584 research outputs found

    CAD Tools for DNA Micro-Array Design, Manufacture and Application

    Get PDF
    Motivation: As the human genome project progresses and some microbial and eukaryotic genomes are recognized, numerous biotechnological processes have attracted increasing number of biologists, bioengineers and computer scientists recently. Biotechnological processes profoundly involve production and analysis of highthroughput experimental data. Numerous sequence libraries of DNA and protein structures of a large number of micro-organisms and a variety of other databases related to biology and chemistry are available. For example, microarray technology, a novel biotechnology, promises to monitor the whole genome at once, so that researchers can study the whole genome on the global level and have a better picture of the expressions among millions of genes simultaneously. Today, it is widely used in many fields- disease diagnosis, gene classification, gene regulatory network, and drug discovery. For example, designing organism specific microarray and analysis of experimental data require combining heterogeneous computational tools that usually differ in the data format; such as, GeneMark for ORF extraction, Promide for DNA probe selection, Chip for probe placement on microarray chip, BLAST to compare sequences, MEGA for phylogenetic analysis, and ClustalX for multiple alignments. Solution: Surprisingly enough, despite huge research efforts invested in DNA array applications, very few works are devoted to computer-aided optimization of DNA array design and manufacturing. Current design practices are dominated by ad-hoc heuristics incorporated in proprietary tools with unknown suboptimality. This will soon become a bottleneck for the new generation of high-density arrays, such as the ones currently being designed at Perlegen [109]. The goal of the already accomplished research was to develop highly scalable tools, with predictable runtime and quality, for cost-effective, computer-aided design and manufacturing of DNA probe arrays. We illustrate the utility of our approach by taking a concrete example of combining the design tools of microarray technology for Harpes B virus DNA data

    High-Throughput SNP Genotyping by SBE/SBH

    Full text link
    Despite much progress over the past decade, current Single Nucleotide Polymorphism (SNP) genotyping technologies still offer an insufficient degree of multiplexing when required to handle user-selected sets of SNPs. In this paper we propose a new genotyping assay architecture combining multiplexed solution-phase single-base extension (SBE) reactions with sequencing by hybridization (SBH) using universal DNA arrays such as all kk-mer arrays. In addition to PCR amplification of genomic DNA, SNP genotyping using SBE/SBH assays involves the following steps: (1) Synthesizing primers complementing the genomic sequence immediately preceding SNPs of interest; (2) Hybridizing these primers with the genomic DNA; (3) Extending each primer by a single base using polymerase enzyme and dideoxynucleotides labeled with 4 different fluorescent dyes; and finally (4) Hybridizing extended primers to a universal DNA array and determining the identity of the bases that extend each primer by hybridization pattern analysis. Our contributions include a study of multiplexing algorithms for SBE/SBH genotyping assays and preliminary experimental results showing the achievable tradeoffs between the number of array probes and primer length on one hand and the number of SNPs that can be assayed simultaneously on the other. Simulation results on datasets both randomly generated and extracted from the NCBI dbSNP database suggest that the SBE/SBH architecture provides a flexible and cost-effective alternative to genotyping assays currently used in the industry, enabling genotyping of up to hundreds of thousands of user-specified SNPs per assay.Comment: 19 page

    Model-based probe set optimization for high-performance microarrays

    Get PDF
    A major challenge in microarray design is the selection of highly specific oligonucleotide probes for all targeted genes of interest, while maintaining thermodynamic uniformity at the hybridization temperature. We introduce a novel microarray design framework (Thermodynamic Model-based Oligo Design Optimizer, TherMODO) that for the first time incorporates a number of advanced modelling features: (i) A model of position-dependent labelling effects that is quantitatively derived from experiment. (ii) Multi-state thermodynamic hybridization models of probe binding behaviour, including potential cross-hybridization reactions. (iii) A fast calibrated sequence-similarity-based heuristic for cross-hybridization prediction supporting large-scale designs. (iv) A novel compound score formulation for the integrated assessment of multiple probe design objectives. In contrast to a greedy search for probes meeting parameter thresholds, this approach permits an optimization at the probe set level and facilitates the selection of highly specific probe candidates while maintaining probe set uniformity. (v) Lastly, a flexible target grouping structure allows easy adaptation of the pipeline to a variety of microarray application scenarios. The algorithm and features are discussed and demonstrated on actual design runs. Source code is available on request

    Highly Scalable Algorithms for Robust String Barcoding

    Full text link
    String barcoding is a recently introduced technique for genomic-based identification of microorganisms. In this paper we describe the engineering of highly scalable algorithms for robust string barcoding. Our methods enable distinguisher selection based on whole genomic sequences of hundreds of microorganisms of up to bacterial size on a well-equipped workstation, and can be easily parallelized to further extend the applicability range to thousands of bacterial size genomes. Experimental results on both randomly generated and NCBI genomic data show that whole-genome based selection results in a number of distinguishers nearly matching the information theoretic lower bounds for the problem

    Oligonucleotide Design for Whole Genome Tiling Arrays

    Get PDF
    Oligonucleotides are short, single-stranded fragments of DNA or RNA, designed to readily bind with a unique part in the target sequence. They have many important applications including PCR (polymerase chain reaction) amplification, microarrays, or FISH (fluorescence in situ hybridization) probes. While traditional microarrays are commonly used for measuring gene expression levels by probing for sequences of known and predicted genes, high-density, whole genome tiling arrays probe intensively for sequences that are known to exist in a contiguous region. Current programs for designing oligonucleotides for tiling arrays are not able to produce results that are close to optimal since they allow oligonucleotides that are too similar with non-targets, thus enabling unwanted cross-hybridization. We present a new program, BOND-tile, that produces much better tiling arrays, as shown by extensive comparison with leading programs

    Robustness Evaluation for Phylogenetic Reconstruction Methods and Evolutionary Models Reconstruction of Tumor Progression

    Get PDF
    During evolutionary history, genomes evolve by DNA mutation, genome rearrangement, duplication and gene loss events. There has been endless effort to the phylogenetic and ancestral genome inference study. Due to the great development of various technology, the information about genomes is exponentially increasing, which make it possible figure the problem out. The problem has been shown so interesting that a great number of algorithms have been developed rigorously over the past decades in attempts to tackle these problems following different kind of principles. However, difficulties and limits in performance and capacity, and also low consistency largely prevent us from confidently statement that the problem is solved. To know the detailed evolutionary history, we need to infer the phylogeny of the evolutionary history (Big Phylogeny Problem) and also infer the internal nodes information (Small Phylogeny Problem). The work presented in this thesis focuses on assessing methods designed for attacking Small Phylogeny Problem and algorithms and models design for genome evolution history inference from FISH data for cancer data. During the recent decades, a number of evolutionary models and related algorithms have been designed to infer ancestral genome sequences or gene orders. Due to the difficulty of knowing the true scenario of the ancestral genomes, there must be some tools used to test the robustness of the adjacencies found by various methods. When it comes to methods for Big Phylogeny Problem, to test the confidence rate of the inferred branches, previous work has tested bootstrapping, jackknifing, and isolating and found them good resampling tools to corresponding phylogenetic inference methods. However, till now there is still no system work done to try and tackle this problem for small phylogeny. We tested the earlier resampling schemes and a new method inversion on different ancestral genome reconstruction methods and showed different resampling methods are appropriate for their corresponding methods. Cancer is famous for its heterogeneity, which is developed by an evolutionary process driven by mutations in tumor cells. Rapid, simultaneous linear and branching evolution has been observed and analyzed by earlier research. Such process can be modeled by a phylogenetic tree using different methods. Previous phylogenetic research used various kinds of dataset, such as FISH data, genome sequence, and gene order. FISH data is quite clean for the reason that it comes form single cells and shown to be enough to infer evolutionary process for cancer development. RSMT was shown to be a good model for phylogenetic analysis by using FISH cell count pattern data, but it need efficient heuristics because it is a NP-hard problem. To attack this problem, we proposed an iterative approach to approximate solutions to the steiner tree in the small phylogeny tree. It is shown to give better results comparing to earlier method on both real and simulation data. In this thesis, we continued the investigation on designing new method to better approximate evolutionary process of tumor and applying our method to other kinds of data such as information using high-throughput technology. Our thesis work can be divided into two parts. First, we designed new algorithms which can give the same parsimony tree as exact method in most situation and modified it to be a general phylogeny building tool. Second, we applied our methods to different kinds data such as copy number variation information inferred form next generation sequencing technology and predict key changes during evolution
    • ā€¦
    corecore