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Abstract
In Genomic Scaffold Filling, one aims at polishing in silico a draft genome, called scaffold. The
scaffold is given in the form of an ordered set of gene sequences, called contigs. This is done
by confronting the scaffold to an already complete reference genome from a close species. More
precisely, given a scaffold S, a reference genome G and a score function f() between two genomes,
the aim is to complete S by adding the missing genes from G so that the obtained complete
genome S∗ optimizes f(S∗, G). In this paper, we extend a model of Jiang et al. [CPM 2016]
(i) by allowing the insertions of strings instead of single characters (i.e., some groups of genes may
be forced to be inserted together) and (ii) by considering two alternative score functions: the
first generalizes the notion of common adjacencies by maximizing the number of common k-mers
between S∗ and G (k-Mer Scaffold Filling), the second aims at minimizing the number
of breakpoints between S∗ and G (Min-Breakpoint Scaffold Filling). We study these
problems from the parameterized complexity point of view, providing fixed-parameter (FPT)
algorithms for both problems. In particular, we show that k-Mer Scaffold Filling is FPT
wrt. parameter `, the number of additional k-mers realized by the completion of S—this answers
an open question of Jiang et al. [CPM 2016]. We also show that Min-Breakpoint Scaffold
Filling is FPT wrt. a parameter combining the number of missing genes, the number of gene
repetitions and the target distance.
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1 Introduction

The recent development and continuous improvement of NGS technologies has increased our
ability to produce, rapidly and inexpensively, a first draft of any genome. However, the cost
of polishing such drafts to obtain a complete genome has not decreased at the same rate,
thus many species are left with a genome in its scaffold form: a scaffold may be represented
as a sequence of contigs (each being a contiguous sequence of genes), separated by unknown
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gaps, sometimes with an indication on the length of the gap. It is thus natural to ask for
methods that reconstruct the complete original genome starting from its scaffold form. This
is usually done with the help of a reference genome G, that is, the complete genome of a
close-enough species, in the following way: turn the scaffold S into a complete genome S∗
by adding, in between the contigs of S, genes that are present in G but not in S, in such a
way that some predefined score function between S∗ and G is optimized. The score function
is usually defined so as to follow the parsimony principle: when S∗ and G are as close as
possible, the score is optimized.

Formally, a genome G is a string built on some alphabet Σ (each character in the alphabet
representing a gene or gene family), and a scaffold S is defined as sequence (C1, . . . , Cm) of
contigs, where each Ci, 1 ≤ i ≤ m, is itself a string over Σ. For a string S of length n, we
let c(S) be the multiset of characters it contains, and a(S) := {S[i, i+ 1] | i ∈ [n− 1]} be the
multiset of adjacencies in S. By extension, if S is a scaffold, c(S) (resp. a(S)) denotes the
multiset of characters (resp. adjacencies) contained in the contigs of S. For two strings S
and T , let a(S, T ) := a(S) ∩ a(T ) denote the multiset of common adjacencies in S and T .
For a scaffold S and a multiset T of strings, we use S + T to denote the set of strings that
can be obtained from S by inserting the strings of T in between the contigs of S. The
One-Sided-Scaffold-Filling problem, introduced in [13], was the first serious attempt at
modeling scaffolds as a sequence of contigs with repeats.

One-Sided-Scaffold-Filling
Input: A complete genome G and a scaffold S=(C1, . . . , Cm) over alphabet Σ, and a
multiset T = c(G)− c(S) of characters.
Task: Find S∗ ∈ S + T s.t. |a(S∗, G)| is maximized.

Note that Jiang et al. [13] also considered the variant in which only a subset T ′ ⊆ T of
the letters of T needs to be inserted. In this paper, we study two alternative problems.

k-Mer Scaffold Filling. The first one generalizes both of the problems considered by Jiang
et al. [13] in several ways. First, we do not constrain the multiset of letters to insert to
be c(G)− c(S). Instead, the set T could contain letters in higher or lower multiplicity than
in c(G)− c(S). This is helpful if it is known, for example, that some genes occur in higher
multiplicity in the desired genome than in G. Second, we allow that T contains strings
instead of only letters. This allows to incorporate knowledge about the gene order that is
not present in the tuple of scaffold contigs. For example, one may now deal with contigs
whose position relative to the other contigs is not known. Third, we allow that the number
of strings to insert can be prespecified as an input constraint. More precisely, in our variant
the input contains two numbers t1, t2 and we search for a solution that inserts at least t1
and at most t2 strings from T . This way, one can guarantee for example that the size of the
resulting genome lies within some predetermined range. If we want all of T to be inserted
in S, it suffices to set t1 := |T | =: t2. The second variant of Jiang et al. [13] in which an
arbitrary subset of T may be inserted is obtained by setting t1 := 1 and t2 := |T |.

Finally, as similarity measurement we do not restrict ourselves to maximizing the number
of common adjacencies. Instead, we maximize, for a predetermined parameter k, the number
of common k-mers (the term k-mer is usually used for DNA strings; we thus extend its use
here in the context of gene sequences): indeed, as illustrated in Figure 1, a higher value of k
tends to increase the accuracy of the result.

For a string S of length n and a positive integer k, let ak(S) := {S[i, i+ k] | i ∈ [n− k]}
denote the multiset of k-mers in S. For two strings S and T , ak(S, T ) := ak(S) ∩ ak(T )



L. Bulteau, G. Fertin, and C. Komusiewicz 27:3

S :
(C1)
abcb

(C2)
aa

(C3)
b

(C4)
d

T : c a

G : a a b c a a b c b d

S∗
2 : abcbcaaabd

aa
aa
ab

ab
bc
bc

bd
ca
cb

a2(G)
= a2(S∗2 )
= a2(S∗2 , G)

S∗
3 : abcbaabcad

aab
caa
cbd

aab
abc
abc
bca
bcb

baa
cad
cba

a3(G) a3(S∗3 )

∩ : a3(S∗3 , G)

Figure 1 Left: an example instance of k-Mer-SF, for k = 2 and k = 3, with scaffold S containing
4 contigs, T containing 2 length-1 strings to be inserted, t1 = t2 = 2, and a reference genome G.
An optimal solution for k = 2 (resp. k = 3) inserts the strings from T as indicated by dotted
(resp. dashed) arcs to create S∗

2 (resp. S∗
3 ). Top-right: the 2-mers of S∗

2 and G: note that the
maximum number of common 2-mers is reached, although the strings S∗

2 and G are quite different.
Bottom-right: the 3-mers of S∗

3 and G (there are 5 common 3-mers). Note that neither solution is
optimal for both values of k, since |a2(S∗

3 , G)| = 7 < 9, and |a3(S∗
2 , G)| = 4 < 5. In this example, S∗

3
should be more relevant than S∗

2 , since the former can be obtained from G with a single transposition
event (by swapping factors aabca and abcb).

denotes the multiset of common k-mers in S and T . Note that counting common adjacencies
is the special case k = 2. The problem we are interested in is thus defined as follows (see
Figure 1 for an illustration with k = 2 and k = 3).

k-Mer Scaffold Filling (k-Mer-SF)
Input: A complete genome G and a scaffold S of contigs (C1, . . . , Cm) over alphabet Σ,
a multiset T of strings over Σ and integers, t1, t2 s.t. t1 ≤ t2 ≤ |T |.
Task: Find T ′ ⊆ T , t1 ≤ |T ′| ≤ t2, and S∗ ∈ S + T ′ s.t. |ak(S∗, G)| is maximized.

Min-Breakpoint Scaffold Filling. The second problem we study here differs from One-
Sided-Scaffold-Filling in two ways: first, just as k-Mer-SF, we allow that T contains
strings instead of only letters. Second, instead of maximizing the number of common
adjacencies, we aim at minimizing the number of breakpoints. We need additional definitions:
given two strings S and T such that c(S) = c(T ), thus of same length n, and a bijection
π : [n] → [n] such that S[i] = T [π(i)], the breakpoint distance wrt. π between S and T is
|{i | π(i+ 1) 6= π(i), 1 ≤ i < n}|. The string breakpoint distance between S and T , denoted
b(S, T ), is the minimum over all bijections π of the breakpoint distance of S and T wrt. π.
We are now ready to define our second problem, which is also illustrated in Figure 2.

Min-Breakpoint Scaffold Filling (Min-Bkpt-SF)
Input: A complete genome G and a scaffold S over alphabet Σ and a multiset T of
strings over Σ.
Task: Find S∗ ∈ S + T s.t. b(S∗, G) is minimized.

Note that there exists attempts at defining breakpoints in strings in the context of scaffold
filling [15, 16]. In that case, just as in permutations, breakpoints are defined as the dual of
common adjacencies. This differs from the present definition: in our case, there exist strings
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S :
(C1)
ab

(C2)
cdebcd

(C3)
bd

(C4)
ade

T : ac c e ec

G : c d e c b d c a d e a b a c b c d e e

S∗ : abac cde bcdee cbdcade

G : cde cbdcade abac bcdee

Figure 2 Left: an example instance of Min-Bkpt-SF, with scaffold S containing 4 contigs, T
containing 4 strings of length 1 and 2 to be inserted, and a reference genome G. An optimal solution
inserts the strings from T as indicated by dashed arcs to create S∗. Right: the resulting string S∗ is
at breakpoint distance 3 from G: the letters of S and G can be matched together to form 4 common
blocks (hence 4− 1 = 3 breakpoints).

S and T of length n such that a(S, T ) + b(S, T ) = n + k with k = Ω(n). Moreover, our
definition of breakpoints is of particular interest when S and T are very close: for instance,
the number of common adjacencies cannot discriminate the case S = T from S 6= T (take
e.g. S =aabbab and T =abaabb), whereas our definition of breakpoints does, and even allows
to estimate how S differs from T .

Finally, note that following the motivation in genomic scaffolding, we demand that no
insertions are made before C1 or after Cm. This variant is more general than the one where
insertions are allowed everywhere since we can simply add two additional contigs which have
letters not occurring in G, one in the beginning and one in the end. Then, there is always an
optimal solution that does not insert before the first or after the last contig.

k-Mer-SF and Min-Bkpt-SF are studied here from the parameterized (or multivariate)
complexity point of view [5, 8, 10]. The main parameters that will be used in the following
are: k, the length of the k-mers; ` := ak(S∗, G) − ak(S, G), the number of additional
common k-mers brought by completion; d, the duplication number, that is, the maximum
number of times a letter appears in G; m, the number of contigs in S; t2, the upper bound on
number of letters to insert; λ, an upper bound on the length of the strings in T ; b = b(S∗, G),
the sought breakpoint distance.

Related work and our contribution. Genomic Scaffold Filling (GSF) has been introduced
by Muñoz et al. [20] in 2010. The problem has initially been defined for permutations,
i.e. genomes are modeled as duplication-free sequences. Under this setting, GSF is polynomial-
time solvable for the DCJ distance [20] and for maximizing the number of adjacencies [16, 19]
(or, equivalently, minimizing the breakpoint distance). This method has been validated
through simulations and the comparison of two plant genomes [20].

When scaffolds are modeled as strings (thus allowing gene repetitions), it becomes
harder to compute relevant parsimony measures, hence almost all works are concerned with
maximizing the number of common adjacencies. In many cases with this model, the “contig”
constraint has been lifted, so that a scaffold has been modeled as a simple string, and
insertion can be done between any pair of consecutive letters. For GSF, Jiang et al. [17, 16]
showed the problem to be NP-hard, and from then on several approximation algorithms have
been given – the best to date achieves a ratio of 1.2 [14]. Bulteau et al. [3] showed that GSF
is FPT in the sought number of adjacencies `.

More recently, as in this paper, scaffolds were considered to be a sequence (C1, . . . , Cm)
of contigs. Jiang et al. [13] considered GSF under this model, again with the maximum
adjacency measure. They proved the problem to be NP-hard even if only two contigs
are given, gave a 2-approximation for the problem, and showed the problem to be FPT
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wrt. the combined parameter `, the number of sought common adjacencies, and d, the
duplication number. A short survey of the most recent results concerning GSF under the
maximum adjacency setting can be found in [21]. In particular, the following question was
raised [13, 21]: what is the FPT status of the problem when the parameter is the number of
adjacencies?

In this paper, we study k-Mer-SF and Min-Bkpt-SF from a parameterized complexity
point of view. In particular, we show that k-Mer-SF is W[1]-hard wrt. parameter t2, and
FPT wrt. parameter `, thereby answering the above open question positively. We also provide
a polynomial kernel for the parameter `+m for the case where t2 = |T |, λ = 1 and k = 2,
which corresponds to earlier definitions of the GSF problem. Concerning Min-Bkpt-SF, we
provide hardness results even in some restricted cases (e.g. when b = 0 and m = 2), and we
provide several FPT results wrt. combinations of some of the input parameters.

Preliminaries. For a string S, we use S[i] to denote the letter at position i and S[i, j] to
denote the substring starting at position i and ending at position j; if i > j, then S[i, j] is
defined as the empty string. We use Sk[i] := S[i, i+ k − 1] to denote the length-k substring
of S starting at position i. For two strings S and T we denote the concatenation of S and T
by S ◦T . For a multiset or tuple of strings S, we use ||S|| to denote the sum of the lengths of
the strings contained in S. We use [n] := {1, . . . , n} to denote the numbers from 1 through n.
For a multiset X over a universe U and an element u of U , let m(X,u) denote the multiplicity
of u in X. If m(X,u) ≥ 1, then we write x ∈ X, if m(X,u) = 0, then we write u /∈ X.
We extend the definition of functions in a natural way to work with multiset domains.
That is, a function f : X → Y with X a multiset is defined as a function fS : SX → Y

where SX := {(x, i) : x ∈ X, i ∈ [m(X,x)]} is a set containing, for each x ∈ X, m(X,x)
many different elements corresponding to x. We write f(x) := {fS((x, i)) : i ∈ [m(X,x)}]}
to denote the set of images of x. Throughout the paper, n := |G| will denote the length of
the input genome G both in k-Mer-SF and Min-Bkpt-SF.

For the relevant definitions of parameterized complexity theory, refer to [8, 10].

2 The Relation between k-Mer Scaffold Filling and Partial Set Cover

In the following, we describe a reduction from the following variant of Set Cover to
k-Mer-SF.

Partial Set Cover
Input: A family F = {F1, . . . , Fm} of subsets of a universe U = {u1, . . . , un} and
integers κ and τ .
Task: Find a subfamily F ′ ⊆ F of size at most κ such that |

⋃
Fi∈F ′ Fi| ≥ τ .

On the positive side, Partial Set Cover can be solved in (2e)τ · |U | · |F | time [2]. For the
parameter κ, however, Partial Set Cover is W[1]-hard [12].

I Lemma 1. For each k ≥ 2, there is a polynomial-time reduction from Partial Set
Cover to k-Mer-SF such that t2 = κ and |G| = O(n).

Proof. Given an instance of Partial Set Cover, construct an instance of k-Mer-SF
for k = 2 as follows. For each ui, introduce two letters ai and bi and introduce a further
letter x. Now let G be the string a1b1xa2b2x · · ·xanbn. Observe that each element in U

corresponds to exactly one adjacency in G.

CPM 2017
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Now, for each Fi ∈ F , construct a string Ti and add it to T . The string Ti contains the
substring ajbj for each uj ∈ Fi. More precisely, if Fi = {u1

i , . . . , u
q
i }, then Ti = a1

i b
1
i · · · a

q
i b
q
i .

Now add two contigs C1 = C2 = y to the scaffold S and set t1 = 0 and t2 = κ. This
concludes the construction of the k-Mer-SF instance. It remains to show the correctness of
the reduction, that is,

(F , κ, τ) is a yes-instance of Partial Set Cover ⇔ there is a solution S∗ of
(G,S, T , 0, κ) for k-Mer-SF such that |ak(S∗, G)| ≥ τ .

(⇒) Let F ′ be a solution of Partial Set Cover. Then, for each Fi ∈ F ′, insert the
string Ti in S (in arbitrary order) and denote the resulting string by S∗. Since the scaffold S
contains no letters from G, all adjacencies of G are missing in S. Let U ′ denote the elements
that are covered by F ′. For each uj ∈ U ′, there is some Fi containing uj and thus some Ti
containing the adjacency ajbj which is an adjacency of G. Thus, S∗ contains at least |U ′|
many adjacencies.

(⇐) Let S∗ be a solution such that |ak(S∗, G)| ≥ τ . Observe that every common adjacency
of S∗ and G is of the form ajbj , since all other adjacencies of G contain the letter x. Since
each adjacency is of the form ajbj , there are thus at least τ distinct indices j such that S∗
contains the adjacency ajbj . Moreover, every such adjacency is contained in some Ti ∈ T ′.
By construction of T , uj is contained in the set Fi. Therefore, the set F ′ := {Fi | Ti ∈ T ′}
covers at least τ elements of U . Since T ′ ≤ κ, there are thus at most κ sets in F that cover
at least τ elements of U .

To obtain the reduction for arbitrary k > 2, one may adapt the construction by repre-
senting each ui by a string of length k. J

Lemma 1 directly implies the following hardness result for the parameter t2 that bounds
the number of strings to insert.

I Corollary 2. For each k ≥ 2, k-Mer-SF is W[1]-hard with respect to the parameter t2.

Next, observe that Partial Set Cover is a special case of Set Cover. This implies
that Partial Set Cover does not admit a polynomial kernel with respect to |U | + κ

unless coNP ⊆ NP/poly [9]. Together with Lemma 1 and the facts that the decision version
of k-Mer-SF is contained in NP and that Set Cover is NP-complete, we thus obtain the
following.

I Corollary 3. For each k ≥ 2, k-Mer-SF does not admit a kernel with respect to |G|+λ+t2
unless coNP ⊆ NP/poly.

3 A Fixed-Parameter Algorithm for k-Mer Scaffold Filling

We now show how to solve k-Mer-SF in 2O(`) · nO(1) time. Let pk(S, G) := ak(G) \ ak(S)
denote the multiset of k-mers that is in G but not in the scaffold S. We call these the
potential common k-mers. Also, for a solution S∗ we will call the common k-mers of S∗
and G that are not k-mers of S the realized k-mers. The algorithm that we describe is
based on a combination of dynamic programming and color-coding [1]. It has running
time O(n2 · m · k3 · ` · |T | · 8.16` · 5.44t2). Thus, it is a fixed-parameter algorithm for
the combined parameter ` + t2. As the following reduction rules show, this also gives a
fixed-parameter algorithm for the parameter k + `.

I Reduction Rule 1. If t1 > k · ` + 1, then set t1 = k · ` + 1. If t2 > k · ` + 1, then
set t2 = k · `+ 1.
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Proof of Correctness. First, consider the change of t1. The reduction rule decreases the
value of the lower bound t1 for |T ′|. Thus, every feasible solution for the original instance is
a feasible solution for the reduced instance that realizes the same number of common k-mers.
To show correctness, we must thus only show that for every feasible solution of the reduced
instance, there is a feasible solution of the original instance that realizes the same number of
common k-mers. To this end, let T ∗ be an optimal feasible solution of the new instance and
let S∗ denote the resulting string. Let K := ak(S∗, G) \ (ak(S) ∪ ak(G)) denote the multiset
of potential common k-mers that are realized by S∗. By definition of `, we have ` = |K|.
Consider an injective mapping from K to the k-mers in S∗ that contain at least one position
from an inserted string T ∈ T ∗. Observe that the total number of positions in these k-mers
of S∗ is at most k · `. By pigeonhole principle, there is thus at least one string T ∈ T ∗ such
that none of the k-mers containing T is an image of the mapping. Now obtain a solution for
the original instance by adding t2− (k · `+ 1) strings from T \ T ∗ directly after T . This does
not affect any k-mers that are images of the mapping. Thus, the number of realized k-mers
does not decrease, and the decrease of t1 is correct.

Next, consider the case that the rule increases the value of the upper bound t2 for |T ′|.
Thus, every feasible solution for the reduced instance is a feasible solution for the original
instance that realizes the same number of common k-mers. To show correctness, we must
thus show that for every feasible solution of the original instance, there is a feasible solution
of the reduced instance that realizes the same number of common k-mers. To this end, let T ′
be an optimal feasible solution of the original instance and assume that T ′ is the smallest
among all optimal solutions. If |T ′| ≤ k · `+ 1, then T ′ gives also a feasible solution for the
reduced instance. Otherwise, as in the proof for the reduction of t1, there is at least one
string T ∈ T ′ such that none of the k-mers containing T is an image of the mapping from the
realized k-mers. Now obtain a solution for the original instance by removing T . This does
not affect any k-mers that are images of the mapping. Thus, the number of realized k-mers
does not decrease. Moreover, since t1 ≤ k · `+ 1, |T ′ \{T}| ≥ t1. Thus, |T ′ \{T}| is a feasible
solution for the original instance which contradicts the assumption that T ′ is a smallest such
solution. J

Color Coding. Somewhat deviating from the standard color-coding, we use two random
colorings α and β. Here, α : pk(S, G) → [`] is a coloring of the potential common k-mers
and β : T → [t2] is a coloring of the strings that may be inserted. The idea is that there is
a significant chance for the two random colorings that all of the realized common k-mers
and inserted strings have different colors. Under this assumption, we can use dynamic
programming on S to reconstruct a solution that realizes ` of the potential common k-mers.

Dynamic Programming. In the dynamic programming routine, we gradually find partial
solutions of increasing size, inserting strings from T into the scaffold in a left-to-right manner.
That is, we first insert between the first and second contig, then between the second and
third and so on. We use the coloring to avoid inserting some string of T twice. We fill a
five-dimensional table Q[i, j, κ, A,B] with 0/1-entries corresponding to partial solutions. In
this table:

the index i ∈ [m] corresponds to the set of contigs that precede the last character that
was inserted,
the indices j ∈ [|G|] and κ ∈ {0, . . . , k} are used to identify the longest common suffix
between the partial solution and G,

CPM 2017
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the color sets A ⊆ [`] and B ⊆ [t2] denote the colors of the k-mers that were realized and
the colors of the strings that were inserted.

We define the meaning of table Q as follows. A table entry Q[i, j, κ, A,B] = 1 if and only if
there is a set p′ ⊆ pk(S, G) and a set T ′ ⊆ T such that
1. α(p′) = A and |p′| = |A|,
2. β(T ′) = B and |T ′| = |B|,
3. there is a string S∗ ∈ Si + T ′ such that a(S∗, G) \ a(S, G) ⊆ p′ and Gκ[j] is the longest

common substring of G that is a suffix of S∗, among all substrings of length at most k
of G.

Here, Si := (C1, . . . , Ci) denotes the scaffold consisting of the first i contigs in the same
order as in S and Gκ[j] denotes the length-κ substring of G starting at position j. Before
we describe the recurrence in detail, consider the following. When extending a partial
solution S∗, we have two choices: either add a string from T at the end of S∗ or add the
next contig, that is, add Ci if the last contig in S∗ is Ci−1. The resulting string contains
additional k-mers as substrings and some of these k-mers may be potential common k-mers
with G. Clearly, to determine the set of additional k-mers it suffices to know the length-k
suffix of S∗ and the string that we add. The number of different length-k suffixes, however,
is |Σ|k. Therefore, storing these in a dynamic programming table would incur a substantial
overhead for both running time and space consumption. To be more efficient, we make use
of the following fact.

I Fact 1. Let S, T and G be strings such that the longest substring of S that is a suffix
of G has length at most κ, and let S′ = (S ◦ T )[i, j] be a substring of S ◦ T such that i ≤ |S|
and j > |S|. If S′ is a substring of G, then i ≥ |S| − κ.

Hence, the set of additional common k-mers of S∗ ◦ T and G are completely determined
by the combination of T and the longest suffix of S∗ that is also a substring of G. Finally,
the additional realized k-mers are those that are not yet realized by S∗. For our dynamic
programming table, we are thus interested in the k-mers that have a certain color set. To
determine the possible contribution of adding a string T we use a table P [j, κ,A, T ]. An
entry P [j, κ,A, T ] of P has value 1 if there is a surjective mapping

ψ : ak(Gκ[j] ◦ T,G)→ A

from the multiset of common k-mers of Gκ[j] ◦ T and G to the color set A ⊆ [`] such
that ψ(x) ⊆ α(x) for all x ∈ ak(Gκ[j] ◦ T,G). Otherwise, the entry has value 0. Informally,
the table P tells us whether adding T to a partial solution helps to realize potential k-mers
with the colors of A. If we add a contig Ci, then we may count only those common k-mers
that are not completely contained in Ci. Accordingly, the entries P [j, κ,A,Ci] have value 1
if there is a surjective mapping

ψ : (ak(Gκ[j] ◦ Ci+1, G) \ ak(Ci))→ A

such that ψ(x) ⊆ α(x) for all x ∈ ak(Gκ[j] ◦ T,G) \ ak(Ci).

I Lemma 4. The value of each entry of P can be computed in O(k · |T |+ |T | · |A|2) time if
the multiset of k-mers of G is stored in a trie.

Proof. First, in O(k + |T |) time, compute the string T ′ = Gκ[j] ◦ T . Then compute the
multiset ak(T ′, G) of common k-mers of T ′ and G. This can be done in O(k · |T |) time:
the number of k-mers in T ′ is at most |T | and for each k-mer, we may use the trie to
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check whether it is in G and to count the number of k-mers of T ′ that are equivalent. The
multiset of common k-mers is then given by determining for each k-mer, the minimum of the
multiplicities in T ′ and in G.

Now, we can determine whether there is a mapping ψ by computing a maximum matching
in the graph that is defined by the restriction of α to ak(T ′, G), that is, the bipartite
graph constructed as follows: For each k-mer K of ak(T ′, G) we introduce m(ak(T ′, G),K)
vertices corresponding to K; this gives one part VT ′ of the bipartition. The other part of
the bipartition is given by A. We draw an edge between v ∈ VT ′ and u ∈ A if v ∈ α(Kv),
where Kv is the k-mer corresponding to v. Then we compute a maximum matching in this
graph. Since this matching has at most |A| edges and since the graph has size O(|T | · |A|),
this can be done in time O(|T | · |A|2). If every vertex of A is contained in a matching edge,
then the table entry is set to 1, otherwise it is 0. J

With the table P at hand, we use the following recurrence to fill Q. Informally, the table
entry has value 1 if some string T or the next contig Ci can be used, together with a previous
partial solution, to realize common k-mers of the desired colors and if the resulting partial
solution has a suffix as specified by the values of j and κ.

Q[i, j, κ, A,B] =



1 ∃j′, κ′, A′ ⊆ A, T ∈ T :
Q[i, j′, κ′, A′, B \ β(T )] = 1∧
P [j′, κ′, A \A′, T ] = 1∧
Gκ[j] = len(G,Gκ′ [j′] ◦ T )

1 ∃j′, κ′, A′ :
Q[i− 1, j′, κ′, A′, B] = 1∧
P [j′, κ′, A \A′, Ci] = 1∧
Gκ[j] = len(G,Gκ′ [j′] ◦ Ci)

0 otherwise.

Here, for two strings S and T we use len(S, T ) to denote the longest substring of S that is a
suffix of length at most k of T .

I Theorem 5. k-Mer-SF can be solved in O(n2 ·m · k2 · |T | · 8.16` · 5.44t2) time.

Proof. The overall number of entries in P is O(n · k · |T | · 2t2). Each entry of P can be
computed in O(k · |T | + |T | · |A|2) time by Lemma 4. This gives an overall running time
of O(n·k2 ·||T ||·2t2 ·(t2)2) for filling P . The overall number of entries in Q is O(m·n·k ·2` ·2t2).
For each entry Q[i, j, κ, A,B], we consider O(n · k · 2|A| · |T |) cases in the recurrence. The
first two conditions of each case can be determined in O(1) time, the third condition can be
computed in O(1) time after a preprocessing in which we compute len(G,Gκ[j] ◦ T ) for each
combination of T , κ and j. This can be done in O(n2 · k · |T |) time overall. Thus, the total
running time for filling Q including preprocessing is O(n2 ·m · k2 · |T | · 3` · 2t2). After Q is
filled, we can determine whether there is a solution realizing ` potential common k-mers
by considering Q[m, j, κ, [`], B] for all B with t1 ≤ |B| ≤ t2. The overall running time of
the algorithm now follows from the number of trials that are necessary to obtain a constant
false-negative error probability, as shown by Alon et al. [1], these are exactly e`+t2 many. J

I Corollary 6. k-Mer-SF can be solved in O(n2 ·m · k2 · |T | · 8.16` · 5.44k`) time.
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4 A Polynomial Kernel for a Special Case

As an additional result, we obtain a polynomial problem kernel for the special case when t2 ≥
2` + 1, λ = 1 and k = 2 and the parameter is the combination of ` and m. Observe
that t2 ≥ 2`+ 1 essentially means that there are no upper-bound constraints on the solution
size. Thus, our kernel also works for the natural case that t2 = |T |. The details are given
in Appendix. Moreover, observe that even though the problem setting is very restricted
compared to the general k-Mer Scaffold Filling, it contains the GSF problem of Jiang
et al. [13] as a special case.

I Theorem 7. For k = 2, λ = 1 and t2 ≥ 2` + 1, k-Mer-SF admits a problem kernel of
size O(`3 · (`+m)2) that can be computed in polynomial time.

5 Minimizing the Number of Breakpoints

In this section, we consider the Min-Bkpt-SF problem. Another formulation of the string
breakpoint distance between S and T is via minimum common string partitions [7]. Intuitively,
the breakpoint distance is b if the strings S and T can each be partitioned into b+ 1 factors,
so that both partitions use the same multiset of factors. For example, strings aabcda and
bcaada have a breakpoint distance of 2 since they can both be partitioned into the size-three
factor set {aa, bc, da} (see also Figure 2 for another example). This distance is NP-hard
to compute [11], however, several FPT algorithms can be used. We will make use of the
following two:

An FPT algorithm for the parameter combining b, the breakpoint distance, and d, the
number of duplications of any letter [4];
An FPT algorithm for parameter b alone [6] (which is mainly of theoretical interest, as
the exponential running time on b is rather prohibitive).

We first give two NP-hardness results, each one using a different approach giving different
constraints on the values of the parameters. We then introduce two FPT algorithms using
|T | as a parameter (as well as the breakpoint distance b, and either the number of contigs m
or the duplication number d). Without parameter |T |, we show that the problem is in XP
for parameter b when all strings in T have length 1.

NP-hardness for |T | = 0, m = 1, and either d = 2 or |Σ| = 2. The first hardness
result below directly follows from the fact that the string breakpoint distance is hard to
compute. Hence, any parameterized algorithm needs to put some restriction on the target
distance b.

I Theorem 8. Min-Bkpt-SF is NP-hard with |T | = 0, m = 1 even when either d = 2 or
|Σ| = 2.

Proof. With an empty set T and a single contig C1, Min-Bkpt-SF comes down to computing
the breakpoint distance between two strings. It is NP-hard even in special cases of binary
alphabet [18], as well as when any letter occurs at most twice [11]. J

NP-hardness for m = 2 and b = 0. When b = 0, we look for a way of inserting strings of
T in S in order to obtain exactly G. This problem turns out to be NP-hard, hence, again,
any parameterized algorithm needs not only to put a bound on the the target distance b, but
also some restriction on the set of missing strings.
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I Theorem 9. Min-Bkpt-SF is NP-hard even when m = 2 and b = 0.

Proof. We propose a reduction from Unary Bin Packing:

Input: A list of n integers (x1, x2, . . . , xn), given in unary, integers B and k such that,
kB =

∑
xi.

Task: Find a partition (P1, . . . , Pk) of [n] such that, for all j ∈ [k],
∑
i∈Pj

xi = B.

We reduce to Min-Bkpt-SF as follows: let G = (10B)k1, S consist of m = 2 contigs C1
and C2 with C1 = C2 = 1, let T contain k− 1 strings 1 and strings 0xi for all i ∈ [n]. Finally,
set b = 0. Consider S∗ ∈ S + T ; S∗ yields a partition of [n] into k subsets Pj , where i ∈ Pj
if string 0xi from T is inserted between the (j − 1)th and jth string 1 of T (or before the
first/after the last for j = 1 and j = k respectively). Then b(S∗, G) = 0 if and only if each
Pj , j ∈ [k], is such that

∑
i∈Pj

xi = B. Conversely, any such partition of [n] yields a string
in S + T at distance 0 from G. Hence, the instance (S, T , G, b = 0) of Min-Bkpt-SF is a
yes-instance if and only if the original Unary Bin Packing instance is a yes-instance. J

An FPT Algorithm for the parameter (|T |,m, b). We now present an algorithm for the
case that the parameter combines the number τ of strings in T , the number of contigs m,
and the breakpoint distance b.

I Theorem 10. Min-Bkpt-SF is FPT for parameters |T |, b and m.

Proof. If we consider parameters |T | and m, then together they allow the exhaustive
enumeration of all possible strings in S+T : First, compute the |T |! possible arrangements of
strings in T , then split the resulting string into at most m blocks without breaking substrings
corresponding to the strings in T (this creates at most

(|T |
m

)
≤ 2|T | branches), then consider

all choices to insert them between the contigs of S (this creates at most 2m branches).
Once a candidate S∗ is known, it remains to compute the breakpoint distance with G in

time f(b)nO(1) [6]. Overall, this gives an FPT algorithm for parameters |T |, b and m. J

An FPT Algorithm for the parameter (|T |, d, b). The next algorithm is more efficient if
the number of duplications d is small and avoids the dependency on the contig number m.

I Theorem 11. Min-Bkpt-SF can be solved in time O((4|T |d2)|T |d2bbn2).

Proof. Given an optimal solution S∗, we call T -factor a maximal factor of S∗ containing
strings from T (a T -factor is the concatenation of all substrings inserted between two contigs).
A T -factor is left-joined (resp. right-joined) if there is no breakpoint to its left, i.e., between
the last letter of the previous contig and its own first letter (resp., to its right). A T -factor is
stand-alone if it is neither left- nor right-joined. We can assume wlog. that there is a single
stand-alone T -factor, as any two such factors can be inserted in the same gap between two
contigs, so that they are merged into one without increasing the distance.

The first step of our algorithm is to guess the T -factors (using |T ||T | branches). They
will be denoted f1, . . . , fh. For each T -factor, we guess whether it is left-joined, and whether
it is right-joined (using 4|T | branches). We first deal with the single stand-alone T -factor,
if any: guess the correct gap where it should be inserted (among m ≤ n choices), insert it
there and merge it with the surrounding two contigs. Consider now a T -factor fj , assume
that it is left-joined (otherwise it is necessarily right-joined, then processed symmetrically).
Let u be the first letter of fj . Guess the position i such that G[i] is matched to u (among d
options). Let u′ be the letter at position i− 1 in G. Since there is no breakpoint before u, fj
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must be inserted after a contig ending with u′. There are at most d such contigs, so we can
enumerate all options. There are at most d2 branches for each T -factor, and d2|T | branches
overall. The branching above allows to enumerate all candidate strings for a solution, it
remains to check whether any of them has breakpoint distance b to G. We compute this
distance for each candidate, using an FPT algorithm [4] with running time O(d2bbn). The
overall running time is O((4|T |d2)|T |d2bbn2). J

An XP Algorithm for the parameter b when λ = 1

I Theorem 12. Min-Bkpt-SF can be solved in time O(nb+1(b+ 1)!) when all strings in T
have length 1.

Proof. The algorithm runs as follows: first enumerate all possible positions of the breakpoints
in G, using |G|b branches. The optimal string S∗ can be guessed by trying all possible
rearrangements of the b+ 1 factors separated by breakpoints, using (b+ 1)! branches.

It remains to check that S∗ ∈ S + T , i.e., some filling of S gives S∗. This task is NP-hard
in the general case (see Theorem 9) however, it is straightforwardly achieved in linear time
when all strings in T have length 1: it suffices to check that all contigs in S are factors of S∗
in the correct order, and that T contains exactly the multi-set of missing letters. J

6 Conclusion

For k-Mer-SF, the most interesting direction seems to be to extend the problem kernelization
to more general cases by allowing either k > 2 (that is, considering k-mer distance for
general k), λ > 1 (that is, allowing the insertion of strings or letters), or considering the
case where the number of scaffold contigs is unbounded. For Min-Bkpt-SF it remains
open whether the problem is FPT for other parameters than |T |, for example m, b or d. We
conjecture that the FPT algorithm for MCSP with parameters b and d [4] can be extended
for our problem with this combination of parameters. Hopefully some new techniques might
reduce the complexity to achieve fixed-parameter tractability for b+ d or b+ ` only.

Finally, from a broader point of view, the problems that we consider here are fundamental
on strings. Indeed, they belong to a larger family of problems that can be described as
follows: Given a string G and a partial string S, complete the partial string S such that it is
as close as possible to G. Investigating this type of problems more systematically could be a
rewarding topic.
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A Kernelization Algorithm from Section 4

In this section, we present an kernelization algorithm for the parameter ` and the special
case when t2 =≥ 2`+ 1, λ = 1 and k = 2 and m is a constant.

To obtain a problem kernel, we need to reduce the size of three objects: the genome G,
the scaffold S, and the multiset T of letters that we may add. We will achieve this in two
steps: First, we will reduce the number of copies of letters in T and of copies of adjacencies
and the size of S. After this reduction step, we observe that it only remains to reduce the
number of different letters in the instance. Consequently, this is what we reduce in the
remainder of the algorithm.

Throughout the description of the algorithm, let x denote a letter that does not occur
in S and not in T and let y denote a letter that does not occur in G.

The first rule for the kernel removes superfluous copies of letters from T . It is obviously
correct, since no solution can add such letters.

I Reduction Rule 2. If T contains a letter b more than t2 times, remove a copy of b from T .

The next rule, Rule 3 aims at separating the adjacencies in G and keeping only the potential
adjacencies in G. This will be useful to reduce the size of G but also to reduce the size
of S, which is done by Rule 4. Recall that the potential common k-mers of an instance are
the k-mers which are contained in G not in S. For k = 2, we may speak of potential common
adjacencies. Also, for a solution S∗ we will call the common adjacencies of S∗ and G that
are not adjacencies of S the realized adjacencies.

I Reduction Rule 3. Let x be a letter that is not contained in any contig of S and not
contained in any string of T , and let p(S, G) := {P1, . . . , Pq} = a(G) \ a(S) denote the
potential common adjacencies of G and S. Replace G by P1 ◦ x ◦ P2 ◦ · · · ◦ Pq−1 ◦ x ◦ Pq.

I Reduction Rule 4. Let y be a letter not contained in G. Replace every contig Ci of length
at least 2 by Ci[1] ◦ y ◦ Ci[|Ci|].

I Lemma 13. Let I = (G,S, T , t1, t2) be an instance of k-Mer-SF, and let
I ′ = (G′,S ′, T ′, t′1, t′2) be the instance obtained from I by applying Rules 3 and 4 to I.
Then, I and I ′ are equivalent.

Proof. A solution for I realizing at least ` adjacencies, directly gives a solution for I ′ realizing
at least ` adjacencies: Every realized adjacency for I is from p(S, G) = a(G) \ a(S) and thus
contained in a(G′). Moreover, it is not contained in a(S ′) and thus it is a potential common
adjacency in I ′. Now since T = T ′ and since, for any solution of I, all realized adjacencies
contain either only letters from T or only the first or the last letter from some contig Ci,
they can be realized in I ′ as well by inserting the letters in the same order and between the
same contigs as in I. The converse direction follows from the same arguments. J
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Observe that after application of Rule 4, the scaffold has size O(m).
After separating the potential adjacencies in G with the help of Rule 3, we may now

speak of removing a copy of a potential adjacency bc from G, which means to replace

G = P1 ◦ y ◦ · · · ◦ Pi−1 ◦ y ◦ bc ◦ y ◦ Pi+1 · · · ◦ Pq

by

P1 ◦ y ◦ · · · ◦ Pi−1 ◦ y ◦ Pi+1 · · · ◦ Pq

for some arbitrary Pi = bc.

I Reduction Rule 5. If there is a potential adjacency bc that occurs more than ` times in G,
then remove a copy of this adjacency from G.

Proof of Correctness. Let I denote the original instance and let I ′ denote the instance
obtained by the application of the rule. We need to show only that if I has a solution, then
so does I ′, as the other direction is trivial. Thus, assume that I has a solution realizing at
least ` adjacencies. Choose an arbitrary multiset P of ` realized adjacencies and observe
that there is at least one copy of the adjacency bc in G that is not in P . Thus, removing
this adjacency from G gives a new genome G∗ such that a(G∗) \ a(S) ≥ |P | ≥ ` since the
adjacencies of P are contained in a(G∗). Since the multiset of potential common adjacencies
of G∗ and of the genome in I ′ are the same and since the scaffold S and the set T are not
changed by the rule, I ′ has a solution realizing at least ` common adjacencies. J

As the following lemma shows, we have already achieved the goal of the first step, that is, we
have reduced the number of copies of all letters in I.

I Lemma 14. Let I be an instance that is reduced with respect to Rules 1–5, and let c denote
the number of different letters occurring in G, S, and T . Then, |G| ≤ 3`c2 and ||T || ≤
c · (2`+ 1).

Proof. First, we bound the size of G. If the overall number of letters is c, then there are at
most c2 different adjacencies in G. Moreover, by the construction of G, every third adjacency
does not contain x. Thus, if |G| > 3` · c2, then there is some adjacency that does not contain
the letter x and that occurs more than ` times. This contradicts the assumption that the
instance is reduced with respect to Rule 5.

The bound on the total length of T follows from the fact that T contains at most c many
different letters, each of which occurs at most 2`+ 1 times since the instance is reduced with
respect to Rule 1 and 2. J

According to Lemma 14, to obtain a polynomial problem kernel it is sufficient to reduce the
number of letters in the instance to `O(1). Consequently, this is our aim in the second step
of the kernelization algorithm.

First, we remove those letters from G and T which are useless in the sense that they
occur in no adjacencies which can become common adjacencies of a solution S∗ and G.

I Definition 15. We call an adjacency bc realizable if bc occurs in G, and
b ∈ T and c ∈ T , or
b = Ci[|Ci|] and c ∈ T for some contig Ci, or
b = Ci[|Ci|] and c = Ci+1[1] for some contig Ci, or
b ∈ T and c = Ci[1] for some contig Ci.
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We now remove those letters that do not occur in realizable adjacencies.

I Reduction Rule 6. If |T | > t1 and T contains a letter b that occurs in no realizable
adjacency, then remove a copy of b from T .

If G contains an adjacency bc that does not contain x and that cannot be realized, then
remove bc from G.

The correctness of the rule above follows in a straightforward manner from the fact that we
will never insert a letter that is removed by the rule or realize an adjacency that is removed
by the rule.

For the final step of the kernelization, we build an auxiliary letter-adjacency graph H =
(V,E) as follows. For each letter in T , G, and S, add one vertex to H. Make two vertices b
and c adjacent in this graph if the adjacency bc or the adjacency cb is realizable. Observe
that after application of Rule 6, every vertex in H except x,y, and possibly the 2m − 2
vertices corresponding to letters of contigs, has at least one neighbor. Thus, our aim in the
following is to reduce the number of vertices in H that have at least one neighbor.

I Reduction Rule 7. Let M be a maximum matching in G. If |M | ≥ ` + 1, then answer
“yes”.

Proof of Correctness. We show how to construct a solution for the k-Mer-SF instance.
Let {{b1, c1}, {b2, c2}, . . . , {b`+1, c`+1}} be a set of `+ 1 edges contained in M and assume
without loss of generality that bici is a realizable adjacency for each i.

First, assume that for all i ∈ [`+ 1] either bi ∈ T or ci ∈ T . For each i, do the following.
If bi ∈ T and ci ∈ T , add bici between C1 and C2. If bi ∈ T and ci = Cj [1] for some Cj , then
add bi directly in front of Cj . If bi = Cj [|Cj |] and ci ∈ T , then add ci directly after Cj . The
set of inserted letters realizes at least `+1 adjacencies, since the `+1 pairs {bi, ci} are disjoint
and since for each we realize one adjacency. To obtain a feasible solution, insert t1 − (`+ 1)
further letters at an arbitrarily chosen position. This breaks at most one adjacency thus
giving a solution that realizes at least ` adjacencies.

If for some i, we have bi = Cj [|Cj |] and ci = Cj+1[1], then choose an arbitrary such i and
add all adjacencies bqcq with bq ∈ T and cq ∈ T between Cj and Cj+1. Add t1 − (` + 1)
further letters right before Cj+1. Insert all other letters as described above. The number of
realized adjacencies is at least `. All adjacencies of M except the adjacency bici are realized:
if at least one letter in the adjacency is from T , then they are realized because this letter is
inserted in the right position. If neither bj nor cj are from T , then the adjacency is realized
because no letters are inserted between the consecutive contigs that contain bj and cj . J

Now let V (M) denote the endpoints of the matching. We show that if |V \ V (M)| >
(2`+m) · |V (M)|, then we can safely remove some adjacency from G.

To apply the next rule, we build two bipartite graphs H1 and H2. In both graphs, the
vertex parts are B := V (M) and C := (V \ V (M)). In H1, we add an edge between b ∈ B
and c ∈ C when bc is a realizable adjacency. In H2, we add an edge between b ∈ B and c ∈ C
when cb is a realizable adjacency.

I Reduction Rule 8.
If there is a vertex b ∈ B of degree at least 2`+m+1 in H1, then remove the adjacency bc
from G, where c is an arbitrary neighbor of b.
If there is a vertex b ∈ B of degree at least 2`+m+1 in H2, then remove the adjacency cb
from G, where c is an arbitrary neighbor of b.
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Proof of Correctness. We show the correctness for the first part of the rule, the second
part is symmetric. Consider an instance before application of the rule and assume it has
a solution realizing at least ` adjacencies. If none of these adjacencies is bc, the adjacency
removed from G by the rule, then this solution directly implies a solution for the reduced
instance. Otherwise, fix an arbitrary minimal set P of positions containing a letter of the `
many realized adjacencies. Observe that |P | ≤ 2` and there are at most ` pairs of consecutive
contigs that have nonempty intersection with these positions. Now, consider the adjacency bc
that is contained in the solution but not contained in G. There are at least m+ 1 letters d
that are adjacent to b in H1 such that not all copies of d are contained in P . Of these, at
most m are letters from contings. Thus, there is a d such that d ∈ T and not all copies of d
are contained in P . Therefore, inserting d behind b destroys the adjacency bc, but instead
creates the adjacency bd. This adjacency is also contained in G and not realized by any
position of P . This restores the number of realized adjacencies to `. J

I Theorem 7. For k = 2, λ = 1 and t2 ≥ 2` + 1, k-Mer-SF admits a problem kernel of
size O(`3 · (`+m)2) that can be computed in polynomial time.

Proof. Consider an instance that is reduced with respect to all presented reduction rules.
By Lemma 14, our claim follows if we show that the number of letters in I is O(` · (`+m)).
This can be seen by considering the graph H: the graph H has O(m) vertices that have no
neighbors. The number of further vertices is O(` · (`+m)): After applying Rule 7, the size
of the matching M is O(`). Any vertex in H that is incident with at least one edge and not
an endpoint of M is adjacent to a vertex of M either in H1 or in H2. After applying Rule 8,
the number of these vertices is at most |V (M)| · 2 · (2`+m+ 1) = O(` · (`+m)). This gives
the bound on the number of vertices in G and thus on the instance size.

The running time follows from the fact that all reduction rules can be clearly performed
in polynomial time. J
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