8 research outputs found

    Technical advances in the design and deployment of future heterogeneous networks

    Get PDF
    The trend in wireless communications systems is the enhancement of the network infrastructure with the introduction of small cells, where a specific geographical area is served by low-range, low-power access points. The result is the creation of a heterogeneous topology where macrocells coexist with a variety of small-cell types. In this editorial article we briefly summarize the recent technical advances in the design and deployment of future heterogeneous networks addressed in the papers that compose this special issue. In particular the following aspects are considered: the design of interference and radio resource management algorithms, the analysis of the energy efficiency and power control issues in heterogeneous networks, the concept of coordination in small cell networks, key backhaul aspects of HetNets, deployment issues and overall management strategies.Peer ReviewedPostprint (published version

    Final Specification of Cooperative Functionalities

    Get PDF
    This deliverable presents the specification of the final version of the Cooperative AP Functionalities that have been designed in the context of Work Package (WP) 4 of the Wi-5 project. In detail, we present a general cooperative framework that includes functionalities for a Radio Resource Management (RRM) algorithm, which provides channel assignment and transmit power adjustment strategies, an AP selection policy, which also provides horizontal handover, and a Radio Access Technology (RAT) selection solution for vertical handover. The RRM algorithm achieves an important improvement for network performance in terms of several parameters through the channel assignment approach and the transmit power adjustment. The AP selection solution extends the approach presented in deliverables D4.1 and D4.2 and is based on a centralised potential game, which optimises the distribution of the so-called Fittingness Factor (FF) parameter among the Wi-Fi users. Such a parameter efficiently matches the suitability of the available spectrum resource to the users’ application requirements. Moreover, the RAT selection solution extends the AP selection algorithm towards vertical handover functionality including 3G/4G networks. The assessment of the newest algorithms developed in the context of WP4 is illustrated in this deliverable through the analysis of several performance results in a simulated environment against other strategies found in the literature. Finally, the set of smart AP functionalities developed in the context of WP3, implemented on the Wi5 APs and on the Wi-5 controller, and their use in the proposed algorithms are illustrated. Specifically, this deliverable describes how these functionalities can enable the correct deployment of the proposed cooperative AP solutions in realistic scenarios. Therefore, the main novel contributions of this deliverable are i) the strengthening of the AP selection algorithm, ii) the design and assessment of a new algorithm for vertical handover and iii) the presentation of the finalised integration of the cooperative AP functionalities of the Wi-5 system

    Scalable HetNet interference management and the impact of limited channel state information

    Get PDF
    © 2015, Chiumento et al.; licensee Springer. Interference management is important in wireless cellular networks such as long-term evolution (LTE) and LTE-A, where orthogonal frequency division multiple access (OFDMA), dense frequency reuse and heterogeneous cell sizes and capabilities provide great performance at the cost of increased network complexity. The layered structures of emerging cellular networks and their dynamic environments limit greatly the efficacy of traditional static interference management methods. Furthermore, conventional interference coordination techniques assume that perfect channel knowledge is available and that the signalling overhead can be neglected. In this paper, we analyse a heterogeneous LTE OFDMA downlink network composed by macro-, pico- and femtocells. We propose a low-complexity, distributed and cooperative interference mitigation method which is aware of network load and propagation conditions. The proposed method is fully scalable and addresses the interference received by the macro and pico layer and the interference received by femtocells separately. The new solution makes use of the iterative Hungarian algorithm, which effectively reduces interference and enhances the quality of service of starved users when compared to other state-of-the-art solutions. The proposed method outperforms static solutions by providing comparable results for the cell edge users (the proposed solution delivers 86% of the gain of a static frequency reuse 3) while presenting no loss at the cell centre, compared to an 18% loss of the frequency reuse 3 in a homogeneous scenario. In a heterogeneous network (HetNet) deployment, it generates a gain of 45% for the combined macro and pico edge users at a very small cost for the cell centre lower than 4% when compared with standard resource allocation. It optimizes greatly picocell performance, with improvements of more than 50% at a small cost for femtocell users (15%). In order to apply the proposed method to a practical network, the impact of the necessary quantization of channel state information on the interference management solution is studied and results show that signalling overhead can be contained while performance is improved by increasing resolution on the portions of the bandwidth more likely to be assigned to the users.status: publishe

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors
    corecore