23 research outputs found

    Performance Prediction Upon Toolchain Migration in Model-Based Software

    Get PDF
    Changing the development environment can have severe impacts on the system behavior such as the execution-time performance. Since it can be costly to migrate a software application, engineers would like to predict the performance parameters of the application under the new environment with as little effort as possible. In this work, we concentrate on model-driven development and provide a methodology to estimate the execution-time performance of application models under different toolchains. Our approach has low cost compared to the migration effort of an entire application. As part of the approach, we provide methods for characterizing model-driven applications, an algorithm for generating application-specific microbenchmarks, and results on using different methods for estimating the performance. In the work, we focus on SCADE as the development toolchain and use a Cruise Control and a Water Level application as case studies to confirm the technical feasibility and viability of our technique

    Proceedings of the Second NASA Formal Methods Symposium

    Get PDF
    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis

    Actes des Sixièmes journées nationales du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel

    Get PDF
    National audienceCe document contient les actes des Sixièmes journées nationales du Groupement De Recherche CNRS du Génie de la Programmation et du Logiciel (GDR GPL) s'étant déroulées au CNAM à Paris du 11 au 13 juin 2014. Les contributions présentées dans ce document ont été sélectionnées par les différents groupes de travail du GDR. Il s'agit de résumés, de nouvelles versions, de posters et de démonstrations qui correspondent à des travaux qui ont déjà été validés par les comités de programmes d'autres conférences et revues et dont les droits appartiennent exclusivement à leurs auteurs

    The 14th Overture Workshop: Towards Analytical Tool Chains

    Get PDF
    This report contains the proceedings from the 14th Overture workshop organized in connection with the Formal Methods 2016 symposium. This includes nine papers describing different technological progress in relation to the Overture/VDM tool support and its connection with other tools such as Crescendo, Symphony, INTO-CPS, TASTE and ViennaTalk

    Formal verification of automotive embedded UML designs

    Get PDF
    Software applications are increasingly dominating safety critical domains. Safety critical domains are domains where the failure of any application could impact human lives. Software application safety has been overlooked for quite some time but more focus and attention is currently directed to this area due to the exponential growth of software embedded applications. Software systems have continuously faced challenges in managing complexity associated with functional growth, flexibility of systems so that they can be easily modified, scalability of solutions across several product lines, quality and reliability of systems, and finally the ability to detect defects early in design phases. AUTOSAR was established to develop open standards to address these challenges. ISO-26262, automotive functional safety standard, aims to ensure functional safety of automotive systems by providing requirements and processes to govern software lifecycle to ensure safety. Each functional system needs to be classified in terms of safety goals, risks and Automotive Safety Integrity Level (ASIL: A, B, C and D) with ASIL D denoting the most stringent safety level. As risk of the system increases, ASIL level increases and the standard mandates more stringent methods to ensure safety. ISO-26262 mandates that ASILs C and D classified systems utilize walkthrough, semi-formal verification, inspection, control flow analysis, data flow analysis, static code analysis and semantic code analysis techniques to verify software unit design and implementation. Ensuring software specification compliance via formal methods has remained an academic endeavor for quite some time. Several factors discourage formal methods adoption in the industry. One major factor is the complexity of using formal methods. Software specification compliance in automotive remains in the bulk heavily dependent on traceability matrix, human based reviews, and testing activities conducted on either actual production software level or simulation level. ISO26262 automotive safety standard recommends, although not strongly, using formal notations in automotive systems that exhibit high risk in case of failure yet the industry still heavily relies on semi-formal notations such as UML. The use of semi-formal notations makes specification compliance still heavily dependent on manual processes and testing efforts. In this research, we propose a framework where UML finite state machines are compiled into formal notations, specification requirements are mapped into formal model theorems and SAT/SMT solvers are utilized to validate implementation compliance to specification. The framework will allow semi-formal verification of AUTOSAR UML designs via an automated formal framework backbone. This semi-formal verification framework will allow automotive software to comply with ISO-26262 ASIL C and D unit design and implementation formal verification guideline. Semi-formal UML finite state machines are automatically compiled into formal notations based on Symbolic Analysis Laboratory formal notation. Requirements are captured in the UML design and compiled automatically into theorems. Model Checkers are run against the compiled formal model and theorems to detect counterexamples that violate the requirements in the UML model. Semi-formal verification of the design allows us to uncover issues that were previously detected in testing and production stages. The methodology is applied on several automotive systems to show how the framework automates the verification of UML based designs, the de-facto standard for automotive systems design, based on an implicit formal methodology while hiding the cons that discouraged the industry from using it. Additionally, the framework automates ISO-26262 system design verification guideline which would otherwise be verified via human error prone approaches

    Types with potential: polynomial resource bounds via automatic amortized analysis

    Get PDF
    A primary feature of a computer program is its quantitative performance characteristics: the amount of resources such as time, memory, and power the program needs to perform its task. Concrete resource bounds for specific hardware have many important applications in software development but their manual determination is tedious and error-prone. This dissertation studies the problem of automatically determining concrete worst-case bounds on the quantitative resource consumption of functional programs. Traditionally, automatic resource analyses are based on recurrence relations. The difficulty of both extracting and solving recurrence relations has led to the development of type-based resource analyses that are compositional, modular, and formally verifiable. However, existing automatic analyses based on amortization or sized types can only compute bounds that are linear in the sizes of the arguments of a function. This work presents a novel type system that derives polynomial bounds from first-order functional programs. As pioneered by Hofmann and Jost for linear bounds, it relies on the potential method of amortized analysis. Types are annotated with multivariate resource polynomials, a rich class of functions that generalize non-negative linear combinations of binomial coefficients. The main theorem states that type derivations establish resource bounds that are sound with respect to the resource-consumption of programs which is formalized by a big-step operational semantics. Simple local type rules allow for an efficient inference algorithm for the type annotations which relies on linear constraint solving only. This gives rise to an analysis system that is fully automatic if a maximal degree of the bounding polynomials is given. The analysis is generic in the resource of interest and can derive bounds on time and space usage. The bounds are naturally closed under composition and eventually summarized in closed, easily understood formulas. The practicability of this automatic amortized analysis is verified with a publicly available implementation and a reproducible experimental evaluation. The experiments with a wide range of examples from functional programming show that the inference of the bounds only takes a couple of seconds in most cases. The derived heap-space and evaluation-step bounds are compared with the measured worst-case behavior of the programs. Most bounds are asymptotically tight, and the constant factors are close or even identical to the optimal ones. For the first time we are able to automatically and precisely analyze the resource consumption of involved programs such as quick sort for lists of lists, longest common subsequence via dynamic programming, and multiplication of a list of matrices with different, fitting dimensions

    Types with potential: polynomial resource bounds via automatic amortized analysis

    Get PDF
    A primary feature of a computer program is its quantitative performance characteristics: the amount of resources such as time, memory, and power the program needs to perform its task. Concrete resource bounds for specific hardware have many important applications in software development but their manual determination is tedious and error-prone. This dissertation studies the problem of automatically determining concrete worst-case bounds on the quantitative resource consumption of functional programs. Traditionally, automatic resource analyses are based on recurrence relations. The difficulty of both extracting and solving recurrence relations has led to the development of type-based resource analyses that are compositional, modular, and formally verifiable. However, existing automatic analyses based on amortization or sized types can only compute bounds that are linear in the sizes of the arguments of a function. This work presents a novel type system that derives polynomial bounds from first-order functional programs. As pioneered by Hofmann and Jost for linear bounds, it relies on the potential method of amortized analysis. Types are annotated with multivariate resource polynomials, a rich class of functions that generalize non-negative linear combinations of binomial coefficients. The main theorem states that type derivations establish resource bounds that are sound with respect to the resource-consumption of programs which is formalized by a big-step operational semantics. Simple local type rules allow for an efficient inference algorithm for the type annotations which relies on linear constraint solving only. This gives rise to an analysis system that is fully automatic if a maximal degree of the bounding polynomials is given. The analysis is generic in the resource of interest and can derive bounds on time and space usage. The bounds are naturally closed under composition and eventually summarized in closed, easily understood formulas. The practicability of this automatic amortized analysis is verified with a publicly available implementation and a reproducible experimental evaluation. The experiments with a wide range of examples from functional programming show that the inference of the bounds only takes a couple of seconds in most cases. The derived heap-space and evaluation-step bounds are compared with the measured worst-case behavior of the programs. Most bounds are asymptotically tight, and the constant factors are close or even identical to the optimal ones. For the first time we are able to automatically and precisely analyze the resource consumption of involved programs such as quick sort for lists of lists, longest common subsequence via dynamic programming, and multiplication of a list of matrices with different, fitting dimensions

    Curracurrong: a stream processing system for distributed environments

    Get PDF
    Advances in technology have given rise to applications that are deployed on wireless sensor networks (WSNs), the cloud, and the Internet of things. There are many emerging applications, some of which include sensor-based monitoring, web traffic processing, and network monitoring. These applications collect large amount of data as an unbounded sequence of events and process them to generate a new sequences of events. Such applications need an adequate programming model that can process large amount of data with minimal latency; for this purpose, stream programming, among other paradigms, is ideal. However, stream programming needs to be adapted to meet the challenges inherent in running it in distributed environments. These challenges include the need for modern domain specific language (DSL), the placement of computations in the network to minimise energy costs, and timeliness in real-time applications. To overcome these challenges we developed a stream programming model that achieves easy-to-use programming interface, energy-efficient actor placement, and timeliness. This thesis presents Curracurrong, a stream data processing system for distributed environments. In Curracurrong, a query is represented as a stream graph of stream operators and communication channels. Curracurrong provides an extensible stream operator library and adapts to a wide range of applications. It uses an energy-efficient placement algorithm that optimises communication and computation. We extend the placement problem to support dynamically changing networks, and develop a dynamic program with polynomially bounded runtime to solve the placement problem. In many stream-based applications, real-time data processing is essential. We propose an approach that measures time delays in stream query processing; this model measures the total computational time from input to output of a query, i.e., end-to-end delay

    Curracurrong: a stream processing system for distributed environments

    Get PDF
    Advances in technology have given rise to applications that are deployed on wireless sensor networks (WSNs), the cloud, and the Internet of things. There are many emerging applications, some of which include sensor-based monitoring, web traffic processing, and network monitoring. These applications collect large amount of data as an unbounded sequence of events and process them to generate a new sequences of events. Such applications need an adequate programming model that can process large amount of data with minimal latency; for this purpose, stream programming, among other paradigms, is ideal. However, stream programming needs to be adapted to meet the challenges inherent in running it in distributed environments. These challenges include the need for modern domain specific language (DSL), the placement of computations in the network to minimise energy costs, and timeliness in real-time applications. To overcome these challenges we developed a stream programming model that achieves easy-to-use programming interface, energy-efficient actor placement, and timeliness. This thesis presents Curracurrong, a stream data processing system for distributed environments. In Curracurrong, a query is represented as a stream graph of stream operators and communication channels. Curracurrong provides an extensible stream operator library and adapts to a wide range of applications. It uses an energy-efficient placement algorithm that optimises communication and computation. We extend the placement problem to support dynamically changing networks, and develop a dynamic program with polynomially bounded runtime to solve the placement problem. In many stream-based applications, real-time data processing is essential. We propose an approach that measures time delays in stream query processing; this model measures the total computational time from input to output of a query, i.e., end-to-end delay
    corecore