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Abstract
In this paper, we provide a survey on abstraction models for evaluating aggregate interference statistics in urban
heterogeneous cellular networks. The two principal interference shaping factors are the path loss attenuation and the
interference geometry. For both factors, our survey systematically summarizes state-of-the-art models and outlines
their strengths and weaknesses. In the context of path loss attenuation, we give an overview on the basic propagation
mechanisms and the various approaches for their abstraction. We specifically elaborate on random shape theory and
its application for representing blockages in indoor and outdoor scenarios. In terms of interference geometry, we
present techniques from stochastic geometry as well as deterministic approaches, outlining their evolution and
limitations. Throughout the paper, challenges under discussion are scenarios with both indoor and outdoor
environments, distance-dependent shadowing due to blockages, and correlations among node and blockage
locations as well as the distinction between cell center and cell edge. Our goal is to raise awareness on not only the
validity and tractability but also the limitations of state-of-the-art techniques. The presented models were chosen with
regard to their adaptability for a broad range of scenarios. They are therefore expected to be adopted for describing
the fifth generation of mobile networks (5G).

Keywords: Interference modeling, Aggregate interference, Blockage, Fading, Path loss, Shadowing, Stochastic
geometry, Random shape theory, Point process, Urban, Heterogeneous networks, 5G

1 Review
Massive network densification and heterogeneity are two
major trends heralding the fifth generation of mobile
cellular networks (5). Heterogeneous networks are com-
monly identified as systems comprising multiple types of
base stations (BS) that are distinguished by their transmit
power and backhaul and radio access technology as well as
the experienced propagation conditions. In such topolo-
gies, the aggregate co-channel interference from other
cells (also referred to as other-cell interference, external
interference, network interference, or simply interference)
is one of the main performance limiting factors [1–7].
At the same time, it forms the basis for determining
the signal-to-interference ratio (SIR) and the other-cell
interference factor (OCIF), which constitute fundamental
metrics for assessing the performance of mobile networks.
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The SIR commonly refers to the ratio between the desired
signal power and the total interference power [1, 3]. In
contrast, the OCIF (also termed f-factor or interference
factor) is traditionally defined as the ratio of the other-
cell interference to the own-cell interference (also denoted
as same-cell or inner-cell interference) [8–11]. Own-cell
interference arises, e.g., as multiple access interference
due to cross correlation of spread-spectrum signals in
a code-division multiple access (CDMA) system [8]. In
more recent work, the OCIF is defined as the ratio of the
other-cell received power to the total inner-cell received
power, encompassing both the desired signal as well as
the own-cell interference [5–7, 12, 13]. This definition
is still valid for mobile systems without own-cell inter-
ference, such as orthogonal frequency-division multiple
access (OFDMA) [6, 14]. Therefore, the thorough statisti-
cal description of aggregate co-channel interference from
other cells is essential for system analysis and design. The
main goal of the interference analysis is to capture key
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characteristics of the interference as a function of rela-
tively few parameters. Although abstractions such as the
Wyner model and the hexagonal grid first appeared two
or even five decades ago [15, 16], mathematically tractable
interference statistics are still the exception rather than
the rule.
A frequently applied approach is the Gaussian ran-

dom process [17, 18]. The model is reasonably accurate
when aggregating a large number of interferers without
a dominant term such that the central limit theorem
(CLT) applies [19, 20]. In many cases, the probability den-
sity functions (PDFs) will exhibit heavier tails than those
anticipated by the Gaussian approach [1, 21–25].
In general, the PDF is unknown, and aggregate inter-

ference is typically characterized by either the Laplace
transform (LT), the characteristic function (CF), or the
mobility generating functional (MGF), respectively [26].
In this article, the LT is considered most relevant due to
its suitability for random variables (RV) with non-negative
support and its moment-generating properties. Moreover,
the CF and the MGF can directly be deduced from the
LT by basic identities. Let I denote a RV with PDF fI(x),
representing the aggregate interference. Then, its LT is
given as

LI(s) = E
[
e−s I] =

∫ ∞

0
fI(x)e−s xdx. (1)

The nth moment of I is determined by

E
[
In

] = (−1)n L(n)
I (s)

∣
∣
∣
s=0

, (2)

where L(n)
I (s) refers to the nth derivative of LI(s). In

theory, a statistical distribution is fully characterized by
specifying all of its moments, given that all moments exist
and the MGF converges. Practical approaches in wire-
less communication engineering usually exploit only the
first few of them. Application examples include moment
matching and deriving performance bounds by inequalities
such as the Markov inequality [27].
The two main interference shaping factors are the

path loss attenuation and the interference geometry
[1, 14, 28–34]. The path loss attenuation describes the
difference between the transmit and receive power lev-
els. The interference geometry condenses the transmitter
locations and the channel access scheme [14, 35, 36].

1.1 Our contributions
This article provides a survey on state-of-the-art model-
ing and abstraction of these two factors. We particularly
focus on urban environments, as they form the major field
of application for heterogeneous mobile networks. In the
context of signal propagation modeling, we elaborate on
the basic propagationmechanisms as well as their abstrac-
tion. The main novelty of this section lies in a survey on

models based on random shape theory. Those are applied
for investigating the impact of blockages in indoor and
outdoor scenarios. In the context of interference geome-
try, we outline models for abstracting the BS locations. In
comparison to related surveys, we discuss both stochastic
and deterministic models. We address strengths and lim-
itations, and demonstrate their application by means of a
case study.
This paper exclusively addresses aggregate co-channel

interference from other cells. Other types of interference
encompass inter-carrier, inter-symbol, inter-layer, inter-
user, and own-cell interferences. Each of these interfer-
ence types has its particular characteristics and, thus,
requires its own mathematical framework. Due to space
limitations, these kinds of interferences are considered
beyond the scope of this paper.
The majority of aggregate interference models aims at

describing downlink transmissions. For this reason, we
employ the terms BS and receiver, when exclusively refer-
ring to the downlink, and transmitter and receiver, when
pointing out that a model is equivalently applicable for up-
and downlink. In this article, the term tier either refers to
a ring of transmitters in a grid-based setup or the specific
part of a heterogeneous network, which is associated with
a certain class of transmitters, such as macro-BS and small
cell BSs, respectively. The particular meaning becomes
apparent from the context. Since the focus of this paper
is placed upon cellular networks, we consider the field
of device-to-device (D2D) communications beyond the
scope of this paper.Throughout the paper, we comment on
the adaptability of the presented models for abstracting
(5G) topologies.

1.2 Related work
The closest related works to the contribution in this
paper are [37] in the context of signal propagation mod-
eling and [26] in the domain of interference geometry
abstraction.
The authors of [37] provide a broad overview on large-

scale path loss modeling. They specifically elaborate on
seven different types of path loss models, presenting
their advantages and drawbacks. In this paper, we briefly
summarize these traditional approaches. Compared to
[37], our focus is rather placed upon heterogeneous net-
works in urban environments. We specifically address the
abstraction of large object blockage by means of random
object processes.
The authors in [26] provide a survey on stochastic

geometry models for single-tier and multi-tier cognitive
mobile networks. They summarize the five most promi-
nent techniques to utilize the LT of the aggregate interfer-
ence for modeling the network performance. In this paper,
we briefly outline these techniques in Section 3.1.2. While
the authors of [26] mainly focus on the opportunities of
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the stochastic geometry analysis, in this paper, we also
address its limitations. Moreover, we discuss determinis-
tic models, which, to the best of our knowledge, have not
yet been surveyed.

1.3 Organization
This paper is organized as follows. In Section 2, we
scrutinize signal propagation mechanisms. We review
traditional models and place particular focus on statisti-
cal models for representing blockages. In Section 3, we
investigate the abstraction of transmitter locations and
the impact of channel access mechanisms. We elaborate
on techniques from stochastic geometry and their major
insights.
We also shed light on the evolution of deterministic

models. We address the limitation of both approaches and
compare them by means of a case study. Section 4 out-
lines further aspects of interference modeling. Section 5
concludes the work.

2 Signal propagationmodeling
Due to the broadcast nature of the wireless medium, any
signal sent from a transmitter experiences various kinds of
distortion along its way to the receiver. These will depend
on the environment as well as the location of the transmit-
ter and the receiver. In this section, we discuss techniques
for abstracting the mechanisms that govern the signal
propagation. An overview is provided in Fig. 1.

2.1 Signal propagation mechanisms
Signal propagation is governed by four basic mecha-
nisms [38]: free-space loss (distance-dependent loss along
a line of sight (LOS) link), reflections (waves are reflected
by objects that are substantially larger than the wave-
length), diffractions (based on Huygen’s principle, sec-
ondary waves form behind large impenetrable blockages),
and scattering (energy is dispersed in various directions

by objects that are small relative to the wavelength).
These effects individually perturb the signal traveling
from a transmitter to a receiver, thus determining the
instantaneous signal strength. A formal definition of the
path loss attenuation in decibel is given as

PL = Pt − Pr + Gt + Gr, (3)

where Pt and Pr represent the transmit and receive power
levels and Gt and Gr refer to the transmit and receive
antenna gains. When sectorized scenarios are considered,
the antenna characteristics can be incorporated in Gt,
including the antenna orientation and the angular depen-
dent antenna gains, respectively. The losses caused by the
four basic propagation mechanisms constitute the differ-
ence between Pt and Pr. In principle, each mechanism is
well known and the resulting path loss attenuation can
be exactly determined by evaluating Maxwell’s equations.
Such calculation requires a very accurate description of
the environment. In practice, it is infeasible to solve for
a single point to point link, let alone the evaluation of
an entire network. Real-world propagation environments
exhibit a complex structure, which leads to the necessity
of abstraction. The requirement for a path loss attenuation
model is to be simple enough to assure tractability while
still capturing the most prominent effects of a realistic
scenario.
In comparison to analytical studies, simulations enable

a low degree of abstraction, i.e., they allow to incorporate
a large amount of details. Path loss attenuation models
may even follow a certain generation procedure, such as
in the 3rd Generation Partnership Project (3GPP) spatial
channel model (SCM) [39], the Wireless World Initiative
New Radio (WINNER) model [40], and the 3GPP three-
dimensional (3D) channel model [41]. In these models,
the environment is represented by statistical parameters
and the exact propagation conditions are computed at

Fig. 1 Overview on models for abstracting small-scale and large-scale signal propagation mechanisms. Approaches for large-scale mechanisms
include conventional and stochastic models
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runtime. Such models are infeasible for analytical consid-
erations, where signal propagation is commonly described
by deterministic laws and RVs, as presented in the next
section.
The basic propagation mechanisms are affecting the

transmission in both the below 6-GHz domain as well
as the millimeter wave (mmWave) domain. Therefore,
most of the models that are described in the follow-
ing can be adapted to represent either domain, by
adjusting the influence of the individual effects accord-
ingly. Several 5G specific references were added, in
order to capture the ongoing work in this direction
[42–45].

2.2 General modeling approach
A common approach for modeling path loss attenuation is
expressed as

PL = L(d, f ) + Xσ︸ ︷︷ ︸
large-scale path loss

+ F︸︷︷︸
small-scale path loss

, (4)

where L(d, f ) refers to the mean path loss, Xσ is the shad-
owing, and F denotes the small-scale fading. The term
L(d, f ) is mainly based on the effect of free-space path
loss, which depends on the distance d between a transmit-
ter and a receiver as well as the carrier frequency f. Note
that it is independent of the node locations within the sce-
nario. The RV Xσ corresponds to the shadowing caused
by blockages. The RV F primarily captures the effects of
the multi-path propagation. It is important to note that
(4) does not model each of the four basic propagation
mechanism, as presented in Section 2.1, separately. Each
of the three terms rather incorporates all mechanisms to
a certain extent.
The terms in (4) can be grouped into large-scale path

loss, including the mean path loss and the shadowing, and
small-scale path loss referring to F. This terminology is
derived from the scale in space and time, where severe
variations are expected to occur. The small-scale com-
ponent can show large fluctuations in a short period of
time as well as within few wavelengths. The correspond-
ing models are commonly denoted as channel models
[40, 41, 46–48]. They incorporate the effects of single-
input single-output (SISO) and multiple input multiple
output (MIMO) transmissions and may include corre-
lations over time and frequency. Modeling the influ-
ence of these effects is of interest when instantaneous
transmission characteristics are investigated. In the fol-
lowing, we focus on the long-term average trends of
the path loss, referring to the large-scale component
in (4). A survey on MIMO channel models is pro-
vided in [49] and is considered beyond the scope of the
paper.

2.3 Traditional path loss attenuation models
In literature, a substantial number of large-scale path
loss models have been reported. They can be categorized
into four groups: empirical models, deterministic models,
semi-deterministic models, and hybrid models. The main
distinctive characteristic of these models is the trade-off
between accuracy and complexity. While these models
aim at representing the large-scale component in (4),
they do not necessarily distinguish mean path loss and
shadowing.

2.3.1 Empirical models
Empirical models are typically obtained from measure-
ment campaigns in a certain environment and describe
the characteristics of the signal propagation by a deter-
ministic law or some RV. They can be characterized by
only few parameters and have found wide acceptance for
analytical studies and simulations.
Examples for empirical path loss laws include the COST

231 One Slope Model and the COST 231 Hata Model
[50]. The most famous example for a random abstraction
of large-scale path loss is log-normal shadowing, where
the effect of blockages is crammed into a log-normally
distributed RV. The variance of the distribution depends
on the environment and has to be determined by mea-
surements. Thus, the model is only valid for specific
scenario and requires and empirical calibration step. In
real-world scenarios, the locations of large objects will be
highly correlated [51]. Interference correlation in scenar-
ios with stochastic node locations (conf. Section 3.1) is
scrutinized in [52, 53]. The correlation in these papers is
almost exclusively obtained by the static locations of the
nodes, whereas the correlation of collocated blockages is
not taken into account [54]. The authors of [54] present
a correlated shadowing model by exploiting a Manhattan
Poisson line process. They provide a promising method
to better understand the generative processes that govern
the shadowing. On the other hand, the usefulness of their
approach is limited to Manhattan-type urban geometries.
Recent studies on blockage effects in urban environ-

ments indicate the dependency of shadowing on the link
length [54, 55]. It follows the intuition that a longer link
increases the likelihood of buildings to intersect with
it. Such propagation characteristics have also been dis-
cussed recently within the 3GPP [41, 56] and cannot be
reproduced by the log-normal model. As presented in
Section 2.4, they can be reflected by approaches based on
random shape theory.
The authors in [57] propose a multi-slope model, where

the path loss law itself is a piecewise function of the dis-
tance. A related approach is to distinguish between LOS
and non-line of sight (NLOS) conditions and to adapt
the path loss model accordingly. In this case, it is cru-
cial to decide whether a given link is in LOS or NLOS,
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depending on the link length [42]. A combination of the
multi-slope model and the distinction between LOS and
NLOS conditions is reported in [58].

2.3.2 Deterministic models
The goal of deterministic models is to represent the
characteristics of a specific scenario with high accuracy
and to include all basic propagation mechanisms. Con-
sequently, deterministic models are characterized by the
need for detailed site-specific information and large com-
putation efforts. Two classes of deterministic models have
been reported in literature. Finite-difference time-domain
models try to replace Maxwell’s differential equations
with finite-difference equations, thus exhibiting a certain
degree of abstraction. Geometry models rely on geomet-
ric rays that interact with the specified objects and are
also referred to as ray-tracing models [59, 60]. Due to the
fundamental dependency on site-specific information, it
is difficult to draw general conclusions from the attained
results.

2.3.3 Semi-deterministic models
Empirical and deterministic models form the two
opposing ends of the accuracy-complexity trade-off.
Combining both approaches leads to semi-empirical and
semi-deterministicmodels. These models still incorporate
some site-specific information while parameterizing other
parts of the model by results from measurement cam-
paigns. Some effects such as reflections may be ignored to
reduce the complexity of the model. A frequently applied
representative of semi-empirical models is the COST 231
Walsch-Ikegami Model [50]. A more recent, map-based
approach has been proposed in [61] within the scope of
the METIS 2020 project. It follows the concept that build-
ing heights are extracted frommap data and are then used
to estimate the path loss.

2.3.4 Hybridmodels
Hybrid models combine multiple of the previously dis-
cussed propagation models. This is especially benefi-
cial when scenarios contain sections with fundamentally
different propagation conditions. A classic example is
outdoor-to-indoor communication [62, 63], where the
output of a 3D semi-deterministic geometry model is
transformed into a 2D geometry model for describing the
indoor propagation.

2.4 Stochastic blockage models
In this section, we focus on a newly emerging class of path
loss models that describes attenuations due to blockages
by statistical parameters. These models can expediently
be used for indoor and outdoor scenarios, are mathemati-
cal tractable, and can be characterized by few parameters.
Their formulation is based on concepts from random

shape theory, which represents the formal framework
around random objects in space [64].
While we focus on large-scale blockages such as walls

and buildings, the authors of [45] show that the obstruc-
tion due to the human body can be modeled in a similar
way. Body blockage is particularly distinct in the mmWave
domain, where even the attenuation due to foliage affects
the signal propagation, as investigated, e.g., in [65].
Let O denote a set of objects on R

n, which are closed
and bounded, i.e., have finite area and perimeter. For
instance, O could be a collection of lines, circles, or rect-
angles onR

2 (conf. Fig. 2) or a combination of cubes inR3.
For each object in O, a center point is determined, which
has to be well-defined but does not necessarily relate
to the object’s center of gravity. Non-symmetric objects
additionally require to specify the orientation in space by
a directional unit vector. In the analysis of mobile cellu-
lar networks, the objects inO represent blockages such as
buildings and walls.
A random object process (ROP) is constructed by ran-

domly sampling objects from O and placing their corre-
sponding center points at the points of some point process
(PP). The orientation of each object is independently
determined according to some probability distribution.
In general, a ROP is difficult to analyze, particularly

when there are correlations between sampling, location,
and orientation of the objects. For the sake of tractabil-
ity, a Boolean scheme is commonly applied in literature
[29, 43, 44, 55, 66, 67]. It satisfies the following proper-
ties: (i) the center points form a Poisson point process

Fig. 2 Snapshot of a ROP with rectangular objects. Object centers are
distributed according to a PPP. Size and orientation of the objects are
determined from some distribution. Center and orientation of a
generic building B are indicated in the upper left corner of the figure.
Shaded area around X shows its LOS region
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(PPP); (ii) the attributes of the objects such as orienta-
tion, shape, and size are mutually independent; and (iii)
for each object, sampling, location, and orientation are
also independent. These assumptions of independence
enable the tractability of the analysis. On the other hand,
they omit correlations among blockages, as observed in
practical scenarios.
Let X and Y denote the locations of the receiver and the

transmitter, as indicated in Fig. 2. Further, let XY refer to
the path between the two nodes. In a Boolean scheme, the
number K of blockages crossing a link XY is a Poisson RV
with mean

E[K]= λB E[V (XY ⊕ B)] , (5)

where λB denotes the density of the blockage centers and
B ∈ O [55]. The operator ⊕ refers to the Minkowski
sum, which is defined as A ⊕ B = ⋃

x∈A,y∈B(x + y) for
two compact sets A and B in R

n, and V (·) is its volume.
The expectation in Eq. 5 is calculated with respect to the
objects in O thus yielding the Minkowski sum with the
typical building.
First note that E[K] will depend on the length |XY| of

the link. Another direct consequence of the model is the
probability that no blockage obstructs the link XY, also
referred to as LOS probability. It is obtained by apply-
ing the void probability of a Poisson RV: P[K = 0]=
exp(−λBE[V (XY ⊕ B)] ). Notably, the exponential decay
has been confirmed by measurement campaigns and has
also been incorporated into the 3GPP standard [41].
Let γk denote the ratio of power loss due to the kth

blockage. Then, the power loss caused by the blockages
in a Boolean scheme is given by � = ∏K

k=1 γk , where K
refers to the random number of blockages [55]. Assuming
that γk are independent and identically distributed (i.i.d.)
RVs on [ 0, 1] and K is a Poisson RV with means as given
in Eq. 5, the distribution of � is in general not accessible
in closed form. Recent approaches in literature therefore
resort to the moments of � [55, 67]. The nth moment of
� is obtained as E[�n]= exp(−λBE[V (B)] )(1− E[ γ n

k ] ).
Hence, on average, blockages impose an additional expo-
nential attenuation on the mean path loss (conf. (4)).
It is important to note that in this approach, reflec-
tions are ignored. They can implicitly be incorporated

by distinguishing between LOS and NLOS conditions
(cf. Section 2.3.1) and adapting the path loss exponent
accordingly [68].
To provide more intuition on this general result, we

present an application example along the lines of [66]. In
an indoor scenario, blockages are mainly constituted by
walls. We represent these walls by a ROP of lines with ran-
dom length and orientation. Then, the process is defined
by the triple {Xi, Li,�i}, where Xi corresponding to the
PPP of wall-center positions with density λW, Li is the wall
length, which is distributed according to some distribu-
tion fL(n), and �i denotes the wall-orientation, which is
uniformly distributed in [ 0, 2π). According to the intro-
duced framework, the number K of walls blocking a link
XY is a Poisson RV with mean

E[K]= 2λWE(L) |XY|
π

. (6)

On the one hand, this result exhibits the dependency
of E[K] on the link length |XY|. On the other hand,
it shows that the characteristics of a realistic environ-
ment can straightforwardly be incorporated into the
model, by adapting the parameter λW as well as the
distribution of Wi and �i, respectively. This informa-
tion can straightforwardly be extracted from real map
data. When using convex two-dimensional (2D) objects
instead of lines, the ROP is well suited to represent urban
environments [55, 67].
A comparison of the discussed models is provided in

Table 1. It includes necessary prior knowledge on the
environment, mathematical tractability, flexibility, and
accuracy. The next section elaborates on models for
abstracting the interference geometry.

3 Interference geometry
When designing a mobile cellular system, its main aspects
should hold across a wide range of deployment scenarios.
Transmitter locations are commonly abstracted to some
baseline model. For more than three decades, its most
famous representative, the hexagonal grid model, has suc-
cessfully withstood the test of time [16]. It has exten-
sively been employed in both academia and industry and
has found wide acceptance as a reasonably useful model

Table 1 Comparison of discussed signal propagation models

Prior environment knowledge necessary Mathematical tractability
Flexibility Accuracy

Empirical models Low � Low Low

Semi-deterministic models Medium � Medium Medium

Deterministic models High × Low High

Hybrid models Variable × Variable Variable

Stochastic models Medium � High Medium



Taranetz and Müller EURASIP Journal onWireless Communications and Networking  (2016) 2016:252 Page 7 of 20

to represent well-planned homogeneous BS topologies
[69–72].
In the context of heterogeneous networks, small cell

locations are oftentimes beyond the scope of network
planning and hence exhibit a more random nature
[3, 73–77]. Without preliminary information, the best
statistical assumption is a uniform distribution over
space, corresponding to complete spatial randomness
[78]. In this case, transmitter locations can conveniently
be described by some PP that further allows to lever-
age techniques from stochastic geometry. This powerful
mathematical framework has gainedmomentum in recent
years as the only available tool that provides a rigorous
approach for modeling, design and analysis of a multi-tier
network topologies [1, 4, 28–30, 33, 35, 55, 72, 79–85]. It
is also considered an important approach for scrutinizing
ultra dense networks (UDNs) in 5G topologies (see, e.g.,
[57, 58]).
Spatial randomness constitutes the philosophical oppo-

site of a regular structure. As a results, these two extreme
cases yield lower and upper performance bounds for any
conceivable heterogeneous network deployment [76].
The first part of this section elaborates on the lower per-

formance boundary, providing an overview on techniques
from stochastic geometry. The second part addresses the
upper bound, focusing on regular models and viewing
them in the broader context of deterministic structures. In
the third part of the section, a comparison in the form of
a case study is carried out. In the forth part, the impact of
channel access mechanisms is discussed. An overview on
interference geometry models is provided in Fig. 3.

3.1 Stochastic models
The roots of stochastic geometry date back to shot noise
studies of Campbell in 1909 [86, 87] and Shottky in 1918
[88]. In a planar network of nodes, which are distributed
according to some PP, interference can be modeled by
a generalized shot noise process [89, 90]. Key metrics
such as coverage and rate had not been determined at
this time. The idea of applying this framework for cel-
lular networks appeared in the late 1990s [4, 80, 81].
Comprehensive surveys on literature related to stochas-
tic geometry are already available, e.g., in [26, 75, 84].
For this reason, this section shall be confined to a selec-
tion of significant insights and shall outline limitations of
this framework, which have found much less attention in
literature.

3.1.1 Analysis of stochastic geometry
The analysis of stochastic geometry is based upon the con-
cept of abstracting BS locations to some PP. As a result,
it yields spatial averages over a substantial number of net-
work realizations. When the nodes of a homogeneous BS
deployment are distributed according to a PPP, i.e., they
are assumed to be uniformly scattered over the infinite
plane, and the fading is represented by i.i.d. non-negative
RVs, the PDF of the aggregate interference yields a skewed
stable distribution [1, 30, 91]. Yet, this is the only available
case in literature that leads to known interference statis-
tics. Still, except for a Lévy distribution, which is obtained
by assuming a path loss exponent of 4, it does not result in
any closed-form expressions for the aggregate interference
PDF [26].

Fig. 3Models for abstracting interference geometry. The interference geometry is affected by both the node locations as well as the channel access
scheme. Due to the myriad of works based on basic point processes, only survey literature is taken into account
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The success of stochastic geometry is rather rooted in
the fact that it provides a means for systematically evalu-
ating the Laplace transform of the aggregate interference,
as defined in Eq. 1. The enabling identity is the probabil-
ity generating function (PGFL): Let � denote an arbitrary
PP. Then, its PGFL formulates as

G[ g]= E

∏

×∈�

g(×), (7)

where g(x) : Rd →[ 0,∞) is measurable.
It proves particularly useful to evaluate the LT of the

sum
∑

×∈� f (×):

E

[

exp(−s
∑

×∈�

f (×)

]

= E

[
∏

×∈�

exp(−sf (×))

]

= G[ exp(−s f (·)] , (8)

which characteristically appears in the analysis of aggre-
gate interference with discrete node location models (con-
tinuous models will be explained in Section 3.2). The
function f (·) represents the received power from an
individual interferer at location ×. Consequently, I =∑

×∈� f (×). Since I is a RV that is strictly positive, its
LT always exists. It is important to note that the exact
expressions for the LT, MGF, and CF are only available
for basic PPs, encompassing PPP, binomial point process
(BPP), and Poisson cluster process (PCP). For other types
of PPs such as hardcore processes, only approximations
are available.

3.1.2 Performance evaluation
Due to the non-existence of the aggregate interference
PDF, it is generally not possible to derive exact perfor-
mance metrics such as outage probability, transmission
capacity, and average achievable rate. The authors in [26]
summarize five techniques to go beyond moments and to
model the network performance:

• #1: Resort to Rayleigh fading on desired link
[3, 92–102]

• #2: Resort to dominant interferers by region bounds
or nearest n interferers [85, 103]

• #3: Resort to Plancherel-Parseval theorem [104]
• #4: Directly invert the LT, CF, or MGF

[22, 30, 91, 105–107]
• #5: Approximate interference by known PDF [63]

Using technique #1, the highly cited paper of Andrews
et al. outlines three fundamental insights from the analysis
of stochastic geometry [3]:

• In comparison to an actual BS deployment, models
from stochastic geometry provide accurate lower
bounds on the performance, while grid-based models
yield upper bounds.

• With certain assumptions regarding path loss and
fading, simple expressions for the coverage
probability and the mean transmission rate can be
derived.

• When the network is interference limited, i.e., the
noise is considered negligible w.r.t. to the
interference, the SIR statistics are independent of the
BS density. Intuitively, the increasing aggregate
interference is perfectly compensated by the lower
average distance to the desired node.

The authors of [108] extended these results to heteroge-
neous cellular networks with an arbitrary number of tiers.
Despite all the benefits of the stochastic approach, there
are certain shortcomings one should be aware of when
applying this framework. In the following, we provide a
list with no claim to completeness.

3.1.3 Limitations
[Spatial averages] The analysis of stochastic geometry is
based on averaging over an ensemble of spatial realiza-
tions. When the point process is ergodic, this is equiv-
alent to averaging over a substantial number of spatial
locations. Performance metrics vary from one interferer
snapshot (i.e., realization of a point process) to another.
Hence, the averaging only provides first-order statistics
and is thus argued to hide the effect of design parame-
ters on the uncertainties due to such variations [26]. To
extend the analysis of stochastic geometry beyond spa-
tial averages, the authors in [109] identify three sources of
variability: (i) the variable distance between a node and its
associated user; (ii) the variable transmission probability,
which is particularly prominent in networks with con-
tending nodes (e.g., Wireless Fidelity (Wi-Fi) and carrier
sense multiple access (CSMA)); and (iii) the variability in
the likelihood of successful reception. In [110] and [109],
the full statistics of the SIR, also denoted as meta dis-
tribution of the SIR, and the throughput distribution are
approximated.

[Spatial correlations] A major disadvantage of stochas-
tic models is the difficulty to model correlations among
node locations [71, 111, 112]. Those appear when reflect-
ing topological and geographical constraints or account-
ing for the impact of network planning, which is not
expected to loose relevance for the macro-tier in 5G
networks. Therefore, it is considered imperative to inves-
tigate system models with a certain degree of regular-
ity. In fact, the simplest and most commonly used PP,
the PPP, assumes completely uncorrelated node locations.
In the context of stochastic geometry, regularity can to
some extent be reflected by repulsive PPs. Such processes
impose a certain minimum acceptable distance between
two BSs. When the exclusion region is fixed, the process
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is termed hardcore PP. When it is defined by a prob-
ability distribution, the process is denoted as softcore
PP. Hard- and softcore processes significantly complicate
the interference analysis due to the non-existence of the
PGFL. Therefore, they require to approximate the LT of
the aggregate interference or the PDF itself. Besides that,
the most promising representative, the Matérn hardcore
point process (HCPP), contains flaws that still have to be
addressed [113–116]. It underestimates the intensity of
points that can coexist for a given hardcore parameter.

[Measuring heterogeneity] Given a realistic node dis-
tribution, a particular challenge is to find a PP with the
same structural properties. An objective measure for the
degree of heterogeneity, also known as degree of cluster-
ing or clumping factor, should be independent of the
number of nodes and the size of the area, in which the
nodes are distributed as well as linear operations such as
rotating and shifting [117]. Classical statistics include the
J-function, the L-function [84], and Ripley’s K-function
[118–120]. While the J- and the L-functions are related
to inter-point distances, Ripley’s K-function measures
second-order point location statistics. Both metrics do
not allow to unambiguously identify different PPs. In [72],
the authors propose to apply the coverage probability as
a goodness of fit measure. Again, this measure does not
allow to discriminate different models.

[Asymmetric impact of interference] Another factor
that stalls the analysis of stochastic geometry is the incor-
poration of an asymmetric impact of the interference,
as indicated by the exaggerated interference scenario
in Fig. 4. With few exceptions, convenient expressions

Fig. 4 Exaggerated interference scenario with the exclusion region
around the origin. The gray square denotes receiver in center, and
black square indicates the receiver at eccentric location

are only achieved by assuming spatial stationarity and
isotropy of the scenario, i.e., a receiver being located in
the center. In [121, 122], the authors employ a fixed
cell approach for scrutinizing eccentric receiver locations.
Their method is shown to achieve accurate results only
in combination with an approximation of the interference
statistics by a Gamma distribution. Otherwise, notions
such as cell-center and cell-edge are generally not accessi-
ble in the analysis.

3.2 Deterministic structures
The broad acceptance of models based on stochastic
geometry has diverted attention away from the still ongo-
ing improvement of deterministic structures, with their
most famous representative being the hexagonal grid
model. They allow to reflect the impact of the network
planning, which might increasingly disappear with the
emergence of self-organizing networks (SON) [123–125],
and also account formore fundamental limitations such as
topological and geographical constraints. In this section,
we review efforts to facilitate the interference analysis
using these structures, even allowing to represent multi-
tier heterogeneous topologies.
Deterministic structures can broadly be categorized

into discrete and continuous models [126]. Discrete mod-
els are characterized by modeling each node individually.
The amount of nodes can either be finite or infinite and
the arrangement of nodes follows a certain structure such
as a circle or a grid, as illustrated in Fig. 5. Continu-
ous models assume the contributions from the interferers
to be uniformly distributed over a certain n-dimensional
geometric shape, such as a circle or a ring.

3.2.1 Discretemodels
Interference analysis in discrete models is based on eval-
uating the impact of each individual interferer on the
receiver and then aggregate them. The node locations are
commonly modeled along a finite or infinite regular struc-
ture, such as a square grid (also referred to asManhattan-
type model [127–131]) or a hexagon (see. e.g., [63, 132]),
as depicted in Fig. 5. It should be noted that realistic sce-
narios, which utilize data from network operators, such as
in [133–136], also belong to this class of models. Such data
may also include information about the boresight direc-
tions of the sector antennas, which is required for the
calculation of the path loss (conf. Section 2.1), as well as
the antenna tilting.
As explained in Section 2.1, signal propagation is usually

characterized by some deterministic law and a random
component accounting for the fading. Consequently, in
a discrete regular structure, the aggregate interference
can be viewed as a finite or infinite sum of weighted RVs
with the weights being straightforwardly obtained from
geometric considerations.
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a b c

d e f
Fig. 5 a–f Deterministic structures for abstracting node locations. The first row shows the discretemodels. The second row depicts continuous
approaches. Gray squares indicate a receiver in the center of a scenario. Black squares refer to receiver locations outside the scenario center

Certain fading distributions, such as Rayleigh, log-
normal, or Gamma, enable to exploit a myriad of lit-
erature on the sum of weighted RVs [47, 48, 137–152].
The majority of these reports make use of variants of
the CF or the MGF. When the receiver is located in
the center of a symmetric grid, as indicated by the
gray squares in Fig. 5, the weights are all equal or can
be summarized into groups. As a result, this scenario
often leads to closed-form expressions for the distribu-
tion of the aggregate interference, as demonstrated, e.g.,
in [153]. In the general case, when the receiver is located
outside the scenario center (conf. Figs. 4 and 5), the
weights are all different and the performance analysis
is stalled with an inconvenient sum of RVs. To over-
come this issue, two approaches are commonly applied in
literature:

• Scrutinize individual link statistics to gain
understanding on overall interference behavior
[13, 154, 155]. The focus of these models mainly lies
on link-distance statistics. While they do not lead to
convenient expressions for the moments and the
distribution of the aggregate interference, they allow
to evaluate arbitrary receiver locations in a cell.

• Approximate aggregate interference distribution by
known distribution [6, 9, 13, 14, 27, 32, 156–158]. It is
well-studied that the CLT and the corresponding
Gaussian model provide a very poor approximation
for modeling aggregate interference statistics in large

wireless cellular networks [30, 159, 160]. Its
convergence can be measured by the Berry-Esseen
inequality [161] and is typically thwarted by a few
strong interferers. The resulting PDF exhibits a
heavier tail than what is anticipated by the Gaussian
model [30]. Resorting to the approximation of the
aggregate interference distribution by a known
parametric distribution imposes two challenges: (i)
the choice of the distribution itself and (ii) the
parametrization of the selected distribution. Although
there is no known criterion for choosing the optimal
PDF, its tractability for further performance metrics
as well as the characteristics of the spatial model, the
path loss law, and the fading statistics advertise
certain candidate distributions [32].
A class of continuous probability distributions that
allow for positive skewness and non-negative support
are normal variance-mean mixtures, in particular the
normal inverse Gaussian distribution. The main
penalty of such generalized distributions is the need
to determine up to four parameters, which typically
exhibit non-linear mappings when applying moment
or cumulant matching [32]. Hence, it is beneficial to
resort to special cases with only two parameters.
Inverse Gamma, inverse Gaussian, log-normal, and
Gamma distribution have frequently been reported to
provide an accurate abstraction of the aggregate
interference statistics, e.g., in [32, 160, 162], [32, 160],
[151], and [32, 121, 163, 164], respectively.
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It is expected that discretemodels will play an important
role in 5G topologies for representing the regular part of
the network [152, 153].

3.2.2 From discrete to continuous
The discrete models discussed in the previous paragraph
aim at reproducing the actual site locations. The authors
in [152] propose to represent arbitrary BS topologies by
nodes along circles, where the nodes do not necessar-
ily represent physical sources. They rather correspond
to mapping points of an angle-dependent power profile,
as illustrated in Fig. 6. The authors provide a mapping
scheme that enables to accurately preserve the interfer-
ence statistics of fully random, heterogeneous topologies
with 10,000 and more BSs by some ten nodes. It corrob-
orates the intuition that the number of principal interfer-
ers is typically low and therefore allows to substantially
reduce the amount of interfering nodes with minor loss of
accuracy.
The contribution in [152] demonstrates that well-

defined structures with a finite number of nodes can
expediently be applied to represent massive heteroge-
neous BS topologies. Moreover, these models implic-
itly yield insights on the number of interferers that
mainly determine the characteristics of the interference
distribution.

3.2.3 Continuousmodels
Amainmerit of stochastic geometry is the transformation
of a summation of interference terms into an integration
over space by means of the PGFL (conf. Section 3.1). In
the context of regular structures, the natural relationship
between summation and integration has inspired the so-
called continuous-style approaches. Those are either line-
or area-based.
In line-based approaches, the power of the interfer-

ers is uniformly distributed along a line with a certain

shape. In [153], the model is constituted by a circle, while
in [165], it exhibits a flower-like shape to account for
the angle-dependent impact of the interferers, as illus-
trated in Fig. 5d. While the flower model achieves a better
accuracy than the circular model, the evaluation of the
results requires a numerical computation. The authors
of [165] also show the extension of the flower model to
a three-sector setup. The idea is to virtually shift the
user position at a certain angle according to the antenna
gain.
The area-based approaches incorporate power emission

density (PED)-based models and fluid models. The com-
mon idea is that the interfering nodes are considered
as a continuum of infinitesimal interferers distributed in
space. In the PED-based approach in [126], each interferer
is represented by an individual emitting area, as depicted
in Fig. 5e. The receiver of interest is located outside these
areas. When arranging the areas in a grid-based fashion,
the interference analysis again entails a summation rather
than simplifying to integrals. In fluid models, the receiver
of interested is placed within a ring, which represents
a round shaped network around a central cell, as illus-
trated in Fig. 5f and investigated in [5–7, 158, 166, 167].
The model is shown to yield good approximation for
hexagonal transmitter arrangements with both omni- as
well as sector antennas [5–7, 158]. The sectorization
is incorporated by (i) increasing the interferer density
of an omni-directional scenario in proportion to the
ratio between the omni-directional-cell surfaces and the
sector-cell surfaces, (ii) including the interference from
the other sectors belonging to the same site, and (iii)
accounting for the impact of the angle-dependent sec-
tor antenna gain on the path loss. Remarkably, the
authors in [5, 7] show that the OCIF of a sectorized
setup can be expressed as a linear function of the omni-
directional one. Noting that the fluid model relies on
the hypothesis of a regular network, the authors in [167]

Fig. 6 Circular interference model from [152]. Node locations along the circles do not necessarily represent physical sources but rather correspond
to mapping points
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show its applicability for representing PPP-based mod-
els by means of a correction factor. In principle, the
fact that the model allows to adjust the transmitter den-
sity makes it applicable for representing UDNs. This
technique has however not been pursued in literature
yet.
Similar to discrete models, a common way to obtain the

aggregate interference distribution when using continu-
ous models is to approximate it by a known distribution,
as described in Section 3.2.1. Then, the model is mainly
used for finding the parameters of the distribution, as
demonstrated, e.g., in [5, 153, 166].

3.2.4 Limitations
This section summarizes the limitations of determinis-
tic modeling approaches, most of which were already
implicitly discussed above.

• [Finite structures] A frequently stated weakness of
deterministic models, and in particular of discrete
approaches, is their limitation to represent only finite
networks with a low number of nodes [1]. Hence,
they tend to underestimate the interference. An
exception to this issue are fluid models, which allow
to specify an infinite outer radius.

• [Approximation by known distribution] In discrete
models, the PDF of the aggregate interference can be
determined by a weighted sum of RVs. With
exception to fully symmetric scenarios, in general,
this approach does not lead to closed-form results. As
discussed in Section 3.2.1, a commonly applied
solution is to approximate the interference cPDF by a
known distribution. Then, the model is mainly
exploited to determine the parameters of the
distribution. This technique has also been used in the
domain of continuous models, as described above.
According to Section 3.2.1, there is neither an optimal
way to select the PDF nor to calculate its parameters.

• [Representing spatial randomness] Deterministic
models are commonly designed to facilitate the
geometric treatment of the transmitter locations by
either arranging the nodes in a grid-based structure
or distributing them over a convenient structure.
Hence, they inherently reflect a high degree of
regularity, with three exceptions:

1. The node locations of the discrete model
represent the transmitters of a practical network.
In this case, the interference statistics can only be
evaluated via Monte Carlo simulations.

2. The circular interference model in [152] enables
to map arbitrary node locations onto circles with
equivalently spaced nodes. The approach has the
disadvantage that the mapping needs to be carried
out individually for each snapshot of the network.

Thus, it does not allow to represent a general
random topology, which is specified only by
statistical parameters.

3. According to [167], the fluid model allows to
accurately represent a PPP. The method requires
the application of correction factors, which are
only found empirically via simulations.

A comparison of the discussed interference geome-
try models is provided in Table 2. It shows whether at
least one approach has a tractable interference PDF and
whether the model exhibits spatial randomness and spa-
tial correlation, respectively.

3.3 Case study
In this section, the presented transmitter location models
are compared against practical outdoor BS deployments
by means of a case study. The goal is to evaluate
the average interference, which is experienced by a
receiver at distance r away from its desired BS. The
nodes are assumed to transmit with unit power and
to apply universal frequency reuse. The signal propa-
gation is abstracted by a log-distance-dependent path
loss law c−1 d−4, where d denotes the distance between
the transmitter and the receiver. Random fading is
omitted.
The practical BS deployments are obtained by extract-

ing openly available data from Ofcom’s Sitefinder1 for the
cities of London and Manchester. The selected area of
London has an area of 4 km2 and counts 319 BSs, yielding
an average cell radius of RC = 63.17m and a BS den-
sity of μ = 79.75 10−6 m2. In the city of Manchester, 37
BSs were counted in a selected area of 1.8 km2, resulting
in RC = 125.92m and μ = 20.56m2. The parameters
are summarized in Table 3. The results are obtained by
uniformly distributing users in the given area, associating
them with the closest BS, and determining the aggregate
interference as well as their distance to the associated BS.

Table 2 Properties of interference geometry models. Tractable
interference PDF denotes the fact that at least one approach
yields a closed-form solution for the interference PDF

Tractable Spatial Spatial
interference PDF randomness correlation

Basic point processes � � ×
Cluster point processes × � ×
Repulsive point processes × � �

Grid-based model � × �
Practical deployment × � �
Line-based × × �
Area-based × × �
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Table 3 BS deployment data as obtained from Ofcom’s Sitefinder
for the cities of London and Manchester

City London (A = 4 km2) Manchester (A = 1.8 km2)

Number of BSs 319 37

Avg. cell radius 63.17m 125.92m

A wrap-around technique is used to avoid interference
edge effect.
As a representative for a stochastic model (conf.

Section 3.1), the hybrid approach from [121] is applied. It
comprises a PPP of density μ, where the points of the pro-
cess are assumed to be excluded from a guard region of
radius 2RC. In order to account for the dominant inter-
ferer, a node is randomly placed at the boundary of the
guard region, i.e., a circle of radius 2RC. In such scenario,
the expected interference at distance r is found as

E[ I(r)]≈ 1
c (2RC − r)η

(
2πλ(2RC − r)2

η − 2
+ 1

)
(9)

Note that without the guard region, E[ I(r)] does not
exist for any value of r [1].
Next to the stochastic model, a discrete and a contin-

uous deterministic model (conf. Sections 3.2.1 and 3.2.3)
are investigated. The discrete deterministic model is rep-
resented by the commonly used hexagonal grid model.
The transmitters are spaced out by an inter-site distance
of 2RC and are distributed over a circular area of radius
10RC. The node at the origin is assumed to be the desired
BS. The interference at a certain distance r away from the
origin (0 < r ≤ RC) is obtained by averaging over all angle
positions between −π and π . The interference from the
first tier of interferers is exemplarily given as

E[ I(r)] =
∫ π

−π

1
2π

6∑

i=1

1
c

(
(2RC)2 + r2

−4RC r cos
(
2π
6
i − φ

))−η/2
dφ.

(10)

The continuous deterministic model is established by a
fluid model, as referred from [5]. It comprises an inner
radius of 2RC and an outer radius of 10RC. According to
[5], the interference at distance r is calculated as

I = 2πμ c
η − 2

(
(2RC − r)2−η − (10RC − r)2−η

)
. (11)

Note that the expressions in Eqs. 9 and 11 for the PPP-
basedmodel and the fluid approach are obtained in closed
form. The hexagonal grid requires a numerical computa-
tion, while the practical models need to be simulated.
Figure 7 shows the average interference power [W ]

over the distance r of the desired transmitter. The results
for the stochastic model as well as the fluid models are

obtained by plugging μ and RC from the practical scenar-
ios into Eqs. 9 and 11, respectively. The results for the
hexagonal model are achieved by using the values of RC as
the inter-site distance. It is observed that the grid model
yields the largest aggregate interference, while the fluid
model exhibits the smallest values. According to [167],
both models represent a regular distribution of nodes. In
the hexagonal model, the dominant nodes are more con-
centrated at the boundary of the guard region. For this
reason, it also yields a larger interference than the PPP-
based model, where only a single dominant interferer is
located at this boundary. Confirming results in [3], the
practical model lies in between the hexagonal grid and
the stochastic model, as it exhibits a certain degree of
regularity.
Next to the transmitter locations, the second factor that

impacts the interference geometry is the channel access
scheme, as discussed in the next section.

3.4 Channel access schemes
In a wireless system, a channel access scheme, fre-
quently referred to asmedium access control (MAC), con-
trols a transmitter’s admission to use certain resources,
e.g., time and frequency. It is either implemented such
that each node acts autonomously or in a coordinated
manner. In the presence of such scheme, a receiver
experiences a thinned version of the interference situa-
tion. Moreover, a MAC generally introduces correlations
among node locations and, thus, considerably compli-
cates the analysis (conf. Section 3.1). Therefore, it is fre-
quently neglected, amounting to the worst case, where
all transmitters contribute to the aggregate interference
[26, 75, 84, 127, 152, 153]. When a channel access
scheme is taken into account in the interference anal-
ysis, it commonly falls into one of the following two
categories:

• Exlusion region: The MAC is considered to establish
an exclusion region around the transmitter-receiver
pair, as indicated in Fig. 4. Such regions frequently
appear in studies on cognitive radio techniques
[92, 168–172].

• Independent thinning: The nodes are assumed to
access the resources randomly and independently of
each other. In the time-domain, this corresponds to
the procedures of the Additive Links Online Hawaii
Area (ALOHA) protocol [92, 173, 174]. This
approach is particularly useful, when the node
locations are modeled by a PPP. Then, by virtue of
the thinning property, applying a random scheme
again results in a PPP with different intensity [29].

In the next section, we discuss further aspects of inter-
ference analysis.
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a b
Fig. 7 Average interference power [W] as experience at a certain distance r away from the desired transmitter for the cities of London (a) and
Manchester (b) and various abstraction models

4 Further aspects
4.1 Integration
In principle, the abstractions in Section 2 and the models
in Section 3 represent independent tools and can thus be
combined in an arbitrary fashion. For example, one could
apply the hexagonal grid model (conf. Section 3.2.1) for
describing the BS locations and the ROP-based blockage
model (conf. Section 2.4) together with an empirical path
loss law (conf. Eq. 2.3) to characterize the signal propa-
gation. Stochastic blockage models also enable integrated
frameworks, as demonstrated, e.g., in [55, 67]. In such
frameworks, the blockages not only affect the signal prop-
agation but also impact the transmitter locations. As an
example, consider transmitters that are restricted to be
located outdoors. Then, a transmitter will be kept, if it is
not covered by a blockage, and discarded otherwise.

4.2 BS cooperation
BS cooperation is viewed as a key element for interference
management in mobile networks [132]. While not directly
affecting the large-scale signal propagation nor the BS
locations, it impacts whether a signal can be regarded as
desired, interfering, or negligible [152, 175, 176].

4.3 Indoor-outdoor partitioning
It is estimated that the majority of today’s mobile traf-
fic originates and is consumed indoors [177]. Scenarios
consisting of both indoor and outdoor environments have
not received much attention in analytical studies based
on stochastic geometry. With exception of [67], existing
approachesmostly neglect the wall partitioning [100, 105].
This mainly stems from the fact that the walls impose
inhomogeneities on the signal propagation. The authors of

[67] show that the wall partitioning considerably impacts
the coverage and rate performance of a typcial indoor user
in an urban two-tier heterogeneous cellular network.

4.4 Random displacement
The most tractable results in stochastic geometry are
obtained by assuming Rayleigh fading on the desired
link. Hence, the modeling environment corresponds to a
flat plane without any obstacles, as indicated in Fig. 8a.
The characterization of realistic signal propagation envi-
ronments often incorporates a separate shadowing term,
which is commonly modeled by i.i.d. RVs for simplicity.
This model has a very particular impact on the inter-
ference geometry. In [178], the shadowing RV are argued
to act as a random displacement of the node locations.
It is shown that displacing the nodes of a homoge-
neous PPP by i.i.d. RV again results in a homogeneous
PPP with different intensity. Hence, the spatial distribu-
tion of the nodes still exhibits the same characteristics
after applying the shadowing, thus not leading to further
insights.

4.5 Measuring the goodness of fit
A common method to verify assumptions that sim-
plify the interference analysis is a comparison against
Monte Carlo simulations. In order to quantify the good-
ness of fit between the actual interference distribu-
tion and its approximation, non-parametric tests, also
known as distribution-free inferential method, are com-
monly applied [152, 153]. Some of the most frequently
used approaches include the Anderson-Darling test, the
Cramér-von Mises criterion, and the Kolmogorov-Smirnov
test, among others.
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a b
Fig. 8Model environments of heterogeneous cellular networks. a Commonly used flat plane [26]. b Urban environment

4.6 Exploiting the third spatial dimension
The vast majority of existing abstraction models for
both interference geometry and signal propagation is
based on the fundamental assumption of 2D scenar-
ios. With the recent release of a 3D channel model for
the study of elevation beamforming and full-dimension
multiple-input multiple-output (MIMO) [41], the 3GPP
has made a clear statement for the future of wireless net-
work modeling. A considerable effort should be directed
towards augmenting the existing models by a third
dimension.

4.7 Millimeter wave transmissions
A framework for modeling blockages, as presented in
Section 2.4, currently gains relevance in the study of
mmWave transmissions (see, e.g., [179]), where blockages
are assumed to have a substantial penetration loss and
are therefore assumed to be impenetrable [55]. Conse-
quently, they form the so-called LOS regions, as illus-
trated in Fig. 2. The performance of such network yields
a delicate trade-off between blockage and transmitter
density [43, 44, 180]. Since the stochastic modeling of
transmitters and blockages follows a similar mathematical
framework, there combination is a straightforward task. A
combined model enables to relate parameters of the net-
work and the environment topology, e.g., transmitter and
building density. For example, in [67], this turns out to
be particularly useful for evaluating indoor and outdoor
coverage.

4.8 Massive MIMO
Studies on massive MIMO transmissions show that other-
cell interference may cease to be a major performance-
limiting factor in such systems [180, 181]. They follow the
intuition that a large array of antennas enables to form

sharp beams such that the desired and the interfering sig-
nal establish complementary spaces. Eventually, this may
lead to a paradigm shift in the performance analysis of
5G networks, where even the term cellular might lose its
meaning [179].

5 Conclusions
In this paper, we reviewed path loss attenuation and inter-
ference geometry models to characterize aggregate inter-
ference statistics in dense urban heterogeneous cellular
networks. First, we detailed the characteristics and draw-
backs of traditional path loss attenuation models. Then,
we focused on stochastic models that represent block-
ages by means of a random object process. We observed
that these models can directly be parameterized by real
world data and capture the dependence of blockage effects
on the link length. In the context of interference geome-
try, we observed that discrete models, while representing
the most basic method for interference evaluations are
also the major obstacle for yielding convenient expres-
sions for the aggregate interference statistics. We showed
that various limitations of stochastic approaches, such as
interference statistics at eccentric user locations or a cer-
tain degree of regularity among the node locations, can
be resolved by deterministic structures. It is our hope
that this paper provides a comprehensive view on network
interference analysis that inspires researchers to develop
new frameworks for evaluating the 5G.
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Inter carrier interference; ISI: Inter symbol interference; LOS: Line of sight; LT:
Laplace transform; LTE-A: LTE-advanced; MAC: Medium access control; MAI:
Multiple access interference; MCL: Minimum coupling loss; MCL [MCLs]:
Minimum coupling losses; MGF: Mobility generating functional; MIMO:
Multiple-input multiple-output; mmWave: Millimeter wave; NLOS: Non-line of
sight; OCIF: Other-cell interference factor; OFDMA: Orthogonal
frequency-division multiple access; OSG: Open subscriber mode; PCP: Poisson
cluster process; PDF: Probability density function; PED: Power emission
density; PGFL: Probability generating function; PP: Point process; PP [PPs]:
Point processes; PPP: Poisson point process; PPP [PPPs]: Poisson point
processes; ROP: Random object process; ROP [ROPs]: Random object
processes; RV: Random variable; QAM: Quadrature amplitude modulation;
SCM: Spatial channel model SIR: Signal-to-interference ratio; SISO: Single-input
single-output; SINR: Signal-to-interference-plus-noise ratio; SON:
Self-organizing network; TTI: Transmission time interval; UDN: Ultra dense
network; UE: User equipment WCDMA: Wideband code division multiple
access; Wi-Fi: Wireless Fidelity; WiMAX: Worldwide interoperability for
microwave access; WINNER: Wireless World Initiative New Radio
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