182 research outputs found

    Scaffold filling, contig fusion and comparative gene order inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes?</p> <p>Results</p> <p>Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes <it>Ricinus communis </it>and <it>Vitis vinifera</it>.</p> <p>Conclusions</p> <p>The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.</p

    The genome of the medieval Black Death agent (extended abstract)

    Full text link
    The genome of a 650 year old Yersinia pestis bacteria, responsible for the medieval Black Death, was recently sequenced and assembled into 2,105 contigs from the main chromosome. According to the point mutation record, the medieval bacteria could be an ancestor of most Yersinia pestis extant species, which opens the way to reconstructing the organization of these contigs using a comparative approach. We show that recent computational paleogenomics methods, aiming at reconstructing the organization of ancestral genomes from the comparison of extant genomes, can be used to correct, order and complete the contig set of the Black Death agent genome, providing a full chromosome sequence, at the nucleotide scale, of this ancient bacteria. This sequence suggests that a burst of mobile elements insertions predated the Black Death, leading to an exceptional genome plasticity and increase in rearrangement rate.Comment: Extended abstract of a talk presented at the conference JOBIM 2013, https://colloque.inra.fr/jobim2013_eng/. Full paper submitte

    Genome of an iconic Australian bird: High‐quality assembly and linkage map of the superb fairy‐wren (Malurus cyaneus)

    Get PDF
    The superb fairy-wren, Malurus cyaneus, is one of the most iconic Australian passerine species. This species belongs to an endemic Australasian clade, Meliphagides, which diversified early in the evolution of the oscine passerines. Today, the oscine passer-ines comprise almost half of all avian species diversity. Despite the rapid increase of available bird genome assemblies, this part of the avian tree has not yet been repre-sented by a high-quality reference. To rectify that, we present the first high-quality genome assembly of a Meliphagides representative: the superb fairy-wren. We com-bined Illumina shotgun and mate-pair sequences, PacBio long-reads, and a genetic linkage map from an intensively sampled pedigree of a wild population to gener-ate this genome assembly. Of the final assembled 1.07-Gb genome, 975 Mb (90.4%) was anchored onto 25 pseudochromosomes resulting in a final superscaffold N50 of 68.11 Mb. This high-quality bird genome assembly is one of only a handful which is also accompanied by a genetic map and recombination landscape. In comparison to other pedigree-based bird genetic maps, we find that the fairy-wren genetic map more closely resembles those of Taeniopygia guttata and Parus major maps, unlike the Ficedula albicollis map which more closely resembles that of Gallus gallus. Lastly, we also provide a predictive gene and repeat annotation of the genome assembly. This new high-quality, annotated genome assembly will be an invaluable resource not only regarding the superb fairy-wren species and relatives but also broadly across the avian tree by providing a novel reference point for comparative genomic analyses.Funding was provided by the Australian Research Council (DP150100298), and the office of the DVC (Research) at the Australian National University.

    Do echinoderm genomes measure up?

    Get PDF
    Echinoderm genome sequences are a corpus of useful information about a clade of animals that serve as research models in fields ranging from marine ecology to cell and developmental biology. Genomic information from echinoids has contributed to insights into the gene interactions that drive the developmental process at the molecular level. Such insights often rely heavily on genomic information and the kinds of questions that can be asked thus depend on the quality of the sequence information. Here we describe the history of echinoderm genomic sequence assembly and present details about the quality of the data obtained. All of the sequence information discussed here is posted on the echinoderm information web system, Echinobase.org

    Beyond Adjacency Maximization: Scaffold Filling for New String Distances

    Get PDF
    International audienceIn Genomic Scaffold Filling, one aims at polishing in silico a draft genome, called scaffold. The scaffold is given in the form of an ordered set of gene sequences, called contigs. This is done by confronting the scaffold to an already complete reference genome from a close species. More precisely, given a scaffold S, a reference genome G and a score function f () between two genomes, the aim is to complete S by adding the missing genes from G so that the obtained complete genome S * optimizes f (S * , G). In this paper, we extend a model of Jiang et al. [CPM 2016] (i) by allowing the insertions of strings instead of single characters (i.e., some groups of genes may be forced to be inserted together) and (ii) by considering two alternative score functions: the first generalizes the notion of common adjacencies by maximizing the number of common k-mers between S * and G (k-Mer Scaffold Filling), the second aims at minimizing the number of breakpoints between S * and G (Min-Breakpoint Scaffold Filling). We study these problems from the parameterized complexity point of view, providing fixed-parameter (FPT) algorithms for both problems. In particular, we show that k-Mer Scaffold Filling is FPT wrt. parameter , the number of additional k-mers realized by the completion of S—this answers an open question of Jiang et al. [CPM 2016]. We also show that Min-Breakpoint Scaffold Filling is FPT wrt. a parameter combining the number of missing genes, the number of gene repetitions and the target distance

    Heuristic algorithms for the Longest Filled Common Subsequence Problem

    Full text link
    At CPM 2017, Castelli et al. define and study a new variant of the Longest Common Subsequence Problem, termed the Longest Filled Common Subsequence Problem (LFCS). For the LFCS problem, the input consists of two strings AA and BB and a multiset of characters M\mathcal{M}. The goal is to insert the characters from M\mathcal{M} into the string BB, thus obtaining a new string B∗B^*, such that the Longest Common Subsequence (LCS) between AA and B∗B^* is maximized. Casteli et al. show that the problem is NP-hard and provide a 3/5-approximation algorithm for the problem. In this paper we study the problem from the experimental point of view. We introduce, implement and test new heuristic algorithms and compare them with the approximation algorithm of Casteli et al. Moreover, we introduce an Integer Linear Program (ILP) model for the problem and we use the state of the art ILP solver, Gurobi, to obtain exact solution for moderate sized instances.Comment: Accepted and presented as a proceedings paper at SYNASC 201

    The Apostasia genome and the evolution of orchids

    Get PDF
    Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth(1-3). Here we report the draft genome sequence of Apostasia shenzhenica(4), a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms

    Scaffolding Contigs Using Multiple Reference Genomes

    Get PDF
    Scaffolding is an important step of the genome assembly and its function is to order and orient the contigs in the assembly of a draft genome into larger scaffolds. Several single reference-based scaffolders have currently been proposed. However, a single reference genome may not be sufficient alone for a scaffolder to correctly scaffold a target draft genome, especially when the target genome and the reference genome have distant evolutionary relationship or some rearrangements. This motivates researchers to develop the so-called multiple reference-based scaffolders that can utilize multiple reference genomes, which may provide different but complementary types of scaffolding information, to scaffold the target draft genome. In this chapter, we will review some of the state-of-the-art multiple reference-based scaffolders, such as Ragout, MeDuSa and Multi-CAR, and give a complete introduction to Multi-CSAR, an improved extension of Multi-CAR
    • 

    corecore