. A peer is related to another

by a logical acquaintance link. For each acquaintance link, domain relations

13

define translation rules between data items, and coordination of formulas de-

fine semantic dependencies between the two databases. In Hyperion Project

[48], mapping tables are proposed for data mapping in the P2P environment.

Kementsietsidis et al. extend [16] by providing domain relation management

through capabilities of inferring new mapping tables and determining con-

sistency of mapping constraints. PeerDB [59] tackles the semantic gap by

providing both Local Dictionary and Export Dictionary without a shared

global schema. Export Dictionary reflects the meta-data of objects that are

sharable with other nodes. Thus, only objects that are marked for export

can be accessed by other nodes in the network. Mapping procedure is based

on meta-data keywords matching by information retrieval techniques.

• Search: Search mechanism is a core component in P2P systems. Good search

mechanism allows users to effectively locate desired data in a resource-efficient

manner. To some extent, search mechanism decides the topology, data place-

ment and message routing. Designing such a mechanism is difficult in P2P

systems for several reasons: scale of the system, unreliability of individual

peers, etc.

In order for P2P systems to be useful in a wide range of applications, search

mechanism must be able to support query languages of varying levels of ex-

pressiveness. The simplest form of query is an object lookup by key or iden-

tifier. Much research focuses on search techniques for keyword queries, where

a few keywords can usually uniquely identify the desired file such as music or

video files. If many results are returned for comprehensive keyword search,

users may need the results to be ranked and filtered by relevance. Ranked

search can be built on top of regular search by retrieving all results and sorting

locally. Users may sometimes be interested in knowing aggregate properties

14

of the system or data collection as a whole (e.g., COUNT, MEDIAN, etc.),

rather than locating specific data. Furthermore, SQL defined over the P2P

data storage could also be needed.

Thus far, research in search mechanism has focused on answering simple

queries, such as key lookups. Current research on supporting complex query

in P2P systems is very preliminary. PIER project [43] has supported a subset

of SQL over a P2P framework, but they reported significant performance

“hotspots” in their preliminary implementation. Further research is needed

to extend these techniques into more expressive aggregates.

• Replication and Caching: Replication and caching are well-understood

techniques deployed in distributed systems. The objective of them is to min-

imize the overall query execution time in a huge pooling data storage. In a

P2P scenario, the objective can either be achieved through minimizing the

number of routing hops or maximizing the replication of objects.

Cohen et al. [28] have evaluated different replication strategies and revealed

the optimal strategy in unstructured P2P network from a theoretical per-

spective. The problem statement of replication policy in P2P network is as

follows. The network consists of n nodes, each with capacity p which is the

number of copies/keys that the node can hold. Let R = np denote the total

capacity of the system. There are m distinct data items in the system. The

normalized vector of query rates takes the form q = q1 > q2 > ... > qm with
∑

qi = 1. The query rate qi is the fraction of all queries that are issued for the

ith item. An allocation is a mapping of items to the number of copies of that

item. Let ri denote the number of copies of the ith item, and let pi = ri/R

be the fraction of the total system capacity allotted to item i :
∑m

i=1ri = R.

The allocation is represented by the vector p = (p1, p2, ..., pm). A replication

15

strategy is a mapping from the query rate distribution q to the allocation p.

In Gnutella [5], when a search is successful, the object is stored at the re-

quester node only. The replication strategy is called “owner replication”.

Freenet [27] provides a different replication strategy. When a search suc-

ceeds, the object is stored at all nodes along the path from the requester

node to the provider node. So, they can reply immediately to any further re-

quest for that particular object. This strategy is named as “path replication”.

Each Freenet node maintains a stack. Objects that are requested more often

are moved up in the stack, displacing the less requested ones. PAST [69] has

been designed to store multiple replicas of files and cache additional copies

of popular data objects. PAST controls the distribution of per-node storage

capacities by comparing the advertised storage capacity of a newly joining

node with the average storage capacity of nodes. It maintains the invariant

that k copies of each inserted file are maintained on different nodes. Highly

popular files may demand many more than k replicas in order to sustain its

lookup load while minimizing client latency and network traffic. In order to

balance the remaining free storage space among the nodes, PAST provides

replica diversion policy. If node A cannot accommodate a copy locally, it

considers replica diversion. For this purpose, Node A chooses node B in its

leaf set1 that is not among the k closest and does not already hold a diverted

replica of the file. Node A asks node B to store a copy on its behalf, then

enters an entry for the file in its table with a pointer to node B. OceanStore

[51] is a utility infrastructure designed to provide continuous access to data

storage scaled to billions of users. Objects are replicated and stored on mul-

1In addition to the routing table, each node in PAST maintains IP addresses for the nodes
in its leaf set. The leaf set is the set of nodes with nodeIDs partially similar to present node’s
nodeID.

16

tiple servers. A given replica is independent of the server on which it resides

at any one time; thus they are referred as floating replicas. OceanStore pro-

vides two location policies. A fast, probabilistic algorithm attempts to find

the object near the requesting machine. If the probabilistic algorithm fails,

location is left to a slower, deterministic algorithm.

Existing P2P systems often utilize the replication and caching techniques

to promise availability in the presence of network partitions and durability

against failure and attack. However, high degree of replication makes update

much harder, and increases the retrieval complexity. Maintaining consistency

over replicated objects is a difficult problem in P2P network. A typical so-

lution, which is quite acceptable for P2P scenario, is to have each object be

owned by a single master, which is solely responsible for its freshness [36].

• Data Consistency: Replicating and caching create numerous copies of data

objects scattered throughout the P2P overlay network. They promise high

data availability in P2P systems, minimize response latency to query and

reduce the network traffic. Unfortunately, they introduce data inconsistency

problem. To achieve data freshness and update consistency in distributed

systems, there are many possible ways of propagating updates from the data

origins to intermediate nodes that have materialized views of this data. Most

of the previous consistency work has focused on conventional distributed sys-

tems, such as Web proxy caching, Content Delivery Networks (CDNs), and

mobile computing environment. Existing approaches are inefficient in P2P

systems due to the unreliable nature of peers, high autonomy and large-scale

of the P2P network.

Some possible solutions would be invalidation messages pushed by the server

or client-initiated validation messages; however, both of these incur overhead

17

that limits scalability. Another approach is a timeout/expiration-based proto-

col, as employed by DNS and web caches. This approach has lower overhead,

however, it only guarantees looser freshness and consistency. Data consis-

tency maintenance techniques in current P2P systems are inefficient [36]. We

will present a detailed survey in this topic in next section.

We have generalized current open problems in P2P research area. Our work

focuses on presenting a potential solution to data consistency maintenance in P2P

caching systems. In the following section, we survey various approaches for data

consistency in distributed systems and classify them by their dominant way of

solving.

2.3 Data Consistency Schemes Taxonomies

Data consistency problems exist in any system that uses some form of cache to

speed up accesses. Data consistency protocols have been studied in computer ar-

chitecture, distributed file systems, network and distributed database systems. The

consistency problems are slightly different in the four contexts. In particular, data

consistency is a tradeoff between performance and precision in distributed systems.

When data is replicated or cached, system performance benefits. However, the mul-

tiple copies of the same information maintained at the different sites can become

inconsistent and stale if the objects are updated at the origin servers. Without

special mechanisms to enforce the freshness of the cached data management, dis-

tributed systems would continue using the stale cached copy of objects to query

results.

18

2.3.1 Consistency Models

Traditionally, consistency has been discussed in the context of read and write op-

erations on shared data, available by means of distributed shared memory, a dis-

tributed shared database, or a distributed file system. Replicas may be physically

distributed across multiple machines. Strong consistency is defined as a model in

which after a write operation completes, no stale copy of the modified document

will ever be returned to user [54]. On the other hand, weak consistency is de-

fined as the consistency model in which a stale document might be returned to the

user. In such a manner, data freshness can not be guaranteed. For strong consis-

tency, it is unnecessarily restrictive for many applications. In some cases, providing

strong consistency imposes performance overheads and limits system availability.

Although queries executed over cached data can get an answer very quickly in weak

consistency, usually no guarantees are given as to exactly how imprecise the answer

is. So, the user is left to guess the degree of imprecision based on knowledge of

data stability or how recently caches were updated. Weak consistency is not always

satisfactory.

Thus, a variety of optimistic consistency models have been proposed for ap-

plications that can tolerate relaxed consistency. In TRAPP [60], users supply

a quantitative precision constraint to balance the tradeoff between precision and

performance. Yu et al. have designed a system, TACT [83], that can support

application-specific consistency models. The need for differentiating models stems

from tradeoffs among performance, availability, and consistency. Consistency is de-

fined in terms of three continuous parameters: the number of writes that a replica

can permit not to have seen, the number of writes that can be performed locally

before update propagation takes place, and the time allowed to delay update propa-

gation. Deolasee et al. [30] propose dissemination of dynamic Web data techniques

19

tailor dissemination of data from servers to clients based on clients’ coherency re-

quirement. Each user specifies a temporal coherency requirement for each cached

item of interest.

2.3.2 Update Propagation

In this subsection, we discuss different ways of propagating updates to replicas,

which are independent of the consistency model that is to be supported. There are

three design issues about update propagation.

The first design issue concerns what is actually to be propagated. Basically,

there are three possibilities:

1. Propagate only a notification of an update.

2. Transfer data from one copy to another.

3. Propagate the update operation to other copies.

Propagating a notification is what invalidation protocols [77] do. In an invali-

dation protocol, other copies are informed that an update has taken place and that

the data they contain are no longer valid. Since no more than a notification is

propagated, whenever an operation on an invalidated copy is requested, that copy

generally needs to be updated first. The main advantage of invalidation protocols

is that they use little network bandwidth. The only information that needs to

be transferred is a specification of which data are no longer valid. Such proto-

cols generally work best when there are many update operations compared to read

operations.

Transferring the modified data among replicas is the second alternative, and is

useful when the read-to-write ratio is relatively high. In that case, the probability

20

that an update will be effective is high in the sense that the modified data will be

read before the next update takes place.

The third approach is not to transfer any data modifications at all, but to tell

each replica which update operation it should perform. This approach assumes that

each replica is represented by a process capable of “actively” keeping its associated

data up to date by performing operations [71]. The main benefit of active replica-

tion is that updates can often be propagated at minimal bandwidth costs, provided

the size of the parameters associated with an operation are relatively small. On

the other hand, more processing power may be required by each replica, especially

when operations are relatively complex.

The second design issue is whether updates are pulled or pushed. In a push-

based approach, updates are propagated to other replicas without those replicas

even asking for the updates. Push-based approaches are often used between per-

manent and server-initiated replicas, but can also be used to push updates to client

caches. Server-based protocols are applied when replicas generally need to main-

tain a relatively high degree of consistency. Push-based protocols are efficient in the

sense that every pushed update can be expected to be of use for one or more read-

ers. In addition, push-based protocols make consistent data immediately available

when asked for.

In contrast, in a pull-based approach, a server or client requests another server

to send it any updates it has at that moment. Pull-based protocols, also called

client-initiated protocols, are often used by client caches. For example, a common

strategy applied to Web caches is first to check whether cached data items are still

up to date. When a cache receives a request for items that are still locally available,

the cache checks with the original Web server whether those data items have been

modified since they were cached. In the case of a modification, the modified data

21

Table 2.1: Main Issues Comparison between Push and Pull
Issue Push-based Pull-based

State at server List of client replicas and caches None
Messages sent Update (and possibly fetch update later) Poll and update

Response time at client Immediate (or fetch-update time) Fetch-update time

are first transferred to the cache, and then returned to the requesting client. If no

modifications take place, the cached data are returned. In other words, the client

polls the server to see whether an update is needed. Pull-based approach is efficient

when the read-to-update ratio is relatively low. This is often the case with client

caches, which have only one client. The main drawback of a pull-based strategy

in comparison to a push-based approach is that the response time increases in the

case of a cache miss.

When comparing push-based and pull-based solutions, there are a number of

tradeoffs to be made, as shown in Table 2.1. For push-based protocols, apart

from the fact that stateful servers are often less fault tolerant, the server needs to

keep tracks of all client caches. Keeping track of all client caches may introduce a

considerable overhead at the server. For example, in a push-based approach, a Web

server may easily need to keep track of tens of thousands of client caches. Each

time a Web page is updated, the server will need to go through its list of client

caches holding a copy of that page, and subsequently propagate the update.

In addition, the messages that need to be sent between a client and the server

also differ. In a push-based approach, the only communication is that the server

sends updates to each client. When updates are only informed by invalidations,

additional communication is needed by a client to fetch the modified data. In a

pull-based approach, a client will have to poll the server, and, if necessary, fetch

the modified data.

Finally, the response time at the client is also different. When a server pushes

22

modified data to the client caches, it is clear that the response time at the client

side is zero. When invalidations are pushed, the response time is the same as in the

pull-based approach, and is determined by the time it takes to fetch the modified

data from the server.

A hybrid form of pull and push propagation is lease. Leases are originally

introduced by Gray and Cheriton [35]. They provide a convenient mechanism for

dynamically switching between a push-based and pull-based strategy. A lease is a

promise by the server that it will push updates to the client for a specified time.

When a lease expires, the client is forced to poll the server for updates and pull in

the modified data if necessary.

The third design issue is to decide whether unicasting or multicasting should be

used. In unicast communication, when a server sends its update to N other servers,

it does so by sending N separate messages, one to each server. With multicast-

ing, the underlying network takes care of sending a message efficiently to multiple

receivers. In many cases, it is cheaper to use available multicasting facilities. An

extreme situation is when all replicas are located in the same local-area network and

that hardware broadcasting is available. In that case, broadcasting or multicasting

a message is no more expensive than a single point-to-point message. Unicasting

updates would then be less efficient.

Multicasting can often be efficiently combined with a push-based approach to

propagating updates. In that case, a server that decides to push its updates to a

number of other servers simply uses a single multicasting group to send its updates.

In contrast, with a pull-based approach, it is generally only a single client or server

that requests its copy to be updated. In that case, unicasting may be the most

efficient solution.

23

Table 2.2: Approaches Classification by Consistency Model
Consistency degree Approaches

strong Invalidation, Continuous Multicast Push, Leases
weak Time-To-Live, Validation
demand-driven Heuristic Approaches, Data Recharging

Table 2.3: Approaches Classification by Update Propagation Way
Dissemination way Approaches

push Continuous Multicast Push, Data Recharging, Invalidation
pull Time-To-Live, Validation
hybrid Heuristic Approaches, Leases

2.3.3 Data Consistency Protocols

Maintaining consistency techniques have been studied for decades in distributed

systems, such as distributed file systems [18], Web proxy caching or CDNs [56, 50,

39, 54] and mobile computing environments [15]. There are a range of techniques

which were proposed to solve the problem, from simple approaches like TTL to

complex approaches like cache profile language to specify the users’ demands [24].

These techniques can be classified into three types as listed in Table 2.2 according

to the consistency models. Likewise, they also can be classified into three types

according to update propagation as listed in Table 2.3. We survey the popular

consistency protocols as follows.

Time-To-Live: Time-To-Live (TTL) is a simple way to achieve some limited

degree of data consistency. It has been widely used in Web pages. Explicit TTLs

must be specified by Web developers as part of object creation, such as expires

and cache-control:max-age headers. It cannot guarantee high degree of consistency.

However, it is the least cost method. Most current caching systems use an adaptive

heuristic TTL, which is based on the assumption that the longer a file has been

unchanged, the longer it tends to remain unchanged in the future [32].

24

Cache Validation: Cache validation, also known as client polling, refers to the

approach where clients verify the validity of their cached objects with the origin

server. Netscape Navigator 1.1 implements the validation mechanism where the

server sends down a chunk of data, including a directive (in the HTTP response or

the document header) that says “reload this data in 5 seconds”, or “go load this

other URL in 10 seconds”. After the specified amount of time has elapsed, the

client does what it was told - either reloading the current data or getting new data

[1].

A key issue for cache validation is when to send validation messages. The trade-

off is among the degree of consistency, message consumption and latency overhead.

The more frequent the validation messages are, the lower the probability of deliver-

ing stale content from the cache is, but the higher the message and latency overhead

for validating unchanged objects are. A problem of validation is the message and

latency overload. The extreme options are to validate every access, which provides

strong consistency at the expense of a large number of unnecessary validation mes-

sages, or never to validate, which has zero messages overhead but a high probability

of stale delivery. Therefore, validation usually provides a weak consistency because

objects are typically validated only periodically.

Cache Invalidation: Cache invalidation protocols [77] are required when weak

consistency is not sufficient. Many distributed systems rely on invalidation proto-

cols to ensure that cached copies never become stale. With invalidation, the origin

server notifies clients which of their cached objects have been modified. The clients

mark those objects as invalid and assume that any objects they cache are always

valid unless they are marked otherwise. HTTP1.1 allows an origin server to in-

validate an object cached by proxy by submitting to the proxy a PUT, POST or

DELETE request for the object. There has been no accepted standard for a proto-

25

col that would allow invalidation of browser caches. Open protocols for Web cache

invalidation in the Internet are being actively discussed in the IETF [11].

Cache invalidation protocols are often expensive, in which two interdependent

issues must be addressed: the client list problem and the delayed updated dilemma.

The client list problem is twofold. First, it requires the server to record prior

interactions with all clients. Second, it is unclear if the server can ever trim the

lists because expecting clients to notify servers when they drop objects from their

caches is generally unreasonable. The delayed updated dilemma is how the server

should deal with an unreachable client that needs to be invalidated. That client

will not receive the invalidation message and will continue using its cached content

regardless of any updates. In summary, invalidation protocols can provide strong

consistency in the absence of Internet disconnections. However, they introduce

scalability problems or necessitating hierarchical caching.

Volume Lease Protocols: Lease protocols are proposed to address the limi-

tation of invalidation protocols. With leases, the server must keep a client in the

object client list only until the client lease expires [32]. Further, an update can be

delayed by an unreachable client by at most the duration of its lease. Whenever a

cache stores a data object, it requires a lease from the server. Whenever the object

changes, the server notifies all caches who hold a valid lease of it; the invalidation

contract applies only while the leases is valid.

Instead of maintaining separately for individual objects, volume lease protocols

are used [50, 81, 82]. Several objects are combined into a volume and maintained

consistency at the granularity of entire volumes. Thus, volume lease approach com-

bines features of the validation (after the lease expires) and invalidation approaches

(during lease period).

Server Push Protocols: Server push protocols are proposed to reduce the

26

workload of origin servers. Netscape has recently added push capability to its Nav-

igator browser specifically for dynamic documents [1]. Server sends down a chunk

of data; the browser displays the data but leaves the connection open. Whenever

the server desires, it continues to send more data and the browser displays it, leav-

ing the connection open. In server push, a HTTP connection is held open for an

indefinite period of time (until the server knows it is done after sending data to the

client and a terminator, or until the client interrupts the connection). Server push

is accomplished by using a variant of the MIME message format “multipart/x-

mixed-replace”. The “replace” indicates that each new data block will cause the

previous data block to be replaced – that is, new data will be displayed instead of

(not in addition to) old data.

The key to the use of this technique is that the server does not push the whole

“multipart/x-mixed-replace” message down all at once but rather sends down each

successive data block whenever it sees fit. The HTTP connection stays open all

the time, and the server pushes down new data blocks as rapidly or as infrequently

as it wants.

Continuous Multicast Push: For popular Web documents that rarely change,

a caching hierarchy seems the best solution. Hit rates close to 50% [12] can be

achieved, and the bandwidth usage and latency to the receivers are reduced. How-

ever, there are certain dynamic Web documents that change frequently. The root

cache is heavily loaded because it deals with new document requests, updates, and

missed requests that are not fulfilled by the lower level caches.

Continuous Multicast Push (CMP) is a mechanism for reducing the bandwidth

usage and latency to the receivers on the Internet for very popular documents that

change very frequently [65, 66]. CMP takes place at the transport layer with re-

liability and congestion control ensured by the end systems (server and clients).

27

Server housing a popular and frequently-changing object continuously multicasts

the latest version of the object on a multicast address. Clients tune into the mul-

ticast group for the time required to reliably receive the document and then leave

the multicast group. Due to varying nature of the different Web documents, there

is room for both caching and continuous multicast distribution.

CMP does not suffer problems of overloaded servers or caches. It scales very well

with the number of receivers. Receivers obtain at any moment the last available

update without incurring on the overhead of checking for the updated document on

all the cache levels. The multicast distribution uses bandwidth efficiently by sharing

all common paths between the source and the receivers. However, some additional

mechanisms should be well studied to make CMP a viable service. Servers should

map the document’s name into a multicast address. It should provide the multicast

capable routers that maintain state information for each active multicast group.

The overhead is high due to join and prune messages needed for the multicast tree

to grow and shrink.

Hybrid and Heuristic Approaches: Hybrid and heuristic approaches are

proposed to combine the advantages of existing methods and overcome their lim-

itations. It is necessary to provide a heuristic decision model to adaptively select

the optimal method. Due to these approaches’ adaptable capacities, they are self-

configurable to different scenarios without administrator configuration, and guaran-

tee a relatively low response delay and minimize the network traffic in comparison

to previous methods. For example, SPREAD [67] was designed for distributing

and maintaining up-to-date Web content that simultaneously employs three dif-

ferent mechanisms: client validation, server invalidation, and replication. Proxies

within SPREAD self-configure themselves to form scalable distribution hierarchies

that connect the origin servers of content providers to clients. Each proxy au-

28

tonomously decides on the best mechanism based on the object’s popularity and

modification rates. Requests and subscriptions propagate from edge proxies to the

origin server through a chain of intermediate proxies. The core heuristic model of

SPREAD is for proxies to estimate update rate and determine which mechanism

to use based on local observations. Observing that lease duration is the critical

parameter that determines the efficiency of the lease protocols, Duvvuri et al. [32]

propose adaptive leases to balance the tradeoffs between large state space and con-

trol message overhead. The heuristic mechanism uses constraints on the state space

overhead and the control message overhead to compute an appropriate lease dura-

tion adaptively. Deolasee et al. [30] combine push and pull techniques to achieve

the best features of both approaches. PoP and PaP algorithms are introduced to

tune according to the client requirements and conditions at the server/proxy.

Data Recharging: Data recharging [17, 52, 24] is similar to power recharging.

Data recharging techniques make use of a centralized data server to disseminate

the data updates to different users, meanwhile, a set of rich profile expressions

are provided to describe the needs of the receivers’ data consistency demands.

The mechanism is totally driven by the requirement of users. Application-level

knowledge is expressed as profiles [23] to manage the contents and freshness of

caches. Although making delivery decision requires complex computation of profiles

and scheduling, data recharging can allocate network bandwidth economically and

save numerous useless data delivery. The data updates propagation is also delivered

according to the priority of the user’s requirements.

In summary, all data consistency proposals attempt to achieve some degree of

consistency. The approach taken to achieve consistency depends greatly on cer-

tain scenario. Researchers adapt and extend some traditional techniques to meet

certain new requirements. For example, cache invalidation report is used as an

29

extension of cache invalidation protocol in mobile computing scenario [15]. Con-

sidering a P2P environment, where each peer caches certain data objects, in which

frequently-changing data objects are suffered from consistency. Because of the scale

of the network, unreliable nature of peers and lack of global topology information,

maintaining cached data consistency in each peer node is more challenging than the

work in conventional client-server model system. Many techniques previously de-

veloped for distributed systems will be inefficient or no longer be applicable. Cache

validation is not efficient in millions of peers scenario, which will cost huge network

bandwidth. The key limitation of client polling is that it is hard to predict the up-

date rate of the cached objects. Cache invalidation suffers from unreachable client

problem. Once disconnected from the network2, the invalidation protocol does not

work any more. CMP method relies on reliable network connection and nodes

stability, and also results in significant relative penalty delay when systems scale.

However, nodes are natively transient in P2P systems, which degrades the perfor-

mance of data pushing techniques. CMP requires that the network is multicast

capable. Only a few network providers can offer it as a service. Data recharging

techniques provide more user-interactive procedure for data consistency to reduce

the unnecessary network cost. It needs a centralized computation to maintain the

requirements of users. New techniques are required to meet these challenges. Since

data consistency is a general topic in data management, our design is built upon

prior research and we adapt and extend them into P2P environment.

2Removing a small portion of peer nodes is possible to fragment the entire network into many
isolated pieces [49].

30

2.4 Existing Consistency Work in P2P

Most consistency research work has been done on Web proxy caching and content

distribution network scenarios [30, 32, 39, 50, 54, 67]. To our best knowledge, recent

research which is related to our work is as follows:

Shal et al. propose hierarchical repositories architecture and the correspond-

ing dynamic data dissemination techniques [73]. In their setting, each repository

registers into the network with specific consistency requirement. Repositories in

an upper level have more stringent consistency than those in a lower level. Thus,

repositories in an upper level can feed the lower ones by pushing updates of data

items. Client users can connect to different repositories according to their data

of interest and consistency requirements. In this way, origin server workload is

proportioned by other repositories in the overlay.

Shal et al. [72] present more techniques for creating a resilient and efficient

content distribution network for dynamically changing streaming data. Their dis-

semination tree construction is better than that in [73]. To achieve fault tolerance,

each node maintains two parents: one primary and one backup, where the backup

serves the child with less than the request coherency.

Shal et al.’s work provides fine-grained data consistency and an intelligent filter-

ing and dissemination techniques based on each repositories coherency requirement.

However, their solution is not adequate in P2P environment. First, peers are au-

tonomous. They come and go unexpectedly. The architecture cannot tackle the

transient nature of the peers. Furthermore, peer users change their consistency

requirements and data of interest freely. Their dissemination overlay provides no

adaptive disseminating mechanisms. Second, their work does not consider the re-

source usage and network locality, which are key issues in large-scale P2P network.

31

Nodes in network proximity are more prone to cooperating with each other and

bringing more benefits. Third, peer nodes in a real system have heterogenous ca-

pacity from mobile PDAs to powerful workstations. Shal et al.’s work never makes

use of client peer powerful capacity.

Chen et al. [22] propose a dynamic replica placement for scalable content de-

livery to address the problem on how to achieve the maximum benefits by placing

the minimum replicas in Tapstry [84] while satisfying all the client peer’s query

latency. Druschel et al. [31] state that an adaptive cache coherence system is re-

quired. They assume that replicas are stable content delivery servers, which are

placed in the Tapstry. Clients are normal peers of the Tapstry. The replicas are

formed as an application-level multicast tree piggyback on the structured routing

techniques, and data consistency of replica are maintained using heuristic method

proposed in SPREAD [67].

Their work is layered on Tapstry, a structured P2P infrastructure. Their goal

is to place the minimal number of replicas to satisfy the maximum client peers

querying latency. Therefore, their work is just to maintain all the data of replicas

consistency, normal client peers should query those replica servers to get the newly

updated data. In other words, their solution is not really for peer level, but in

content distributed network.

Lan et al. [53] focus on the problem of consistency maintenance among mul-

tiple replicas in the presence of updates. They propose Gtk-Gnutella protocol,

which is built over Gnutella-like P2P system. Gtk-Gnutella presents three differ-

ent approaches: push, adaptive pull and push combined with adaptive pull. They

assume that only server peers have the authority to modify the file objects, which

may make all the other replicas inconsistent. To maintain cached data consistency,

push-based mechanism lets server peers send invalidation messages to inform the

32

client peers using flooding when updating the source data. The main advantage of

this push-based approach is its simplicity and stateless nature. Since invalidation

messages are propagated via flooding, the server peer does not need to maintain a

list of client peers which hold a replica of the file. But, push is limited by the TTL

value reachable scope and network disconnection. Therefore, the push mechanism

is inadequate in P2P scenario. Adaptive pull-based approach puts the burden of

consistency maintenance on individual peers. It is implemented like a client/server

system such as the Web. Pull is more resilient to dynamic peer join and depar-

ture. However, it only guarantees weak consistency. The adaptive time-to-refresh

computation also cannot guarantee good prediction of the updates frequency. So,

Gtk-Gnutella protocol has provided a heuristic mechanism called hybrid push and

adaptive pull technique. It combines the advantages of these two approaches. The

hybrid method provides satisfactory cached data fidelity.

To our best knowledge, Lan et al.’s work is the first one to address consistency

of the data cached by peer nodes. The work has some limitations. First, their

approach is heavily relying on the traditional consistency techniques. Second, their

solution never considers the network proximity. It results in numerous network

traffic waste to disseminate invalidation messages regardless of file object popu-

larity. Third, their three proposed approaches only provide strong consistency.

Unfortunately, it is not necessary and practical to guarantee strong consistency in

large-scale P2P network. Due to the centralized design, the origin server becomes

the bottleneck to limit system scalability. Their work is the earliest work directly

dealing with the local cached data in P2P environment. Although well-designed,

there still remains some space to further improve.

P2P technology has provided numerous cooperative models in previous work.

For example, CQ-Buddy framework has been designed for supporting continuous

33

query processing based on P2P technology [57]. Working on the basis of peer hetero-

geneity, peers in CQ-Buddy network help one another by sharing query workload

and providing data. The framework presents two strategies, SELF-HELP, and

BUDDY-HELP, that allow for the grouping and sharing of multiple continuous

queries amongst peers. Weaker peers (e.g., PDAs, mobile devices) are helped by

stronger peers for complex queries processing. CQ-Buddy is distributed and highly

scalable as there is no single-point failure and single-source bottleneck. CQ-Buddy

has indicated that cooperation is essential to achieve scalability and extensibility.

Our work further extends the previous work. In particular, our work differs

from previous research work in three aspects. First, each peer manages its local

cache data, which is used to raise query performance. The data consistency is

on the peer node granularity. Peers maintain the cached data consistency with

cooperation among each other. Peers possessing data item with high stringent

consistency can push data updates to the peers with lower requirements based

on their demands. Thus, idle bandwidth is fully utilized. Second, we provide an

adaptive dissemination overlay comprising of numerous dissemination trees. Source

peers and client peers cooperate with each other to choose the optimal parent peer

for new coming client peers, while taking peer workload and network locality into

account. Moreover, the overlay can adjust itself according to consistency require-

ment variation of peer users. The initially-setup dissemination tree can adapt to

demands without administration. Third, we introduce redundancy techniques to

backup potential parent peers for each client peer when it joins the consistency

overlay without any manual administration. Peer departure or failure can be re-

paired in time with robust recovery techniques. Differently, backup parents can

also contribute to the self-adaptive procedure.

34

2.5 Summary

In this chapter, we have provided a literature review on popular P2P architecture

development. We classify P2P architectures into three categories, and introduce

the corresponding techniques. In addition, we state current P2P research open

problems and existing solutions.

In particular, we have outlined the data consistency strategies which have been

studied in distributed systems. We have analyzed the advantages and drawbacks

of each strategy. Meanwhile, we present the design challenges of data consistency

in a P2P environment. In the end, we examine the recent consistency related work

in P2P research.

35

CHAPTER 3

PeerCast Building Blocks

PeerCast is the framework built on BestPeer [2], therefore we briefly outline some

features about the BestPeer platform. We just mention some key related com-

ponents here. Readers can refer to [58] for more details. In addition, PeerCast

borrows and extends the idea of application-level data multicast techniques. We

discuss and analyze these techniques as PeerCast building blocks.

3.1 BestPeer Platform

BestPeer is a generic P2P system designed to serve as a platform on which P2P

application can be developed easily and efficiently. Figure 3.1 illustrates the Best-

Peer architecture. The network consists of two types of entities: a large number of

computers (nodes), and a relatively fewer number of location-independent global

name lookup (LIGLO) servers. The node registers with a LIGLO server when en-

tering the BestPeer system. The LIGLO server will issue the node with a global

36

LIGLO1

LIGLO2

P7

P6P5

P1

P2

P3

P4

P8

Figure 3.1: BestPeer Network Architecture

and unique identifier, which we shall refer to as BestPeerID (BPID). BPID serves

to uniquely recognize this node regardless of its current IP address. BPID is essen-

tially a (LIGLOID, NodeID) pair where LIGLOID is the IP address of the LIGLO

server and NodeID is a unique identifier for the node assigned by the LIGLO server.

BestPeer properties circumvent the dynamic IP problem. We use BPID to identify

nodes in our system implementation and simulation.

Each participating node runs the BestPeer (Java-based) software and is able

to communicate or share resources with any other node in the BestPeer network.

In order to support PeerCast efficiently, we implement the push capability on each

peer node by the pull way, which means that a parent peer initiates to invoke the

peer to download the data from the parent peer by sending a message to the child

peer.

We further divide the data management into static data set and dynamic data

set to integrate the dynamic data applications with BestPeer. Date items in dy-

namic data set will be maintained with consistency using peer cooperation. We also

incorporate management mechanisms into BestPeer infrastructure with an original

37

function.

3.2 Application-Level Data Multicast

PeerCast maintains dynamic data consistency using application-level multicast lay-

ered on top of the BestPeer. Application-level multicast data delivering techniques,

a.k.a., end-system multicasting, are widely investigated in the computer network

communication area [26, 14, 85, 20, 45] since IP multicast does not pertain to scal-

ability. Peer nodes participating in BestPeer implement their own multicast trees.

Multicast trees are built to efficiently deliver data end-to-end.

Multimedia conferencing, video-on-demand applications, etc. are based on

application-level multicast, which can outperform unicast delivery. As shown in

Figure 3.2, (b) reduces network traffic cost as compared with (a), and physical

link stress is re-allocated to load balanced in (b). The link between two routers

in (a) experiences higher stress, which will incur a larger end-to-end delay. The

deployment of application-level multicasting can reduce network traffic cost and be

easily implemented on systems since its deployment does not need to consider the

lower level physical network topology. In addition, application-level multicasting

techniques optimize the efficiency of the overlay by adapting to network dynamics

and by considering application-level performance.

Classical cases for end-system multicast such as Narada [26] and Scattercast

[19], etc., build application-level meshes formed by connections among a subset

of node pairs. Unfortunately, these system protocols are clearly not designed for

a large-scale network. Node arrival and departure information is disseminated

to all members of the mesh to guarantee the quality of the mesh. Conventional

application multicast tree design is only considered in a small scale overlay network.

38

Multicast delivery suffers much because most of them assume a stable network.

Some of the conventional application multicast tree designs even lack of scalability.

In the last few years, the P2P paradigm has attracted the attention of nu-

merous researchers. Two main categories of research can be identified: research

on protocols and algorithms (such as searching and replication), and research on

building P2P systems. Significant research effort has addressed the problem of

efficiently streaming multimedia, both live and on demand, over the best-effort In-

ternet. Many systems rely on application level multicast to overcome the limited

deployment of network level multicast. Each system has its own protocols for build-

ing and maintaining the multicast tree. For example, NICE [14] uses a multi-layer

hierarchical distribution trees to scale to a large number of peers. However, NICE

is not optimized for a high rate of node churn. The disruptions in dissemination

tree due to node failure can take up 30 seconds to heal.

The design of PeerCast framework borrows the idea of application-level mul-

ticast techniques. In order to achieve scalability, PeerCast uses logical links and

soft-state mechanism. ”Heartbeat” messages are periodically sent to detect nodes

failure instead of physical link meshes. Data delivery adopts demand-driven strat-

egy based on the peer user’s interests to minimize the link workload. As for frequent

delivery links, they can upgrade into physical links by network reconfigure tech-

niques. When constructing the disseminating tree, the overlay can return more

than one backup parent peer node to a newcome client peer counteracting the node

churn and link failures.

39

(a) Unicast Data Delivery (b) Multicast Data Delivery

Figure 3.2: Multicast Vs. Unicast

3.3 Maintaining Consistency in Distributed Co-

operative Manner

Our framework aims to distribute the server workload and high scalability while

retaining efficient and balanced resource consumption of the underlying infrastruc-

ture.

Some previous work has proposed dynamic consistency. Out-of-date cached

data are permitted. Bound cache and stale cache are proposed to query tolerance

by Huang et al. [42]. TRAPP [60] supports users to supply a quantitative preci-

sion constraint along with each query. For example, those short-term investment

speculative dealers need every minute stock price update while long-term investors

or casual observers do not need so stringent consistency requirement. Different

client users may have same data of interest but different consistency requirements.

The requirements can be specified in units of time (e.g., the item should never be

out-of-sync by more than 5 minutes), value (e.g., the stock price should never be

out-of-sync by more than a dollar) or version (e.g., update times). Thus, we could

use a cooperative manner on the basis of peer heterogeneity in consistency require-

ments for different data objects. However, the key issue is how and when the data

updates are disseminated between peers in a distributed cooperative manner.

As illustrated in Figure 3.3, we show cooperation among peers: each peer pushes

40

Source Peer

source data value

V(s)

Cooperative

Parent Peer
cache data value

V(p)

User

cache data value

V(d)

Figure 3.3: Distributed Cooperative Consistency Maintenance

updates of data items to other peers, which helps reduce system-wide communi-

cation and computation overheads for cache consistency maintenance. In a dis-

tributed cooperative approach, dependant clients may not get the knowledge of the

source peer updating dynamic data items. The set of updates received by depen-

dant peers is a subset of that received at its helper peer (i.e., peer in an upper

level) which in turn is a subset of unique data values at the source peer.

To maintain consistency for each dynamic data within individual peers, the

equation

|v(s)− v(l)| 6 cl (3.1)

should be held, where v(s) represents the value of dynamic data at origin server,

v(l) represents the value of cached data in each client peer, cl is the consistency

requirement for individual peers. As in Figure 3.3, source peer S connects with

intermediate peer P , and client peer D connects with P only. Let cp and cd denote

the consistency requirements of data item d at peers P and D, respectively. If P

serves D,

cp ≤ cd (3.2)

Thus, to effectively disseminate updates, we require that the consistency require-

ment at a repository should be at least as stringent as those of its dependents.

Let vs
i , vs

i+1, vs
i+2 ... denote a sequence of updates to v at the source peer S.

Let vp
j , vp

j+1, vp
j+2 ... denote the updates received by intermediate peer P and vd

k,

vd
k+1, vd

k+2 ... denote the updates received by the dependent peer D. Since cp ≤ cd,

41

the set of updates received by D is a subset of that received at P , which in turn is

a subset of unique data values at the source. Specifically, an update up
j received by

P is forwarded to D if

|up
j − vd

k| > cd (3.3)

where uq
k denotes the previous update received by D. Intuitively, Equation (3.3)

indicates that any updates that violate the consistency requirements of D are for-

warded to D. Note that this is a necessary but not sufficient condition for main-

taining consistency at D. For instance, P takes 0.3 as cp to certain dynamic data

o, and D takes 0.5 as cd. At some point of time, the value of o at source S is

1.4, and P has cached o, whose value is 1.4, and D keeps the older version of o,

whose value is 1. A subsequent update to o makes an increase in value to 1.5 at

S. Consequently, for P , the update does not result in a violation, Equation (3.1)

holds. Its cached data still meet the requirement. For D, Equation (3.1) does not

hold. However, because D does not have any knowledge of the source update, it

has no knowledge of the source update, D has no knowledge that its cached data

has been out of the bound of cd. D will continue using the stale data. Therefore,

the missing update problem appears.

There are several approaches to address this issue. In our setting, we adopt

the consistency reassignment proposed in [73]. In order to prevent the missing

update problem, each parent peer should forward the update to his children, if

|vp
j − vd

k| > cd− cp, which is equivalent to raising the consistency requirement of D.

Although cd − cp is less than the original consistency requirement of a dependant

client, the condition can provide 100% updates delivery. In the previous example,

P will forward the 1.4 to D. When the source value increases to 1.5, the consistency

requirement is still met in D.

42

CHAPTER 4

PeerCast Framework Design

This chapter gives an overview of the architecture of PeerCast framework. We

present different policies for data dissemination tree construction, self-adaptive

procedure, the fault-tolerance mechanisms and the strategies to address peer leave

and recovery problems. In next chapter, we discuss the PeerCast enhancement

issues and performance improvement. We report the results by the simulation

experiments to show the efficiency of our approach in Chapter 6.

4.1 Motivation Revisit

We consider the following objectives during the design and implementation of Peer-

Cast: scalable, self-adaptive, fault-tolerant and efficient, i.e., low latency and small

network traffic to achieve high fidelity. In order to avoid the single-point failure

problem, we reduce the workload of origin servers as much as possible with peer

cooperation on the basis of peer heterogeneity in data consistency requirements.

43

Figure 4.1: PeerCast Overview

4.2 PeerCast Framework Overview

We suppose that only source peers have the authority to update data items and

initiate disseminating the freshest version of data to other peers. We also suppose

that the source peers are long-running nodes. We address source peer failure and

unsubscription problems in a later section. The peers caching the dynamic data

items for querying are called client peers. Source peers provide the service just

like the origin servers in Web applications. The difference is that peers in P2P

systems can play source peer or client peer simultaneously. Figure 4.1 illustrates

the overview of the PeerCast framework as an overlay formed with numerous dis-

semination trees. The overlay is maintained by the participating peers among the

PeerCast automatically independent from the lower P2P infrastructures.

PeerCast provides the filtering and pushing service by organizing the peer mem-

bers into a self-organized, source-specific, and logical spanning tree that is main-

tained as nodes join and leave. PeerCast framework uses the push approach to

disseminate updates. Via the logical multicast trees, source peers push data up-

44

��������	�
�

����

�

��	��

����
���������

���������

��	�
�
���������������

������

��	�
�

 ��!��"���#�

���	�
�

����

�

����

 ��!�

���������

 !���������

"���#�

��� �
��$%&

%
�

���������

���
�
����'

��	������

�	�'���
(�

����

���!��#�����

�	
!�	�����

���������	�
�

Figure 4.2: PeerCast System Architecture

dates to their dependent peers, which in turn push these changes to their dependent

children peers. Each client peer participating in the dynamic data consistency over-

lay has a set of interested dynamic data items, say, their IDs (e1, e2, e3, ...), with

the corresponding consistency requirements (cr1, cr2, cr3, ...). Client peers main-

tain metadata about the dynamic data, which include enough related source peer

information. Not every update needs to be pushed to a dependent - only those

updates necessary to maintain the consistency requirements at a dependent peer

need to be pushed.

Figure 4.2 illustrates the internal structure of a peer node in PeerCast. There

are essentially four components that are loosely integrated. The first component

is a dependant children peer manager which facilitates immediate dependant peers

management, manipulates their associated consistency requirements, maintains the

data values pushed to the client peers last time, and checks the push condition

satisfaction upon receiving data updates from upper level peers. For each child

45

peer which is taken in, the associated metadata (BPID, transfer statistics, etc) are

stored in a connection manager. The connection manager also monitors the statis-

tics and manages the network reconfiguration policies with heuristic optimization

mechanisms.

The second component is a redirection process manager. When a peer receives

a join request from new coming client peer, it can take in the client peer as its child

peer or redirect the join request to its existing immediate children peer to further

process. The redirection mechanism influences the topology of dissemination tree

greatly.

The third component is a cache manager. Cache manager takes charge of all

the cached data. Peer users can query local cached data to achieve small response

latency. Cached data can take any form, files or relational database tuples. Fur-

thermore, potential parent peers are backed-up in cache manager when client peers

join the dissemination tree.

The last component is a graphic user interface. It provides a user-friendly

environment for users to specify their data items of interest and to set the associated

consistency requirements. Upon receiving data updates, it presents them to the

users. Peer users maintain their cached data items, and insert/delete data items

with corresponding function models.

4.3 PeerCast Maintenance Policies

In this section, we discuss the design issues of PeerCast framework and provide

detailed algorithms for dissemination tree construction and maintenance. Before

presenting the maintenance policies, we define some metrics which are used in

procedures. In addition, we describe the overhead on each participating peer to

46

Table 4.1: Metadata Structure
Metadate Attributes Function

Master owner data object owner
Fresh status whether object is fresh
Membership whether peer is one of multicast consistency tree active node
Level in tree level no. of multicast consistency tree

maintain the functions in PeerCast.

In order to manage dynamic data efficiently in P2P systems, we provide more

semantic metadata to describe the dynamic data items. In addition to the metadata

to describe conventional static data used in static file object sharing P2P systems,

we provide more metadata. Please see Table 4.1 for more details.

Peer nodes capacity are heterogeneous in real world P2P systems. There are

high capacity peers in a typical P2P overlay network. They may have probably high

rate CPU, large disk, broad bandwidth, and high quality of network connection.

They may provide longer access availability than usual transient peers do. Peer

capacity factor should also be taken into consideration of parent peer selection.

We define following metrics which will be used in building PeerCast:

1. In a heterogeneous operating environment, peers may be devices of differ-

ent computing capacities. It is necessary to tell the computation capacity

differences among the peers. The higher capacity of a peer, the more bene-

fits it can bring to the P2P systems. Advertisements are used to represent

peers’ resources [6]. Advertisements are typically represented as a text doc-

ument (e.g., XML file). Resources such as CPU speed, space, and upstream

bandwidth are advertised.

2. consistency requirements : cr is staleness degree that users can tolerate. It

is specified by peer users to each data item. Consistency requirement must

47

be set to a valid value when a peer joins the consistency overlay.

3. preference factor: preference factor = delay(P, Q)× numDependents(P)/

numDataItemsPsQ, in which P stands for a peer in the consistency over-

lay; Q stands for a new coming client peer; delay(P, Q) is measured using

hops or round-trip time. numDependents(P) is the current number of P ’s

child peers; and numDataItemsPsQ is the number of data items that P can

serve Q. preference factor is for client peer Q to choose parent peer in the

potential parent peers set. The smaller this factor is, the more preferred a

client peer is to be a parent of Q.

4. Each participating peer node has a maximum connection number parameter

for serving children peers, and a maximum physical connection number for

immediate neighbor peers, which are set in BestPeer and decided by peer

node’s capacity and bandwidth.

Different from the conventional application-level multicast, PeerCast constructs

dissemination tree by an incremental way, i.e., nodes arrive and depart one by one.

Each internal node in the tree not only keeps the status information of its children

nodes, but also keeps the status information about parent peer and several backup

parent peers.

Obviously, the dissemination of data updates with peer cooperation take certain

computational overheads and space overheads demand in each participating peer:

Computational Overheads: When the source peer or parent peer has to

push data updates to its immediate child peers, for each change that occurs, the

peer has to check if the cr of any of its immediate child peers has been violated.

This computation is directly proportional to the rate of arrival of new data values,

the number of child peers registering temporal consistency requirements associated

48

with certain data value, and the total number of the cached data items. It is a

time-varying quantity in the sense that the rate of arrival of data values as well

as number of connections change with time. Parent peer responds to individual

children peers one by one, which may incur queueing related overheads.

Space Overheads: Parent peers must maintain the cr value for each child

peer, the latest pushed value, and the identifier of each child peer (BPID) along

with the state associated with an open/logical connection. Since these states are

maintained throughout the duration of children peers connection, the number of

children peers which certain parent peer can handle is limited by the capacity

(measured in Advertisement metric). As we will show that there also is an optimal

number of dependant children peers cooperation for one data item. When the state

space overhead becomes large, it will result in scalability problems. Therefore,

we provide not only the pre-computational cooperation degree but also the self-

adaptive procedure to adjust the workload of each participating peer. On the

other hand, each client peer also maintains the status of its direct parent peer

and potential parent peer status. Without maintaining the data and cr needs for

individual children peers separately, a simple way to reduce the space needed is

that the parent peer combines all the registers for a particular data item e and

needs a particular cre (choose a minimum value from different crs). As soon as the

change to e is greater than or equal to cre, all the children peers associated with e

are notified. It reduces the space overhead. However, it may increase the network

traffic, and decrease the benefit of cached data in children peers. We estimate the

space overhead as follows. Suppose a client peer maintains n PeerCast connections.

Each connection is specified by a (e, cr, identifier, value) tuple, and k backup

parent peers. The state space needed is:

n × (bytes needed for a (e, cr, identifier, value) tuple) + n × (bytes needed

49

for a connection state) + (k + 1) × (bytes needed for parent peer state)

Since peer node capacity has been raised exponentially recently and users also

can adjust the cooperating capacity, the cost of the space is less than the cost of

the heavy network traffic without using cooperation.

4.3.1 Dissemination Tree Construction Policies

Any peer n interested in maintaining consistency of dynamic data item ei can

submit a join request to the source peer of ei since the identifier of source peer is

always available (a unique URL has the information). Peer n receives the data item

updates via the dissemination tree after participation. The source peer serves the

coming client peers by registering their entries and establishing a logical connection

if there is space in the capacity, or redirect the request to one or more suitable peers

among its direct children peers if it has suffered a heavy dissemination burden. The

procedure is repeated until a potential parent peer is discovered. Any potential

parent peer should meet the consistency requirements of the new coming client

peers at least. If coming client peer’s requirements are more stringent than all the

existing client peers, it will replace one of the existing children peer and let that peer

become its dependant child. In this way, the client peers with stringent consistency

requirement to certain data item are guaranteed to be placed much closer to the

source peer of that data item than other peers with lower requirements.

We provide three different dissemination tree construction policies as follows

and present the algorithms using pseudo-code.

Since a peer only knows its local topology, peer n can only forward the join

request to one of n’s immediate children, or its parent. Some of the options in

choosing such a target are the following:

1. Randomized Construction

50

Upon having no available capacity to serve new client peers, the node n chooses

one of its immediate child peers which can serve the new coming client peer at ran-

dom as the target t, and redirects the request to t. Such a policy requires minimal

state and computation cost at n. On an average, the form of tree is expected to be

balanced. The submission entry of the client peer includes the dynamic data item

identity ei and the corresponding client peer consistency requirement cri. Since the

computation cost is minimized, the first response delay to a new coming client peer

is also expected to be small. It can return a small set of k potential parent peers

to the new coming client peer. These k potential parent peers are considered to be

the systematic parameters.

2. Round-Robin Construction

The node n maintains a list of its immediate children, and forwards the join

request of new client peer to the child t at the head of the list. The child t is then

moved to the end of the list. Such a policy requires some state maintenance, but

is expected to keep the tree well-balanced. Since round-robin and random policies

do the redirection computation without any global topology information, they are

by no means optimal.

3. Locality-Biased Construction

Randomized and round-robin construction policies do not consider the network

locality property. However, locality-biased construction policy helps in constructing

dissemination tree by taking the network proximity into account. The node n

redirects the request based on the peer locality in such a policy. To make use of

locality property, one trivial way is that any client peer which wants to join the

consistency overlay not only should submit the join request to source peer, but also

should ping the potential parent peers to achieve the optimal choice. In locality-

biased construction policy, node n chooses the immediate child peer with the least

51

access latency to the coming client peer. This simple way is unpractical because

it will cost huge round-trip messages. In order to save ping messages, PeerCast

uses the Group-based Distance Measurement Service (GDMS) [55] to improve the

performance. The inter-group and intra-group estimation can be figured out by the

GDMS service. Node n chooses the redirect targets by the information of distance

estimation. The locality property of tree construction naturally leads to the locality

of PeerCast, i.e., parent peer and his immediate children peer tend to be close to

each other. This provides PeerCast near-optimal data updates delivery delay and

saves the bandwidth consumption.

When submitting the join request, a new coming client peer waits for the posi-

tion response from the overlay. The client peer sets the parameter max waiting time

after receiving the first answer. In the max waiting time period, client peer com-

putes an optimal parent peer from the collected answers using the metric preference

factor. Meanwhile, client peer backups some peer nodes once they satisfy the con-

sistency requirement and have not overloaded.

The difference between P2P scenarios and web proxy scenarios is that dissemi-

nation overlay should be established in an incremental way. The previous policies

deployed in content distribution networks may not be practical in P2P environment.

We illustrate the dissemination tree construction procedure with our pseudo-

code using the following notations: c refers to the client peer, and s refers to

the source peer, which is a tree root. o is the dynamic data item for consistency

maintenance.

ls is capacity load of peer. lcs is current load of peer. rcs = ls - lcs is the

remaining capacity of peer.

We present detailed algorithms of randomized construction and locality-biased

construction. We also present consistency overlay side procedure and new coming

52

client peer side procedure.

Algorithm 1 Randomized Construction Procedure

Require: data item identifier, consistency requirement ≥ 0, current value

switch message type
case ”ACK”:
if c is not s ’s direct neighbor then

add c into s ’s virtual neighbor list;
end if
add c into s ’s children list;
break;
case ”JOIN”:
if consistency requirement < local consistency requirement then

create ”ROTATE” message response to c;
else

if rcs > 0 then
create ”ACK” message response to c;

else
choose a set of children peers Q at random;
redirect c’s request to Q ;

end if
end if
break;

53

Algorithm 2 Locality-Biased Construction

Require: data item identifier, consistency requirement ≥ 0, current value

switch message type
case ”ACK”:
if c is not s ’s direct neighbor then

add c into s ’s virtual neighbor list;
end if
add c into s ’s children list;
break;
case ”JOIN”:
if consistency requirement < local consistency requirement then

create ”ROTATE” message response to c;
else

if rcs > 0 then
create ”ACK” message response to c;

else
estimate distance measurement between each children peer and c using
GDMS ;
choose a set of children peers Q based on distance estimation;
redirect c’s request to Q ;

end if
end if
break;

Algorithm 3 Choosing Optimal Parent Peer

input data item identifier, consistency requirement, current value;
create Message with those variants;
/* since c has the metadata about s from o; */
c sends a ”join” request to s with o through overlay network;
receive first response message;
set max wait time parameter;
repeat

if receive response message then
add into potential parent peer list;

end if
until passed time > max wait time
calculate all the potential parent peers, choose the optimal one measure in
preference factor;
create ”ACK” message response to the parent peer;
backup potential parent peer list;

54

4.3.2 Peer Leave/Recover Policies

Peers may come and go unexpectedly and behave autonomously. In an ideal sit-

uation, peers leave the systems gracefully and rotate all the intermediate dissem-

ination responsibility to other cooperative peers before their departure. However,

there is a problem of ungraceful leaves where a node departs because of a network

disconnection, host crash, or another reason that gives it no opportunity to notify

its children peers. Backup mechanism is expensive and it cannot guarantee robust

recovery, e.g., backup peers go off. To accommodate such ungraceful leaves and

repair the disconnection among the tree nodes immediately, PeerCast even provides

soft maintenance messages to detect ungraceful leave and recovery from failure in

time.

When peer n wants to unsubscribe any dynamic data item or unsubscribe from

the overlay, it needs to forward a valid target t to its descendant peers. Node n is

definitely aware of two nodes in PeerCast overlay: its parent peer, and the source

peer. There are at least two candidate values for t. Therefore, we have the following

four alternative policies:

• All-via-Source (AVS): The node n chooses the source peer as the target.

Peer n sends a redirect notification message to its immediate children peers,

and it is recursively forwarded to all the descendants of n specifying source

peer as a target. All the descendants of peer n submit requests to a source

peer just like the join procedure. The advantage of this policy is that the

dissemination tree is expected to remain balanced because of a redistribution

of the affected nodes. However, it will cost more time to recover and re-

construct the system.

• All-via-Grandfather (AVG): The node n chooses its parent peer p as

55

the target. Peer p is the grandfather of n’s immediate children peers. All the

descendants of n are recursively redirected to p. Peer p takes in these children

peers or redirects the request to its descendant peers. The advantage of such

a policy is that the effect of the unsubscription is limited to the subtree rooted

at p. Moreover, the source peer is protected from such requests in the event of

multiple simultaneous failures. The dissemination tree is expected to remain

balanced as the subtree is reconstructed from the same nodes as before.

• Partial-via-Source (PVS): The node n still chooses the source peer as

target t. However, only the immediate children peers of node n attempt to

recover by contacting t. The rest of the descendants still retain their setting

without any change. They rely on those nodes to recover their connections

with the dissemination tree. The advantage of such a policy is that only

the peers of n’s immediate children peers could be accommodated near the

source and others need no change. An explosion of requests to source peer is

avoided. The shape of the dissemination of the original topology is not kept

as the previous one.

• Partial-via-Grandfather (PVG): The node n chooses its parent p as target

t. Only the immediate children peers of n attempt to recover by contacting

t. The advantage of such a policy is that the effects of failures are localized.

However, the level of dissemination tree will be enlarged because of the fail-

ures, and it will increase the hops to deliver data updates to client peers in

low level.

In the case of client peer’s graceful leave, four alternative recovery methods

provided by PeerCast can be used. They trade off the locality against the re-

quest explosion or tree balanced-topology. Despite of their drawbacks, they can

56

be deployed adaptively to achieve a better performance according to the system

situation.

However, in the case of an ungraceful leave, the departing node is unable to

notify its children. The children peers of the departing node send heartbeat message

periodically to detect the parent peer’s failure. Once the time interval during which

they do not get response messages from parent node goes beyond a time threshold,

it is confirmed that parent peer has ungracefully left or failed. Children peers

start up local backup parent peers. Recall that every new coming peer may get k,

(k 6 3 usually) backup parent peers when client peer joins the dissemination tree.

Therefore, there are at least (k+1) target peers to recover. Thus, children peers

choose an optimal online peer as the primary parent from k peers according to the

metric preference factor. If all the k potential peers reject the requests because

of overload or departure, a child peer re-joins the overlay by sending requests to

source peer via AVS or PVS policies.

4.3.3 Self-Adaptive Policies

The previous construction policies of the dissemination trees do not consider the

dynamic network attributes and users’ changing of data accessing. It is important

that the topology is rearranged in keeping with dynamic measurements of those

factors. Self-adaptive policies are proposed to improve the overlay efficiency, reduce

the workload of intermediate peer’s heavy burden, and adapt to network dynamics.

It is possible that peer users switch to other new interesting data items such as

the new stock price monitoring and adjust consistency requirements at will. When a

client peer’s dynamic data or its data coherency requirement needs change, the self-

adaptive policies re-organize the node position to satisfy the peer’s new demands.

When a client peer caches any new dynamic data item, it re-applies the join pro-

57

cedure to maintain the new data items consistency. When client peer n removes the

dynamic data item from his monitoring set, which will affect its dependant peers,

n searches a suitable target peer t to replace its role and the immediate children

peers choose a primary parent peer to serve that dynamic data updates among

t and the backup parent peers. When client peers change data item consistency

requirements, it will impact the descendant peers or the immediate parent peer. In

the case of n increasing the consistency requirements, the parent peer of n cannot

serve it any longer. In the case of client peer n relaxing the consistency require-

ments, it may not be able to serve its descendant peers. n can submit ”update”

request to its parent peer to claim for switching to a more stringent consistency

requirement peer to serve. n searches for target peer to serve its immediate children

peer when relaxing the consistency requirements.

Some of the peer nodes can turn out to be unstable, because they join and leave

frequently. This is called churning. The churning problem results in an overlay

suffering from data delivery inefficiency. It is necessary for the need of adaptation.

Even if we include redundancy and failure discovery mechanisms, instability must

be taken into account when creating the topology. A useful optimization is to have

long time available peers play as intermediate nodes while unstable ones are moved

to the leaves of the topology. Of course the stability of a node is unknown when it

first joins the overlay. A default value is first assigned to the node stability variable

and the latter is regularly updated as time goes by. We postpone the leaf-sinking

design [64] in Chapter 5.

The basic tree construction algorithm is greedy in nature. The order of peer

nodes joining the dissemination tree can affect the topology of tree and its quality.

Self-adaptive policies evolve the multicast tree by load balancing. As shown in

Figure 4.3, when new coming client peer x enters the overlay, peer y can share

58

its heavy workload with x only if x has available resource and enough stringent

consistency to serve peer c and d.

�� ��

Source Peer

Peer X

Peer YPeer Z

(a) Before Peer X Participation

�� ��

Source Peer

Peer XPeer YPeer Z

(b) After Peer X Participation

Figure 4.3: Self-Adaptive Policies Load Balancing

Algorithm 4 Load Balancing Procedure

Require: Peer p1, p2

if p1 receives p2 ’s join request and p1.isOverloaded() then
for all peer child r in p1 do

if r.cr > p2.cr then
insert into list ;

end if
end for
divide list into set1, set2 at random;
for all peer c in subset do

add c into p2 ’s children list;
end for

end if

4.3.4 Source Peer Recovery

In Web proxy caching, content distribution networks, or mobile computing envi-

ronment research areas, it is taken for granted that servers are stable and seldom

failed. The server failure or departure is hardly considered in these situations. How-

ever, in a P2P environment, source peers are not guaranteed to be long-running.

59

Hardware maintenance, software update, or just reboot can take place anytime. To

recover from source peers’ unexpected failure, we regulate source peers by publish-

ing dynamic data item to register the pair (PeerID, ObjectID) and source peer’s

immediate children peers, which are located in top level of the dissemination tree,

to LIGLO server in BestPeer. Because the pair and related status information take

just a few bytes and cost a little overhead, it does not burden the LIGLO server.

When the source peers are down, the corresponding consistency multicast trees lose

roots. If the logical connections are not maintained, it will cost much traffic cost in

re-building the overlay when the source peer resurrects. All the client peers in the

original dissemination tree keep the status of the logical parent-child relations for

a given period threshold. After the threshold is exceeded, the client peers thought

the tree would no longer revive and throw away the storage if no information about

source recovery is provided.

When source peer comes up next time and publishes the same dynamic data

items, it can retrieve immediate dependant peers from BestPeer LIGLO servers,

fix and reactivate the date dissemination tree.

4.4 Summary

In this chapter, we present the design issues of PeerCast framework. We define

the metrics used in the system and discuss the essential policies for maintaining

the PeerCast topology and cooperation relations. Efficiency and performance of

PeerCast will be examined in Chapter 6. In Chapter 5, we supplement PeerCast

design with system implementation enhancements.

60

CHAPTER 5

PeerCast Implementation Issues

The previous chapter presents the design of PeerCast. In this chapter, we discuss

some techniques which can optimize PeerCast to enhance the performance. We

provide improvements in two aspects. One is about resource usage optimization

based on heuristic network re-organization, the other is to about the mechanism

for pushing the unstable client peers to the edge of the topology in order to prevent

the churning problem.

5.1 Heuristic Optimization for Resource Usages

In PeerCast, there are two kinds of connections, physical connection and logical

connection. One is a long-running socket connection between two nodes, called

a physical connection. The other is no long-running socket connection between

two nodes, called a logical connection. In logical connection, the two nodes just

maintains the corresponding IP address each other without real socket connection.

61

When data needs to be delivered, the two nodes establish the socket connection

and inter-deliver. Otherwise, they release the connection to save the resources.

The initial neighbors to which peers connect are the starting points when they

enter into the BestPeer infrastructure. Since PeerCast overlay construction proce-

dure never considers the low level infrastructure physical topology, it is not optimal.

Data delivery by logical connection needs to initialize the physical connection and

release it after finishing disseminating updates by the links. When the frequent

dissemination such as numerous data updates for inter-delivering happens during

the connection between two nodes, it will cause huge overhead to the peers in the

overlay because of the connection initialization and release. Consequently, the sig-

nificant latency is incurred. Motivated by the above observation, PeerCast provides

the heuristic policy to optimize the efficiency of the data delivery.

Each peer has a number of available network resources. It is supposed that a

peer maintains a limited set of neighbors in BestPeer infrastructure and a number

of logical connections in upper overlay PeerCast. The goal is to assign a set of

neighbors to each peer n so that there is a high probability for n to obtain or

deliver the updates from them in shortest latency. Since the number of the allowed

network connections is expected to be small, each connection is assigned a benefit

value dynamically and heuristically to manage the topology in our method. As

expected, after periodically collecting the statistics, we can figure out the most

beneficial connections and choose their ends to be the peers’ immediate neighbors.

We formulate the problem as a case of finding the optimal combination in a

greedy manner to achieve the maximum benefits. The procedure relies on the

BestPeer infrastructure network reconfiguration primitives and connection man-

agement in PeerCast. Ideally, frequent data updates delivery is all disseminated

via the physical connections and the infrequent delivery via logical connections. In

62

g

c
ae

f

b

d

Figure 5.1: A Sample Network for Reconfiguration

this way, it not only saves the connection initialization and releases the consump-

tion but also minimizes the updates transfer delay to improve the fidelity of cached

data.

As illustrated in Figure 5.1, for instance, peer node n’s maximum physical

connections, pcmax = 3. Its direct neighbors are peer nodes a, b and c. Meanwhile,

n maintains the logical connections with peer nodes d, e, f and g with maximum

logical connections, lcmax = 4. However, in our extreme sample network overlay,

n’s direct neighbors provide no cooperation benefits to n. It is a waste of n’s

network resources. To avoid this situation, each peer manages the connections

usage rates by a vector counter. Every element in the vector stores the updates

delivery statistics of a corresponding connection. After the counter runs for a

specified period (system parameter), the elements of frequently used connections

in the vector counter should have a higher value. According to the least recently

used (LRU) locality principle, it is reasonable to assume that these frequently used

connections will be used more often than the others in the near future. Then, a

different benefit value is assigned to each connection. The network reconfiguration

procedure starts to reorganize the physical topology if some logical connections

bring more benefit than the existing physical connections do.

63

Figure 5.2: Heuristic Policy for Optimization

5.2 Preventing Churning Problem

Some of the nodes can turn out to be unstable (e.g., mobile computing devices or

a bad wireless connection). Even if PeerCast provides the robust failure recovery

mechanism, the instability still should be taken into account when creating the

disseminating overlay. Otherwise, the whole system will suffer from their churning.

Child peers connected to unstable nodes could not get the data updates timely. In

this section, we provide the heuristic mechanism to prevent such churning problem.

The idea is to push the transient peers to the edge of the topology, and let

them undertake less child nodes than stable nodes. Nevertheless, the stability of

a node is unknown when it first joins the overlay. In order to make adaption

possible, we assign a node stability variable to each peer node, which is given a

default value at first time and updates as time goes by. In addition, node stability

is encrypted to achieve the security. According to the system context, we set two

corresponding threshold values: leaf only value and good intermediate value. The

values between these two are considered as intermediate possible. We assume that

the number of unstable/churning nodes is still minor in comparison to the normal

peer nodes.

Source peers take bloom filter1 to record history of peer entrance. Each client

peer has a default value for the node stability. When it joins the overlay, source

peers can check how many times it has entered the overlay. For those peers joining

and leaving repeatedly, node stability of them is decreased. On the other hand,

1A bloom filter is a method for representing a set of n elements to support membership
queries[61]. We use the similar bloom filter function as [46].

64

node stability will be increased periodically if peer persists.

Based on the extra information about the node stability, new coming client peer

could consider the stability of the internal nodes when choosing the parent peer.

The peer whose node stability is below the threshold leaf only is never considered

as a parent peer. It plays as the leaf node only. Thus, the dissemination tree

construction can guarantee more robust topology and provide higher quality data

update delivery service.

65

CHAPTER 6

Experimental Evaluation

In this chapter, we demonstrate the efficiency of PeerCast framework through an

experimental evaluation. We present our experiments by two parts. In the first

part, we mainly examine the impact factors to the performance of PeerCast frame-

work; in the second part, we compare our approach with Gtk-Gnutella protocol.

In each part, we describe our experimental methodology, procedure and metrics

used for evaluating the performance of PeerCast. Then we report the results from

a series of simulations and present detailed analysis.

6.1 Experiment Methodology

6.1.1 Environment Setup

We employed two implementations to evaluate our methods. The first one is a JAVA

prototype built on BestPeer platform which runs on Pentium III PCs with 1GB

RAM and Microsoft Windows XP. It was used to derive the basic parameters of the

66

Table 6.1: Parameters Derived from the Prototype
Parameter Value Comments
TRR 3.6889 KB/sec Average transfer rate between remote peers (WAN)
TRL 594.935 KB/sec Average transfer rate between local peers (LAN)
MSGjoin 1.0996 KB Join request message size
MSGredirect 1.1777 KB Redirect request message size
MSGresponse 0.9766 KB Response to join request message size
MSGinsert 1.1738 KB Response to join request with insertion message size

system, see Table 6.1. The parameters were used in the second implementation,

which was a simulator based on SIM: a C++ library for discrete event simulation

[10]. We employed the simulator since it would be impractical to set up a large

network. Furthermore, the benefits of our approach could become significant when

there are many participating nodes. We also implemented Gtk-Gnutella cache

consistency protocol [53] on the simulator for comparison.

6.1.2 Testing Data Setup

The performance characteristics of our solution are investigated using real world

stock price streams as dynamic data. We used the same trace data as in [30, 73,

72]. The presented results are based on historical stock price traces obtained from

the http://finance.yahoo.com. We collected 50 traces, which were the most active

stocks in Nasdaq. The details of the traces are listed in Table 6.2 to suggest the

characteristics of the traces used.

6.1.3 Network Setup

We simulated the typical P2P network topology. The nodes were connected either

through a slow WAN or a fast LAN line to the network. We employed the power-

law topology [33]. The physical network model was randomly generated. We set

up M corresponding source peers. These source peers were assigned same number

67

Table 6.2: Characteristics of the Traces Used for the Experiments
Stock symbol Time Interval Min Max
Microsoft 2-Jan-03:31-Dec-03 22.81 57.0
Intel 3-Jan-03:31-Dec-03 13.0 29.01
Oracle 2-Jan-03:31-Dec-03 10.65 13.92
IBM 2-Jan-03:31-Dec-03 75.25 93.9
Cisco 2-Jan-03:31-Dec-03 12.87 24.83
SINA 2-Jan-03:31-Dec-03 5.6 45.6
SUN 3-Jan-03:31-Dec-03 30.0 52.5
YAHOO 2-Jan-03:31-Dec-03 17.5 46.44
SAP 2-Jan-03:31-Dec-03 18.85 44.75
AMD 4-Jan-03:31-Dec-03 4.95 18.23

of specific stocks data. As we stated in Chapter 4, source peers are in charge of

updating data and initiating data dissemination for numerous client peers. In our

experiments, we varied the size of the network N from 100 nodes to 1000 nodes.

Meanwhile, we set up
√

N peer groups in the locality-biased tree construction

policy. Each group has inter-group and intra-group distance estimations which

would affect the average transfer rate between remote peers or local peers. We

used the proportional rates to simulate the inter-group and intra-group network

locality factors. The computational delay incurred at the peer to disseminate an

update to a dependant child peer is totally taken to be 12.5 ms, which is estimated

based on the [73]. It included the time to perform any checks to examine whether

an update needs to be propagated to a dependent and the time to prepare an

update for transmission to a dependent.

We simulated static and dynamic P2P networks. Static P2P network was used

to compare the cost among dissemination tree construction policies. We evaluate

PeerCast performance mainly under dynamic P2P network. We modeled node de-

parture by assigning each node an up-time picked uniformly from [0, max life time]

at random, where max life time was set to be the same value as the total simulation

time. To maintain the size of network, departure nodes act as new coming peers to

68

rejoin the overlay after they leave the overlay. The procedure can be regarded as

(1) peers disconnect from their neighbors, (2) shutdown, and (3) peers immediately

rejoin the system by connecting initially to a random number of neighbors. We as-

sumed that rejoining nodes took the original data of interest, but with different

consistency requirements.

6.1.4 Simulation Metrics

We considered the following metrics for performance analysis. The key metrics for

our experiments were the fidelity of the cached data and query false ratio. Fidelity

of the cached data is used to measure how a peer user’s consistency requirements

are met. It is time for which the difference between local cached data value and

source peer data value are kept within user’s consistency requirements. To illustrate

the figures and explain clearly, our results were plotted using loss of fidelity. It is

an alternative metric simply 100%−fidelity. Likewise, query false ratio is referred

to the ratio of querying the stale cached data. To some extent, query false ratio is

more important, since peer users care more about the correct query answers. The

smaller query false ratio, the better performance of the consistency mechanism. We

also measured the number of messages and bandwidth consumption. They are the

major metrics to examine the network traffic overhead.

6.1.5 Simulation Procedure

The whole procedure has two parts:

In the first part, we constructed the dissemination overlay using three different

policies in order to compare their network traffic consumption. We ran the trace

procedure. Randomized, round-robin and locality-biased construction policies are

compared taking centralized approach as the baseline. We changed the maximum

69

degree of cooperation to examine its impact on the system performance. In this

part, we also showed the performance of PeerCast framework using heterogenous

peer capacity with real world distribution. We evaluated the PeerCast recovery

policy performance with varying the number of backup peers.

In the second part, we compare PeerCast with Gtk-Gnutella protocol [53]. The

reason we choose Gtk-Gnutella protocol to compare is that it is so far the cache

consistency protocol designed for P2P caching systems. Moreover, it is built on

Gnutella. Likewise, PeerCast is built over BestPeer, a Gnutella-like P2P infrastruc-

ture. Gtk-Gnutella provides three alternative approaches to adapt the dynamics

of P2P network and update rate of the dynamic data. We compared the efficiency

and overhead between them. Lastly, we evaluated the scalability of PeerCast. We

also present results by our heuristic policies to show their enhancement to the

performance of PeerCast.

6.2 Experimental Results and Analysis

Each client peer cached certain number of dynamic data items, between 10 and 50.

These items are randomly picked from the stock list. The consistency requirements

for each specific stock were different in different peers. We set the T% of the cached

data in client peers with high stringent consistency requirements. High stringent

consistency requirements were uniform randomly picked from [0.01, 0.099]. The

rest 100 - T% data are less stringent requirement, picked randomly from [0.1, 0.99].

We set the T% value equals 50% initially, which means each peer user was interested

in half of all the provided stock with high attention.

Time Cost to Redirect Request: This experiment is to test the delay to

redirect a request. We set up six PCs placed in local area network (LAN), all

70

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5

Number of hops

T
im

e
to

 tr
av

er
se

 le
ve

ls
 u

si
ng

re

di
re

ct
 (

se
co

nd
s)

Figure 6.1: Redirect Message Latency

running PeerCast framework. Peer topology was formed as a chain rooted at one

PC as the source peer. Measurements were then made to estimate the redirect

join request cost time. The Chain topology showed us the effects of increasing

number of levels of a peer from the source. Note that this experiment results will

be biased toward peers having a high bandwidth capacity. Hence, the results of

this is illustrated as the performance trends. As shown in Figure 6.1, the times to

traverse levels in Chain were basically formed a linear in the number of levels. Note

that the redirect cost time is far smaller than the update interval, so the redirect

mechanism is efficient.

Dissemination Tree Construction Cost: We examined the cost comparison

of the different dissemination tree construction policies in PeerCast. The topology

of the dissemination tree has a significant impact on fidelity of data. The larger

delay between node to node, the greater the loss in fidelity of cached data. As

illustrated in Figure 6.2, the locality-biased construction takes more message con-

sumption and bandwidth cost than the randomized and round-robin constructions.

It is because that locality-biased construction policy should use numerous multicast

ping messages to generate peer groups to estimate the distance between nodes [55].

Randomized and round-robin policies cost nearly the same bandwidth. Although

71

locality-biased tree construction policy consumes more network resources, we see

from the latter experiments, it brings more benefits than the other two policies.

0

20000

40000

60000

80000

100000

120000

100 200 300 400 500 600 700 800 900 1000

Network size (number of peers)

N
um

be
r

of
 m

es
sa

ge
s

co
ns

um
pt

io
n

fo
r

tr
ee

 c
on

st
ru

ct
io

n
Locality-biased
Randomized
Round Robin

(a) Number of Messages

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100 200 300 400 500 600 700 800 900 1000

Network Size (number of peers)

B
an

dw
id

th
 c

on
su

m
pt

io
n

fo
r

tr
ee

co

ns
tr

uc
ti

on
 (

K
B

)

Locality-biased
Randomized
Round Robin

(b) Bandwidth usage

Figure 6.2: Tree Construction Cost

Average Time to Join in the Overlay: Time to join in the overlay is an

important metric as it records the response time of the PeerCast system. A new

coming client peer submits the join request, and waits in the transient state until

it receives the first response from the overlay. Figure 6.3 shows the average join

time collected by every client peer subscribing to the dissemination overlay. The

X-axis plots the number of participating client peers, while the Y-axis plots the

waiting time interval of the new coming client peers joining in on average. We can

observe that the response time of locality-biased constructed overlay is less than

72

0

2

4

6

8

10

10 100 1000 10000

Network Size (number of nodes)

A
ve

ra
ge

 ti
m

e
to

 jo
in

 th
e

ov
er

la
y

(s
ec

on
ds

)

Randomized
Round-Robin
Locality-biased

Figure 6.3: Average time to join in the overlay

the other two methods. Group-based Distance Measurement Service has collected

the network proximity information so that it can reduce the message delivery time

cost.

Performance Comparison with Centralized Approach: This experiment

was to compare the performance of overlay constructed by randomized, round-robin

and locality-biased policies. We took the centralized approach as the baseline. The

results are illustrated in Figure 6.4. Locality-biased construction performs best as

we had expected. Due to taking network proximity into account, it takes less delay

to disseminate the data updates. Randomized and Round-Robin have the similar

performance. Centralized approach performs worst. We can see that the centralized

curve takes a sudden jump at the point of 300 peers. The reason is possibly that

updates are queued in prior to consistency requirement. So, peers with stringent

consistency requirement are placed at the front of the queue. The low ones are

placed at the end of queue. With the same queue delay, high stringent peers suffered

more than lower ones. Therefore, after the jump, the centralized curve increases

slowly. Although centralized approach could take minimum communication latency,

it suffers from large computational delay. Centralized approach fails to scale with

client peer nodes.

73

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 300 400 500 600 700 800 900 1000

Network Size (number of peers)

L
os

s
of

 d
at

a
fi

de
li

ty
 (

m
ax

im
um

 =
 1

) Centralized
Randomized
Round Robin
Locality-biased

Figure 6.4: Performance comparison

Impact of Client Peer Bandwidth: We did this experiment to show the

impact of bandwidth of client peer capacity, i.e., the effects of cooperative degree

of client peers on the performance of the PeerCast. Since each peer filters and

forwards the data updates to its child peers, the performance of the PeerCast

framework is sensitive to the available bandwidth at the nodes participating in the

system. We characterize the bandwidth which nodes can contribute to PeerCast

by the number of maximum children, numbermax. We can see from Figure 6.5 that

centralized approach presents as a horizontal line. Because centralized approach

does not take the advantage of client peer cooperation, it is immutable to the variety

of the client peer capacity. PeerCast has great performance fluctuation with the

variety of client peer capacity. We can see that the performance fluctuation of them

is both like a V-curve with the increment of the max allowed children.

Due to the computation delay and network dissemination delay, when the al-

lowed children is increased, the computation delay will enlarge. It will take more

time to finish assembling the updates to deliver in the waiting queue. When

numbermax equals 1, tree is formed as a chain. The computation delay is small.

However, the network delivery delay is increased so that the performance is even

74

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9

Maximum allowed child peers for each data item

L
os

s
of

 d
at

a
fi

de
li

ty
 (

m
ax

im
um

 =
 1

)

Centralized
Randomized
Round-Robin
Locality-biased

Figure 6.5: Impact of client peer bandwidth capacity

worse than centralized approach. Figure 6.5 shows that it brings no more benefits

after increasing the cooperative degree beyond a threshold. The threshold was 3 in

our experiment.

When numbermax increases, the depth of the corresponding dissemination tree

decreases. Although the data updates delivery delay is reduced, due to each parent

peer takes more child peer to serve, the overlay suffers from the large computation

delay. So, in PeerCast deployment, it should use the optimal cooperative degree to

achieve better performance.

Impact of the Peer Departure (A): PeerCast provides four alternative peer

departure/failure recovery methods, we measured the four recovery methods in this

experiment. The cost of different policies depends on the shapes of dissemination

trees that result from changes in the overlay. In the absence of peers departure or

failures, the dissemination tree would be almost-complete as it is initially estab-

lished. Figure 6.6 shows the distribution of the depth of nodes in the dissemination

tree for AVS, AVG, PVS, and PVG leave policies with the join policy set to round-

robin policy, and numbermax set to 3. The X-axis plots the level number in the

tree. The Y-axis plots the average percentage of nodes subscribed to the tree at a

75

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Level in dissemination tree

P
er

ce
nt

ag
e

in
 to

ta
l n

od
es

 (
m

ax
im

um

=
 1

00
)

RR/PVS

Optimal

RR/AVS

RR/AVG

RR/PVG

Figure 6.6: Impact of Peer Departure to Topology of PeerCast

certain level. We can see that AVS results in a smaller mean depth tree than PVS.

The AVG and AVS curves peak and fall to 0 in a small number of levels, indicating

a desirable compact tree. The PVG and PVS curves rise with AVG and AVS, but

have a smaller percent of nodes at their peak in the middle levels. Instead, the

remaining percentage of nodes fall off gradually along higher levels. The reason is

that in PVG and PVS policy, the failure of a peer node n results in each of its child

peer rooted sub-tree moving together, causing an increase in height. In AVS, all

the descendants of n, independently contacts source peer and get distributed across

the tree, causing the height to remain balanced. A high depth dissemination tree

is undesirable because end-system delays increase linearly with levels. However, as

we experimentally observed in redirect request time consumption, the increment of

tree level will still let PVS and PVG acceptable. Furthermore, PVS and PVG will

reduce the crash re-joins to the source peer.

Impact of the Peer Departure (B): Peer’s frequent leaving does negative

effect to the performance of PeerCast because of the disconnection of the dissemi-

nation tree. Disconnected child peers cannot get the data updates pushed from his

parent peers. If peers are just logically connected, the failure can only be detected

using soft heartbeat message to check the status of the parent peer. So, if the

76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 200 300 400 500 600 700 800 900 1000

Network Size (number of peers)

L
os

s
of

 d
at

a
fi

de
li

ty
 (

m
ax

im
um

 =
 1

)

100% ungraceful (1sec) 100% ungraceful (5sec)

10% ungraceful (1sec) 100% graceful leave

Figure 6.7: Impact of the peer departure

children peer can not get the update in a systematic parameter T , it would submit

a heartbeat message to get the status of the parent, and adopt recovery method

if it detects the failure of the parent. Those total time affects the performance of

PeerCast. Moreover, the proportional of the client peer’s ungraceful quitting from

overlay is also a factor of the efficiency of the PeerCast. We got the results from

Figure 6.7. If the 10% leave are graceful leave, the performance is still acceptable.

The degree of ungraceful leave and repair interval can have a significant impact

on the PeerCast performance. As illustrated in Figure 6.7, we set repair time 5

seconds instead of 1 second, the fidelity of cached data declines greatly.

Impact of Different Consistency Requirements: Initially, we set all the

client peers take 50% dynamic data items with stringent consistency requirements.

In this experiment, we increased the proportion of high consistency requirements,

as illustrated in Figure 6.8, we can find that with more stringent consistency re-

quirements to dynamic data, loss of data fidelity increases. Augmenting the number

of stringent consistency items increase the fidelity of data, meanwhile, reduce the

benefit of cached data in peers.

77

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

100 200 300 400 500 600 700 800 900 1000

Network Size (number of peers)

L
os

s
of

 d
at

a
fi

de
li

ty
 (

m
ax

im
um

=

 1
)

80% with stringent CR
70% with stringent CR
60% with stringent CR
50% with stringent CR

Figure 6.8: Impact of different consistency requirements

Real World Capacity Distribution: Peer capacity is heterogeneous in P2P

environment. We simplified the simulation model in previous experiments. This

experiment, we took this factor into consideration. We used the peer capacity

distribution in [21]. 20% peers of the whole system can be regarded as connected

in with cable modem so that can only serve one children peer at most. 45% peers

of the whole system could serve five dependant peers. The rest 35% peers were

strong peers, their capacity allowed them to serve ten children peer at most. We

got the performance results from Figure 6.9, The combination of locality-biased

construction and AVG recovery policy performs better than others.

Impact of the Number of Backups: Lastly, we evaluated the impact of

the number of backups in PeerCast. The number of backups is decided in the

procedure of the overlay construction. In ideal case, all the peers leave gracefully.

The increment of the number of backups can not bring any benefit. However,

in worse case, peers churn in the overlay or ungracefully leave without notifying

children peer. Children peers have to re-join the overlay if having no backup parent

peers. It will take more time to recover from disconnection. Since backup peers

may have departed the system, the increment of backups can raise the system

performance and minimize the recovery latency. As illustrated in Figure 6.10, we

78

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

100 300 500 700 900 1100 1300 1500

Network Size (number of peers)

L
os

s
of

 d
at

a
fi

de
li

ty
 (

m
ax

im
um

 =
 1

)

Randomized/PVS Locality-Biased/PVG

Locality-biased/PVG Randomized/AVS

Locality-biased/AVG

Figure 6.9: Impact of heterogenous peer capacity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k=1 k=2 k=3

the number of backup parent peers

L
os

s
of

 d
at

a
fi

de
li

ty
 (

m
ax

im
um

 =

1)

100% ungraceful (5sec)
100% ungraceful (1sec)
10% ungraceful (1sec)
100% graceful (1sec)

Figure 6.10: Impact of number of backups

set 100% peer ungraceful leave and repair time interval 5 seconds, more backups

can reduce the loss of fidelity in evidence.

6.3 PeerCast VS. Gtk-Gnutella Protocol

Gtk-Gnutella is an enhancement protocol designed for Gnutella-like P2P caching

systems [53]. It is incorporated with three cache consistency techniques: push,

adaptive pull and hybrid approach called push with adaptive pull. To our best

knowledge, this protocol is the only existing work for designing maintaining cached

79

data consistency in unstructured P2P systems so far. Therefore, in order to prove

that PeerCast framework can outperform the previous work, we also did a set of

experiments to show that PeerCast can achieve more efficiency and performance

benefits than Gtk-Gnutella protocol.

Metrics for Performance Analysis: In this part, we mainly use the metric:

query false ratio (FVR) instead of the loss of fidelity in data which was used in

our previous experiments. The query false ratio is the fraction of query responses

that deploy the cached data which is out of the bound of consistency requirement.

Peer users care the correctness of query answers more than the actual cached data

staleness. We think it is the major factor about the cached data function.

Simulation Environment: We implemented Gtk-Gnutella protocol on our

event-based simulator. A randomized uniform overlay network is setup as the

topology of the Gnutella scenario. Each peer has 3 or 4 direct neighbors. As illus-

trated in Table 6.3, the major parameters are set before we run the experiments.

Each peer can not only initiate query to the cached data but also be responsible

for propagating invalidation messages to neighbors. Inter-arrival times of queries,

Iquery, are exponentially distributed. We still use the same dataset as in the previ-

ous experiments. There are 10 source peers taking charge of 50 fluctuating stock

data updates. Each source peer is assigned an update rate Iupdate. We varied the

network size, i.e., total participating peers. PeerCast and Gtk-Gnutella protocol

were compared.

Performance Comparison: We ran the three strategies of Gtk-Gnutella

and PeerCast framework, then collected the results. Here, for PeerCast, we used

locality-biased construction and all-via-grandfather (AVG) for peer departure re-

covery policy. We firstly fixed the average Iupdate to 1 second, and the average Iquery

80

Table 6.3: Parameters for Experiments
Parameter Description Default Value
Lsim Length of simulation 10 hours
Iupdate whether object is fresh 1 second
Iquery whether peer is one 5 seconds
Poll rate frequency of checking consistency adjust with TTR
TTR time to refresh associated by data item
TTL total traverse hops of message 7

to 1 second. For adaptive pull policy, polling frequency is total decided by a time-

to-refresh (TTR) value. TTR value is initially set by the value associated with each

data item and adaptively adjust from the history records statistics. The TTL value

for invalidation message was set to 10 hops. We vary the network size from 100

nodes upto 1500 nodes. Figure 6.11 ploted the performance comparison between

PeerCast and Gtk-Gnutella protocol. The performance of push-based invalidation

approach is poor when the network size is over 700 nodes. It is because the scope

of the invalidation message is limited by the TTL value. For large-scale network,

client peers out of the reach scope of the message will not be notified the updates.

Likewise, adaptive pull policy is suffered from the scalability. Since data updates

happen unpredictably, it is hard to determine when and how frequently to poll the

source peer to check for the consistency. Adaptive pull policy can only provide

weak consistency. On the other hand, push with adaptive pull and PeerCast can

provide satisfactory query fidelity, very close to PeerCast. Note that we have not

counted the overload problem in Gtk-Gnutella, so, in fact, Gtk-Gnutella protocol is

overrated. Push with adaptive pull approach combines the advantages of the push

and adaptive pull techniques. The client peers out of message reachable scope also

can poll the consistency adaptively.

Network Traffic Consumption: We collected the bandwidth consumption

from the above experiment. We can see from the Figure 6.12, PeerCast saves

81

TTL = 10, Iquery = 1sec, Iupdate = 1sec

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

100 300 500 700 900 1100 1300 1500

Network Size (number of peers)

Q
ue

ry
 F

al
se

 R
at

io

Adaptive Poll
Push
Push with Adaptive Pull
PeerCast

Figure 6.11: PeerCast Vs. GtK-Gnutella

huge bandwidth cost than the three strategies of Gtk-Gnutella. Push-based and

hybrid approaches impose far more network overhead when compared to adaptive

pull and PeerCast approaches. The reason is that push-based policy uses blind

broadcasting invalidation message which leads to huge traffic waste. In order to

prevent transient peers missing updates, hybrid policy costs additional periodically

polling messages to push-only policy, taking more network traffic consumption. The

cost of adaptive pull policy is correspondingly small, however, it cannot provide

satisfactory consistency. The network traffic cost of PeerCast is small, furthermore,

PeerCast can alleviate the network congestion, idle network links could be fully

utilized.

Impact of the Update Rate: For this experiment, we fixed the query inter-

arrival time Iquery to 1 second, and varied the update intervals from 1 second to 10

seconds. We ploted the query false ratio for push, adaptive pull, hybrid push-pull

approaches and PeerCast. Figure 6.13 shows that query false ratio decreases with

the increase of the rate between update intervals and query intervals. The message

overhead for these experiments is shown in Figure 6.14. The figure shows that

82

1

10

100

1000

10000

100000

1000000

10000000

100 300 500 700 900 1100 1300 1500

Network Size (number of peers)

N
um

be
r

of
 m

es
sa

ge
s

fo
r

m
ai

nt
ai

ni
ng

co

ns
is

te
nc

y

Push with adaptive pull
Push
PeerCast
Adaptive poll

(a) Number of Messages

0

200000

400000

600000

800000

1000000

1200000

1400000

100 300 500 700 900 1100 1300 1500

Network Size (number of peers)

B
an

dw
id

th
 c

on
su

m
pt

io
n

(s
iz

eo
f(

M
sg

)*
H

op
s)

PeerCast
Push with adaptive pull
Push
Adaptive pull

(b) Bandwidth Usage

Figure 6.12: Network Traffic Consumption

the number of message consumption also decreases with the increase of the rate

between update intervals and query intervals. Hybrid approach costs the largest

overhead. Push-based invalidations impose two orders of magnitude larger over-

head when compared to adaptive pull and PeerCast. PeerCast takes the minimum

overhead because its overhead is only decided by the source update rates. Due to

the relatively small overheads and lower query false ratio, PeerCast is more efficient

than Gtk-Gnutella.

Impact of the Message TTL Value: Since TTL values determine the reach

of each invalidation broadcast, query false ratio will decrease for larger TTL values

in Gtk-Gnutella approach. To quantify the effect on fidelity, we varied the TTL

83

Npeers = 700, TTL = 7, Iquery = 1sec

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4 6 8 10

(time between successive updates) / (time between successive queries)

Q
ue

ry
 F

al
se

 R
at

io
 (

m
ax

im
um

 =
 1

) adaptive pull
push
push with adaptive pull
PeerCast

Figure 6.13: Impact of Ratio between update and query

Npeer = 700, TTL = 7, Iquery = 1 sec

1000

10000

100000

1000000

0 2 4 6 8 10

(time between succesive updates)/(time between succesive queries)

O
ve

rh
ea

d
(n

um
be

r
of

 m
es

sa
ge

s
co

ns
um

pt
io

n)

push hybrid
adaptive pull PeerCast

Figure 6.14: Impact of Update Rate on Message Overhead

84

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8 10 12

TTL (hops)

Q
ue

ry
 F

al
se

 R
at

io
 (

m
ax

im
um

 =
 1

) Push
Adaptive Pull
Push with Adaptive pull
PeerCast

Figure 6.15: Impact of TTL values

from 2 to 12 hops and measure query false ratio for three strategies, the network

size was set to 1000 peers. Meanwhile, we ploted the result from PeerCast. As

illustrated in Figure 6.15, the change of TTL value has no impact to PeerCast,

it is because that PeerCast maintains the date dissemination tree itself. Message

flooding is avoided.

Performance on Scalability: In this experiment, we examined the scalability

of PeerCast. As shown in Figure 6.16, in Gtk-Gnutella system, the workload of

servers increases rapidly with the scaling of the system. On the contrast, the work-

load of source peers remains the same basically in PeerCast. The results show us

that Gtk-Gnutella or other centralized systems suffer from the single-source over-

load problem. Centralized origin servers undertake heavy load to disseminate data

updates to a large number of clients. Response queueing and update dissemination

workload at the server greatly limit the scalability. However, PeerCast alleviates

the workload of origin source servers by proportioning it to the participating peers.

Source peers just disseminate data updates to their immediate child peers. Those

dependent peers filter and disseminate the updates to others. Breaking the bottle-

neck of servers, PeerCast achieves more scalability.

85

5000
7000
9000

11000
13000
15000
17000
19000
21000
23000
25000
27000
29000
31000
33000
35000

100 200 300 400 500 600 700 800 900 1000

Network Size (number of peers)

S
er

ve
rs

 W
or

kl
oa

d
(n

um
be

r
of

 u
pd

at
es

tr

an
sf

er
re

d)

PeerCast Gtk-Gnutella

Figure 6.16: Workload on Servers

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000

100 200 300 400 500 600 700 800 900 1000

Network Size (number of peers)

A
ve

ra
ge

 w
or

kl
oa

d
on

 p
ee

rs

(n
um

be
r

of
 u

pd
at

es
 tr

an
sf

er
re

d)

Figure 6.17: Average Workload on Peers

Furthermore, we also examined the average workload of peers. As shown in

Figure 6.17, the average workload of peers reduce gradually with more client peers

participating the overlay. The reason is that the self-adaption procedure of Peer-

Cast could adjust the parent peer when new peer enters the disseminating tree and

keep the intermediate peers well-balanced. The latter joining peers can undertake

part of child peers from overloaded parent peers.

Effect of Network Reorganization: As we have discussed in Section 6.1,

86

in the last set of experiments, we evaluated the heuristic methods to enhance the

performance of PeerCast. We set the number of physical neighbors per peer to

be three and five, and we vary the heuristic computation period T (measured in

number of updates received) from zero to 100.

If each peer has enough physical neighbors connection to maintain, the establish

and release connection cost is saved. However, each peer maintains just a number of

direct connections to other neighbors. Therefore, we examine the effect of network

reorganization. As shown in Figure 6.18 (a), we set the number of physical neigh-

bors per peer to be three. Varying the heuristic computation period, we collected

the results. When T = 0, heuristic method is never started. When T becomes 10,

the reorganization has the negative effect to the system. This is due to the fact

that there has not been enough time to gather accurate statistics and done a poor

prediction. The initial network structure happened to be quite beneficial. With the

incremental of T, the performance increases. Notice that when the T greater than

50, the loss of data fidelity increases slowly. The reason is that optimize procedure

is performed so infrequently that it cannot predict the near future’s updates cor-

rectly. In the extreme case, if T approaches infinity, heuristic method never makes

a decision, it will have no effect to system.

As the number of neighbors increases, the performance of the static network. As

the number of neighbors increases, the performance of the static network improves,

because of the better knowledge about the contents of other peers.

Effect of Peer Node Adaption: We randomly chose small fraction, 5% and

10%, of the all peers as the churning nodes. These peers join and depart the overlay

far more frequently than others. After receiving 20 updates, these peers depart the

overlay in ungraceful manner, then reenter the disseminate trees. The procedure

is repeated. Peer node adaption mechanism is to mark these transient peers and

87

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

Reorganization Period (number of updates received)

L
os

s
of

 f
id

el
it

y

Series1

Series2

(a) Three

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0 10 20 30 40 50 60 70 80 90 100

Reorganiztion Period (number of updates received)

L
os

s
of

 f
id

el
it

y

Series1

Series2

(b) Five

Figure 6.18: Network Reorganization

push them to the edge of the topology heuristically in order to reduce their negative

effect.

As shown in Figure 6.19, churning problem does negative effect to the perfor-

mance of the PeerCast. It brings extra overhead to the network and leads to more

latency in forwarding the updates because of the consumption to repairing the dis-

semination trees repeatedly. Peer adaption is a necessary mechanism to prevent

churning problem.

88

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

100 200 300 400 500 600 700 800 900 1000
Network Size (number of peers)

L
os

s
of

 d
at

a
fi

de
li

ty
 (

m
ax

im
um

 =
 1

)

heuristic method

5% churning peers

10% churning peers

Figure 6.19: Effect of Peer Adaption

6.4 Conclusions

We have done a range of experiments to evaluate the performance of PeerCast

framework. We have compared the different tree construction policies, and exper-

imentally proved the performance of PeerCast is superior than the conventional

centralized approach in large-scale network. Meanwhile, it is proved that locality-

biased policy can achieve higher fidelity in data at the cost of network resource

consumption. We examined the impact of client peer capacity to the system. The

results showed that the capacity of client peers has great effect on PeerCast, fur-

thermore, there is an optimal cooperation degree for each peer to contribute to

system.

We also simulated the dynamic P2P network. In such scenario, we examined

the impact of peer recovery mechanisms to the topology of the PeerCast, and the

performance of peer recovery with leaving gracefully or ungracefully. In the end,

we changed the number of backups to prove that it can achieve better fidelity in

data, especially in transient situations.

In addition, we have implemented Gtk-Gnutella protocol as our objective of

comparison. Gtk-Gnutella is existing cache consistency protocol designed for Gnutella

89

system. Collected results show that although push with adaptive pull in Gtk-

Gnutella can achieve the same data fidelity with PeerCast, it cost far more net-

work traffic overhead than PeerCast. Meanwhile, TTL value impacts Gtk-Gnutella

greatly. In contrast, PeerCast takes the computation and space overhead as the

tradeoff to achieve the higher performance. Our experiments further indicate that

the peer cooperation is essential to achieve high scalability. Our heuristic ap-

proaches are also necessary to guarantee the performance of PeerCast framework.

90

CHAPTER 7

Conclusion

The objective of this research is to investigate and propose optimal approach of

maintaining dynamic data consistency in P2P caching systems. We present our

framework PeerCast to address the major problems in achieving high fidelity of

caching data in P2P systems with high-scalable, self-adaptive and fault-tolerant

properties.

We have proposed dissemination overlay with different tree construction poli-

cies: randomized, round-robin and locality-biased constructions without relying low

infrastructure knowledge. Our approach has been experimentally proved that it is

more efficient than the conventional centralized approaches. We have extended the

bounded cache techniques which have been proposed in previous centralized sys-

tems such as TRAPP [60] into P2P environment, without decentralized manage-

ment or any centralized computing. Due to the demand driven delivery mechanism

in PeerCast, the upper level peer can filter the data updates so as to disseminate

them to dependant peers selectively. In this way, our approach can also outperform

91

the recent approaches proposed to multicast media streams on P2P systems [25, 63]

in aspects of scalability and relative delay penalty.

In PeerCast implementation, we provide two heuristic approaches to raise the

performance and efficiency of the PeerCast. One is to optimize the resource usage,

the other is to prevent the churning problem in overlay.

7.1 Future Work

We could extend PeerCast in several directions in our future work. First, due to the

heterogeneous dynamic data popularity distributions, we could even combine some

traditional consistency techniques mentioned in Chapter 2 with PeerCast, such as

validation or invalidation, etc. Despite of their limitation, they cost less overhead

when handling with small population. Second, we could incorporate the rate of

source peers updating dynamic data factors into the data updates dissemination

management policies. The prediction of updates can bring some benefits with the

limited resource usage.

Second, in our current work, we implement the application layered on unstruc-

tured decentralized P2P systems. We could deploy the system on the structured

P2P system, like Chord or CAN. These structured P2P systems have the routing

ability, which makes data location more efficient. Thus, PeerCast could combine

the structure P2P techniques into our applications. Furthermore, we consider incor-

porate hybrid P2P systems, super-peer architectures, like KaZaA, which combines

the advantages of centralized servers, and the autonomous peers.

Last but still important point, in our current setting, PeerCast framework is

lack of the fairness and cooperation incentive mechanism. We suppose that peer

users are all in a friendly-cooperative manner. Free riding, or non-cooperation

92

issues are hardly addressed. For instance, we can not punish the peers who are

free riding. Peer users contribute nothing to the community despite of their high

capacity. What they do is just to claim they are overloaded or have no available

capacity to serve child peers, but actually, they have. Although, there have some

recent work about the incentive work to study the P2P cooperation, the previous

protocol can not immediately be deployed in our system, it is because our system

is not designed for static data file sharing, but dynamic data item management. In

order to make our system a real kill application, this is one aspect we must address

in our future work.

BIBLIOGRAPHY

[1] An Exploration of Dynamic Documents, Netscape Inc. http: // home.

netscape. com/ assist/ net_ sites/ pushpull. html .

[2] BestPeer Project Home Page. http: // xena1. ddns. comp. nus. edu. sg/

p2p/ .

[3] BT. http: // www. bt. com/ .

[4] eDonkey. http: // www. edonkey2000. com/ .

[5] GNUTELLA.WEGO.COM. Gnutella: Distributed Information Sharing, 2000.

http: // gnutella. wego. com/ .

[6] JXTA Advertisements. http: // people. jxta. org/ stevew/ jxta/

advertisements. html .

[7] Napster. http: // www. napster. com/ .

[8] SETI@home: the Search for Extraterrestrial Intelligence at home. http:

// setiathome. ssl. berkeley. edu/ .

93

94

[9] SHARMAN NETWORKS LTD. KaZaA Media Desktop, 2001. http: // www.

kazaa. com/ .

[10] SIM: A C++ library for Discrete Event Simulation. http: // www. cs. vu.

nl/ ~eliens/ sim/ sim_ html/ sim. html .

[11] The Internet Engineering Task Force. http: // www. ietf. org/ .

[12] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm. World Wide

Web Caching: The Application-Level View of the Internet. IEEE Communi-

cations Magazine, 1997.

[13] S. Bakiras, P. Kalnis, T. Loukopoulos, and W. Ng. A General Framework for

Searching in Distributed Data Repositories. In Proceedings of International

Parallel and Distributed Processing Symposium, 2003.

[14] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Application

Layer Multicast. In Proceedings of ACM SIGCOMM, 2002.

[15] D. Barbara and T. Imielinksi. Sleeper and Workaholics: Caching Strategy in

Mobile Environments. In Proceedings of the ACM SIGMOD Conference on

Management of Data, 1994.

[16] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini,

and I. Zaihrayeu. Data Management for Peer-to-Peer Computing: A Vision.

In Proceedings of the 5th WebDB, 2002.

[17] D. Carney, S. Lee, and S. Zdonik. Scalable Application-Aware Data Freshen-

ing. In Proceedings of the 19th International Conference on Data Engineering,

2003.

95

[18] V. Cates. Alex - A Global Filesystem. In Proceedings of the USENIX File

Systems Workshop, 1992.

[19] Y. Chawathe. Scattercast: An Architecture for Internet Broadcast Distri-

bution as an Infrastructure Service. PhD thesis, University of California,

Berkeley, USA, 2000.

[20] Y. Chawathe, S. McCanne, and E. Brewer. RMX: Reliable Multicast for

Heterogeneous Networks. In Proceedings of IEEE INFOCOM, 2000.

[21] Y. Chawathe, S. Ratnasamy, L. BresLau, N. Lanham, and S. Shenker. Making

Gnutella-like P2P System Scalable. In Proceedings of ACM SIGCOMM, 2003.

[22] Y. Chen, R. Katz, and J. Kubiatowicz. Dynamic Replica Placement for Scal-

able Content Delivery. In International Workshop on Peer-to-Peer Systems,

2002.

[23] M. Cherniack, M. J. Franklin, and S. Zdonik. Expressing User Profiles for

Data Recharging. IEEE Personal Communications: Special Issue on Pervasive

Computing, 2001.

[24] M. Cherniack, E. F. Galvez, M. J. Franklin, and S. Zdonik. Profile-Driven

Cache Management. In Proceedings of the 19th International Conference on

Data Engineering, 2003.

[25] P. Chou, V. Padmanabhan, and H. Wang. Resilient Peer-to-Peer Streaming.

Technical Report MSR-TR-2003-11, Microsoft Research, 2003.

[26] Y. Chu, S. Rao, and H. Zhang. A Case for End System Multicast. In Proceed-

ings of the ACM-SIGMETRICS International Conference, June 2000.

96

[27] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed

Anonymous Information Storage and Retrieval System. Lecture Notes in Com-

puter Science, 2009, 2001.

[28] E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-to-Peer

Networks. In Proceedings of ACM SIGCOMM, 2002.

[29] B. Cooper and H. Garcia-Molina. Studying Search Networks with SIL. In 2nd

International Workshop on Peer-to-Peer Systems, 2003.

[30] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy.

Adaptive Push-Pull: Disseminating Dynamic Web Data. In Proceedings of the

10th International Conference on WWW, 2001.

[31] Peter Druschel, Frans Kaashoek, and Antony Rowstron. Peer-to-Peer Systems.

Springer, 2002.

[32] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive Leases: A Strong Consistency

Mechanism for the World Wide Web. IEEE TRANSACTION ON KNOWL-

EDGE AND DATA ENGINEERING, 15, AUGUST 2003.

[33] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law Relationships of

the Internet Topology. In Proceedings of ACM SIGCOMM, 1999.

[34] Bugra Gedik and Ling Liu. PeerCQ: A Decentralized and Self-Configuring

Peer-to-Peer Information Monitoring System. In Proceedings of the 23rd In-

ternational Conference on Distributed Computing Systems, 2003.

[35] C. Gray and D. Cheriton. Leases: An Efficient Fault-tolerant Mechanism for

Distributed File Cache Consistency. In Proceedings of the 12th ACM Sympo-

sium on Operating System Principles, 1989.

97

[36] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What can P2P do for

database, and vice versa? In Proceedings of WebDB Workshop, pages 171–182,

June 2001.

[37] Y. Guo, K. Suh, J. Kurose, and D. Towsley. P2Cast: Peer-to-Peer Patching

Scheme for VoD Service. In Proceedings of the 12th International Conference

on WWW, 2003.

[38] A. Gupta, D. Agrawal, and A. El Abbadi. Approximate Range Selection

Queries In Peer-to-Peer Systems. In Proceedings of the 1st CIDR, 2003.

[39] J. Gwertzman and M. Seltzer. World-Wide Web Cache Consistency. In Pro-

ceedings of the 1996 USENIX Technical Conference, 1996.

[40] A. Halevy, O. Etzioni, A. Doan, Z. Ives, J. Madhavan, L. McDowell, and

I. Tatarinov. Crossing the Structure Chasm. In Proceedings of the 1st CIDR,

2003.

[41] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in

Peer Data Management Systems. In Proceedings of the 19th ICDE, 2003.

[42] Y. Huang, R. Sloan, and O. Wolfson. Divergence Caching in Client Server

Architectures. In Proceedings of the 3rd International Conference on Parallel

and Distributed Information Systems, 1994.

[43] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, and I. Stoica.

Querying the Internet with PIER. In Proceedings of the 29th Conference on

Very Large Data Bases, 2003.

[44] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A Decentralized Peer-to-Peer

Web Cache. In Proceedings of the 21st annual symposium on Principles of

Distributed Computing, 2002.

98

[45] J. Jannotti, D. K. Gifford, and K. L. Johnson. Overcast: Reliable Multicasting

with an Overlay Network. In USENIX Symposium on Operating System Design

and Implementation, 2000.

[46] Chenqing Jin, Weining Qian, Chaofeng Sha, Jeffrey Xu Yu, and Aoying Zhou.

Dynamically Maintaining Frequent Items over A Data Stream. In Proceedings

of ACM CIKM, 2003.

[47] P. Kalnis, W. Ng, B. Ooi, D. Papadias, and K. Tan. An Adaptive Peer-to-Peer

Network for Distributed Caching of OLAP Results. In Proceedings of the ACM

SIGMOD Conference on Management of Data, 2002.

[48] A. Kementsietsidis, M. Arenas, and R. J. Miller. Mapping Data in Peer-to-

Peer Systems: Semantics and Algorithmic Issues. In Proceedings of the ACM

SIGMOD, 2003.

[49] P. Keyani, B. Larson, and M. Senthil. Peer Pressure: Distributed Recovery

from Attacks in Peer-to-Peer Systems. In Web Engineering and Peer-to-Peer

Computing Workshops, 2002.

[50] B. Krishnamurthy and C. Wills. Piggyback Server Invalidation for Proxy

Cache Coherency. In Computer Networks and ISDN Systems, volume 30,

August 1998.

[51] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi,

S. Rheaand H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:

An Architecture for Global-scale Persistent Storage. In Proceedings of ACM

ASPLOS, 2000.

[52] Wang Lam and Hector Garcia-Molina. Multicasting a Changing Repository. In

Proceedings of the 19th International Conference on Data Engineering, 2003.

99

[53] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham. Consistency Maintenance in

Peer-to-Peer File Sharing Networks. In Proceedings of the 3rd IEEE Workshop

on Internet Applications, 2003.

[54] C. Liu and P. Cao. Maintaining Strong Cache Consistency in the World-Wide

Web. In Proceedings of ICDCS, 1997.

[55] J. Liu, X. Zhang, B. Li, Q. Zhang, and W. Zhu. Distributed Distance Mea-

surement for Large-Scale Networks. The International Journal of Computer

and Telecommunications Networking, 41:177 – 192, 2003.

[56] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V.Jacobson.

Adaptive Web Caching: towards a new global caching architecture. In 3rd

International WWW Caching Workshop, 1998.

[57] W. Ng, B. Ooi, Y. Shu, K. Tan, and W. Tok. Efficient Distributed CQ Pro-

cessing using Peers. In Proceedings of the 12th International Conference on

WWW, 2003.

[58] W. Ng, B. Ooi, and K. Tan. Bestpeer: A Self-Configurable Peer-to-Peer Sys-

tem. In Proceedings of the 18th International Conference on Data Engineering,

2002.

[59] W. Ng, B. Ooi, K. Tan, and A. Zhou. PeerDB: A P2P-based System for

Distributed Data Sharing. In Proceedings of the 19th ICDE, 2003.

[60] Chris Olston and Jennifer Widom. Offering a Precision-Performance Tradeoff

for Aggregation Queries over Replicated Data. In Proceedings of the 26th

International Conference on Very Large Data Bases, pages 144–155, 2000.

100

[61] Li Pan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary Cache:

A Scalable Wide-Area Web Cache Sharing Protocol. In Proceedings of ACM

SIGCOMM, 1998.

[62] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable

Content-Addressable Network. In Proceedings of ACM SIGCOMM, 2001.

[63] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level Multi-

cast using Content-Addressable Networks. Lecture Notes in Computer Science,

2001.

[64] V. Roca and A. El-Sayed. A Host-Based Multicast (HBM) Solution for Group

Communications. In 1st IEEE International Conference on Networking, 2001.

[65] P. Rodriguez and E. Biersack. Continuous multicast distribution of web doc-

uments over the internet. In IEEE Network Magazine, volume 12, 1998.

[66] P. Rodriguez, K. Ross, and E. Biersack. Improving the WWW: Caching or

Multicast? In Proceedings of Computer Networks and ISDN Systems, 1998.

[67] Pablo Rodriguez and Sandeep Sibal. SPREAD: Scalable Platform for Reliable

and Efficient Automated Distribution. In Proceedings of the 9th International

Conference on WWW, pages 33–49, 2000.

[68] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location

and Routing for Large-scale Peer-to-Peer Systems. In IFIP/ACM Middleware,

September 2001.

[69] A. Rowstron and P. Druschel. Storage management and caching in PAST, a

large-scale, persistent peer-to-peer storage utility. In Proceedings of the 18th

ACM symposium on Operating systems principles, 2001.

101

[70] O. Sahin, A. Gupta, D. Agrawal, and A. Abbadi. A Peer-to-Peer Framework

for Caching Range Queries. In Proceedings of International Conference on

Data Engineering, 2004.

[71] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Ma-

chine Approach: A Tutorial. ACM Computing Surveys, 22:299 – 320, Dec

1990.

[72] S. Shah, S. Dharmarajan, and K. Ramamritham. An Efficient and Resilient

Approach to Filtering and Disseminating Streaming Data. In Proceedings of

the 29th International Conference on Very Large Data Bases, 2003.

[73] S. Shah, K. Ramamritham, and P. Shenoy. Maintaining Consistency of Dy-

namic Data in Cooperating Repositories. In Proceedings of the 28th Conference

on Very Large Data Bases, 2002.

[74] Scott Shenker. The Data-Centric Revolution in Networking. Keynote in VLDB

2003 Conference.

[75] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A

Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings

of the ACM SIGCOMM, 2001.

[76] X. Wang, W. Ng, B. Ooi, K. Tan, and A. Zhou. BuddyWeb: A P2P-based

Collaborative Web Caching System. In Web Engineering and Peer-to-Peer

Computing: Networking 2002 Workshops, 2002.

[77] Kurt Worrell. Invalidation in Large Scale Network Object Caches. Master’s

thesis. University of Colorado, Boulder, 1994.

102

[78] B. Yang and H. Molina. Improving Search in Peer-to-Peer Systems. In Proceed-

ings of the 22nd International Conference on Distributed Computing Systems,

2002.

[79] B. Yang and H. Molina. Designing a Super-peer Network. In Proceedings of

the 19th International Conference on Data Engineering, 2003.

[80] Cheng Yang. Peer-to-Peer Architecture for Content-Based Music Retrieval on

Acoustic Data. In Proceedings of the 12th International Conference on WWW,

2003.

[81] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Using Leases to Support Server-Driven

Consistency in Large-Scale Systems. In Proceedings of the 18th International

Conference on Distributed Computing Systems, 1998.

[82] J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Volume Leases for Consistency in

Large-Scale Systems. IEEE Transactions on Knowledge and Data Engineering,

11:563–576, 1999.

[83] Haifeng Yu and Amin Vahdat. Design and Evaluation of a Continuous Con-

sistency Model for Replicated Services. In Proceedings of the 4th Symposium

on Operating Systems Design and Implementation, 2000.

[84] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infrastructure for

Fault-tolerant Wide-area Location and Routing. In U. C. Berkeley Technical

Report UCB//CSD-01-1141, 2001.

[85] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An

Architecture for Scalable and Fault-tolerant Wide-area Data Dissemination.

In Proceedings of ACM NOSSDAV, 2001.

