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Abstract

Changing the development environment can have severe impacts on the system behavior
such as the execution-time performance. Since it can be costly to migrate a software
application, engineers would like to predict the performance parameters of the application
under the new environment with as little effort as possible.

In this work, we concentrate on model-driven development and provide a method-
ology to estimate the execution-time performance of application models under different
toolchains. Our approach has low cost compared to the migration effort of an entire ap-
plication. As part of the approach, we provide methods for characterizing model-driven
applications, an algorithm for generating application-specific microbenchmarks, and re-
sults on using different methods for estimating the performance. In the work, we focus on
SCADE as the development toolchain and use a Cruise Control and a Water Level appli-
cation as case studies to confirm the technical feasibility and viability of our technique.
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Chapter 1

Introduction

Model Driven Development (MDD) is a software development approach where the source
code can be automatically generated from the models. MDD is used to build an abstract
representation of the system to improve productivity and communication among the man-
agers, architects, designers, and developers. Some modeling languages such as Unified
Modeling Language (UML), SysML, and modeling tools such as Eclipse modeling frame-
work plugins are used in MDD development [30]. MDD provides several improvements to
the development process of software. MDD reduces, for example, the cost of failure due
to technical implementation problems. The modeling software tool checks the errors and
produces valid models. MDD reduces the gap between domain experts and developers as
the models check for the compliance with the requirements. Changes can be easily made
to incorporate the business feedback into the models. The models are more intuitive than
the source code, and hide the technical challenges of the implementation [20)].

MDD requires specific toolchains to transform abstract models into executable code for
the target system. A toolchain is a set of software tools used to generate code, compile and
link, and it provides the binary code. In the context of real-time safety-critical applications,
a qualified toolchain assures that the assertions and requirements claimed at the top-level
are valid at the target programming language level.

Developers are reluctant to upgrade the toolchain while developing application models
because, among other things, even a small change in the toolchain can incur a migration
cost and can add complexity in building the program. Changes in the toolchain can
significantly affect the system behavior such as the execution performance of the program
created with one toolchain. Various factors might motivate the migration decision to a new
toolchain. For example, the new toolchain might offer new features that we want to benefit



from, or the old toolchain might lack support and maintenance. We focus in this work on
the performance parameters as the major decision factor of the migration. Predicting the
performance parameters, before migrating the model to the new toolchain, can significantly
help making the upgrade decision. Porting the application to a new toolchain should reflect
a deep understanding of the performance changes under the new toolchain. The lack of
structured and effective techniques to migrate the application to the new toolchain may
lead to engineering work and an expensive migration with uncertain outcomes. This issue
is critical in the embedded systems as the use of a new toolchain may also add safety and
security issues. The upgrade of a verified toolchain such as the SCADE Systems is more
difficult due to the strict requirements of the generated binary code [2,25].

We provide a framework to predict the execution-time performance of a model-driven
application on a new toolchain without migrating the entire application from the original
toolchain. As the migration cost is in principle proportional to the amount of engineering
work, our framework provides an automation process to extract and generate application-
specific microbenchmarks. The execution-time estimates are relevant for the toolchain
upgrade decision due to the trade-off between the cost and performance benefits. We
present an automated technique to efficiently analyze the application model with respect
to the new toolchain before the migration process as we can extrapolate and produce an
accurate prediction of the execution-time performance.

The remainder of this thesis proceeds as follows: Chapter 2 presents the problem state-
ment and outlines our approach. Chapter 3 defines the used technical terms. In Chapter 4,
we discuss several studies presenting ideas or techniques related to our work. Chapter 5
provides an overview of our developed tool. Finally, we describe our experimental setup in
Chapter 6 and results in Chapter 7. We discuss the validity and usability of our framework
in Chapter 8, followed by concluding remarks in Chapter 9.



Chapter 2

Overview

This chapter introduces the problem that our work addresses and provides an overview of
our proposed approach. Figure 2.1 illustrates the problem statement.

2.1 Problem Statement

Given two toolchains 77 and 75 and assuming a model has been developed and compiled
to an executable under 77, predict, with minimal porting effort expressed as the number of
changes in the model, the execution-time performance, in the same execution environment,
of the executable generated using 7s .

Given a performance prediction technique and a set of metrics, develop a systematic
method to compare the metrics and identify the optimal one for the application domain.

We refer to the solid lines path in Figure 2.1 as the anticlockwise path or inexpensive
path. It represents the workflow of our approach to estimating the performance parameters.
It is based on the extraction of metrics from the application model in 77 , and the generation
of application-specific microbenchmarks in 7;. The next step is the migration of the
microbenchmarks from 77 to 75. We explain the details of this path in Chapter 5. We
refer to the dashed lines path as the clockwise path or expensive path. It represents the
steps to follow if the entire application was migrated from 77 to 73, which is in principle
what we try to avoid for the purpose of performance prediction.
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Figure 2.1: Description of the problem statement

2.2 Ouwur Approach

Our proposed approach allows developers to avoid porting the entire application when they
face the decision of upgrading a development toolchain. Instead, we can predict, through
benchmarking analysis, the performance of the application under the new toolchain 7.
This estimation is done at an early stage and avoids the cost of the migration of the
entire application. The software artifacts such as the requirement, the specification, and
the design documents that describe the abstraction of the final software system should
be used to understand the application characteristics. To this end, we need to define the



properties of the application under toolchain 77 that have an impact on the performance
and derive application-specific microbenchmarks. To generate microbenchmarks that are
representative of the application model, we use software metrics that capture the features
and patterns in the application model that are relevant to its performance. Our approach
focuses on the performance of model-based application relative to a toolchain rather than
the application’s architecture or design.

Our approach is similar to a Monte Carlo simulation [35], in fact, we generate random
samples (application-specific microbenchmarks) to predict performance parameters. The
accuracy of the prediction is based on the quality of the samples to capture the performance
characteristics of the application. The purpose of using software metrics is to capture these
properties and generate representative samples.

Our framework follows the inexpensive path from Figure 2.1. The framework is based
on a set of tools that can automatically analyze the application, identify relevant character-
istics in the model, and generate microbenchmarks that are representative of the original
model. Users of the framework need to follow these steps:

1. Measure application model with characteristic metrics: The first step is to
take the application model and characterize the model using a set of metrics. In our
work we only use the ratio and network centrality metrics, however, other metrics
such as Cyclomatic complexity, Helastead complexity, and Fan In/Fan-out [20,37]
are also applicable.

2. Encode measurements in constraints: The next step is to use the measurements
and set up a series of constraints. These constraints will ensure that generated mi-
crobenchmarks are representative of the application model and maintain the original
performance-relevant properties.

3. Generate application-specific microbenchmarks: The constraints permit mul-
tiple solutions. Depending on the required precision of the prediction, users then
generate microbenchmark models from solutions to the constraint set. Being a sta-
tistical process, we can expect that increasing the number of microbenchmark models
will lead to a lower standard error in the prediction

4. Port microbenchmarks and generate code: The migration of the microbench-
marks to the new toolchain should be relatively straightforward compared to the
migration of the entire application model. Consequently, the porting effort will be
inexpensive with respect to the required engineering effort. After porting, the user
will compile the microbenchmarks on both toolchains and prepare the microbench-
marks for execution on the target platform.



5. Benchmark microbenchmarks on the target platform: By benchmarking the
different models under the two toolchains and analyzing the results, the user can
extrapolate an estimate of the execution-time performance of the entire application
as migrated under the new toolchain.

Case studies of the SCADE toolchain for MDD provide evidence that our approach
and framework are feasible. We used the Cruise Control and Water Level applications
developed under two versions of SCADE systems and compared the predicted results to
the migrated ones. Our estimates were reasonably accurate and correctly predicted that the
executions of the applications under SCADE 6 were faster with respect to the applications

under SCADE 5.

We remark that our approach does not predict the Worst-Case Execution Time (WCET).
The presented method and tool constitute decision support to lower the risk when consider-
ing switching between toolchains. They focus on predicting average expected performance
parameters while migrating toolchains and not on extremes like the WCET, which requires
additional analysis and optimization. WCET analysis is required once the entire model is
migrated to a different toolchain. For safety-critical systems, regulations most likely will
require that a new analysis be made upon any change in the system, regardless of any
estimates that would have been made prior to the changes.



Chapter 3

Background and Terminology

The SCADE Suite is a model-based development environment specifically tailored for
safety-critical systems and often used in the avionics domain. The SCADE Suite is an
integrated development environment that includes model-based design, simulation, verifi-
cation, and qualified code generation. As SCADE provides a synchronous approach for
reactive programs, it is suitable for developing safety-critical embedded software such as
automotive and avionics applications [15].

Estimation or Parameter Estimation is the process of obtaining an approximate value
of a parameter given available, and in general insufficient, data. In statistics, estimation
usually refers to finding a function f of an observation vector X such that the error | f(X)—
6| when estimating the parameter 6 given an observation X is minimized in some sense [39].

Information Extraction (IE) recognizes entities and relations from sets of data and
transforms them into structured representations. In this work, we focus on the extraction
techniques used to generate application-specific microbenchmarks from the application
models.

Maigration is the conversion of a model developed under one version of a toolchain to
either a new version of the same toolchain or a different toolchain. Unit, regression, and
integration tests should be performed to validate the migration and ensure the required
quality. The migration can affect the application behavior such as the performance pa-
rameters. The migration may be time-consuming, costly, and hard to perform manually.
The automation of the migration process could be used to reduce cost, but there are still
important challenges to migrate concrete models [35].

Application Model refers to a set of large and complex models developed for a spe-
cific domain such as aircraft engines. Building such an application model requires the
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integration of physical, mathematical, and computational models.

An application-specific microbenchmark or fingerprint model is a reduced size model
that shares common characteristics with the entire application model. Despite the fact that
the microbenchmarks are randomly generated, they are representative of the application
as they are constrained to a specified set of metrics extracted from the application.

Ratio metric is a software metric that consists of the fractions of each type of blocks
in a model. That is, for each type of block, the number of blocks of that type divided by
the total number of blocks is associated with the type. This metric does not consider 1/0
connections or the specifics of the design and structure of the model. Given a model, the
computational cost of extraction of the ratio metric is linear with the number of blocks.
We present a more detailed discussion and intuition on why this metric is relevant to the
performance analysis in Section 6.3.



Chapter 4

Related work

The notion of software metrics is one of the key aspects in our method, as it is what captures
the characteristics of a model that are relevant to its performance. Several studies exists in
the literature that deal with this idea in the context of programming languages [10, 18, 19].
These software metrics include: Lines of Code, Cyclomatic complexity, Healstead complex-
ity, Cohesion and Coupling, Fan-In/Fan-Out and NPath. The Cyclomatic complexity [37]
indicates the complexity of the application. It is computed based on the independent
paths in the application generated with conditional statements. NPath complexity [I3]
measures the number of possible outcomes from the application. It might be hard to com-
pute for large models that have nested conditional blocks. Fan-In/Fan-out [26] focuses
on the information flow and measures the connections among the application components.
Cohesion refers to the module responsibility and functionality as it expresses the degree
of interdependency between the elements of the module. Coupling refers to the degree of
dependency between the application modules. It explains the strength of the connection
between the modules. Though these studies look for metrics that describe and capture
the important characteristics of an application, like our work, they focus on program main-
tainability rather than performance and thus are not directly relevant to the problem that
we are addressing.

We reviewed the applicability of software metrics to SCADE models. The work in [32]
implemented a SCADE metric interpreter framework to extract the characteristics of the
SCADE models. Some other related software metrics such as controllability and observabil-
ity were presented in [16]. These metrics analyze the testability of the SCADE programs.
Testability metrics try to identify the different parts of the application that are critical,
prone to errors, and difficult to validate. Similar ideas have also been investigated in the



context of migrating legacy applications to modern programming languages with a focus
on the quality control of the application [31].

The survey [1] reviews research work that focuses on the performance prediction of
model-based applications. The proposed approaches address the integration of perfor-
mance analysis at early stages of the development process. Several works [23,11] review
model-based performance prediction approaches. These studies focus on the importance of
conducting performance analysis at different stages throughout the software development
cycle. Performance prediction requires a deep analysis of the system architecture from the
requirement and specification phase to the configuration and deployment phase. Several
works explore the performance requirements and try to predict the performance parameters
at early stages to identify the issues of the concrete integration [17]. Some approaches, such
as [27], focus on the application behavior after changes in source code and its impact on
the application environment, dependencies, and performance. By contrast, our approach
focuses on the changes introduced by the migration to a new toolchain.

Liu et al. [28] present an analytical approach that relies on stochastic modeling to
predict the performance parameters of component-based applications. Our approach is
statistical and based on measurement data from the actual target platform. The tool
SoftArch/MTE [21] focuses on the evaluation of test-beds generated under various ar-
chitectures of the application to help choose a particular architecture for the application
design. In contrast, we estimate the effect of the migration between toolchains for the same
application.

The use of an approach based on metrics for model-based applications was presented
in [29] to analyze the application and detect failures. Menkhaus et al. introduced the
network metrics (betweenness and closeness) in model-based developed application to in-
vestigate the stability of the application and its vulnerability to failure [29].

The approach of converting a model-based application to its graph representation is
a pre-processing step that is widely used to solve research problems. For example, Deis-
senboeck et al. used in [14] the graph representation to detect models clone of Simulink
models, while Agrawal et al. investigate in [1] the possibility of formally validating the
models by visualizing the graph representation.
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Chapter 5

Methods and Tools

We now present the implementation of the framework and the methods and tools support-
ing it. To be able to evaluate the feasibility and viability of our concepts, we developed
a tool that can generate application-specific microbenchmarks from a SCADE application
model. Figure 5.1 gives an overview of the process. We detail in this chapter the implemen-
tation of the workflow presented in Figure 5.1. We start by extracting the metrics from the
application models. We present in Section 5.1 the metrics used to analyze the application
and identify its characteristics, and the techniques used to extract them. We then describe
the process of encoding these metrics as constraints in the Clafer modeling language and
the use of a constraint solver to generate application-specific microbenchmarks.

5.1 Metrics

The metric choice is relevant to our study as it is the key factor to generate representative
microbenchmarks. We investigated several software metrics that are relevant to our study.
We present in this section the ratio and network metrics.

5.1.1 Ratio Metrics

The ratio metrics are intuitive metrics that captures the total number of blocks and their
data type. These metrics are intuitive and can be easily extracted.

e Static ratio is the fractions of each type of blocks in a model. Given a model, the
extraction of this metric is linear to the number of blocks in the model. There are

11
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Figure 5.1: Workflow generation

two methods to extract the static ratio for block-based languages. The static ratio
can be extracted from the SCADE model representation or its generated C code.
Each predefined block has a unique ID that identifies it. We used Tool Command
Language (TCL) scripts to navigate through the SCADE models and counts the
number of occurrence of each type of blocks in the model. For the second method of
extraction, we developed a script that parses the C code and counts the occurrence
of the predefined SCADE blocks. The script analyzes the C code without running it.

Dynamic ratio is the fractions of each type of blocks called during the execution of
the application model. We injected counters for each type of block into the C code.
Each counter is incremented every time its associated block is triggered. The dynamic
ratio captures only the executed SCADE blocks and ignores the non-executed ones.
To statistically execute all the possible application paths, we uniformly sampled
pseudo-random values as inputs across the application. However, we noticed that
SCADE 5 executed all paths of the application and the numbers of the counters
introduced by the dynamic ratio always produced the same numbers. We adjusted
the dynamic ratio for the SCADE 6 behavior.

Following, we present the entire process to extract the dynamic ratios:

12



1. Inject counters into the C code of the SCADE 5 application model.

2. Run the SCADE 5 application, extract the counters and compute the dynamic
ratio.

3. Generate SCADE 5 microbenchmarks and “temporary” SCADE 6 microbench-
marks.

Inject counters into the “temporary” SCADE 6 microbenchmarks.

Run the “temporary” SCADE 6 microbenchmarks n times with random inputs.
Extract new counters values from SCADE 6 microbenchmarks.

Extract the ratio from the new dynamic counters of all microbenchmarks.
Generate new SCADE 6 microbenchmarks.

Benchmark the SCADE 6 microbenchmarks generated at Step 8 and the SCADE
5 microbenchmarks generated at Step 3.

© 0 N> ok

5.1.2 Network Metrics

While the ratio metrics highlight the fractions of operators and the data type flow, the
network centrality metrics emphasize the interaction of each individual block with other
blocks and the impact of its operation on the computed data flow.

The network metrics aim to reflect the structure of the SCADE model by analyzing
each SCADE operator and capturing its importance within its environment. The network
metrics capture each block characteristics and its impact on the model structure. It is
different from the ratio metric as it investigates the effect of each block within blocks from
the same type. In other words, the ratio metric, for example, considers the Plus blocks
as an entity while the network metrics investigate each Plus block apart. We investigated
several metrics on the graph such as fan-in, fan-out, degree, closeness, betweenness, etc.
Some metrics were not relevant to our study. We excluded, for example, the fan-in metric
as the number of inputs for each category of blocks is fixed by the SCADE grammar
constraints. For example, all math, comparison, and Boolean blocks have two inputs while
conditional blocks have three inputs. In this sense, the fan-in metric fails to capture the
difference between the various blocks and their types.

Building the Graph Representation

To use the network metrics on model-based applications, we generated the graphs corre-
sponding to the models. SCADE is a modeling language that can be represented as a

13



graph. The SCADE blocks can be considered as nodes in the graph representation while
the connections between the nodes can be considered as edges.

We developed TCL scripts that capture the expressions and equations of the application
models. The scripts navigate through the application models and the library files. Based
on the UML meta-models of the SCADE language, the scripts identify the class of the
objects to report the inputs, constants, expressions and equations. The scripts can parse
the classes added by the user such as redefined types, structures, and constants. By running
the scripts, we can capture the entire structure of the models.

The graph representation provides an intuitive visualization of the model structure and
the interaction between its blocks. Building the graph requires parsing the information
reported by the TCL scripts. The graph generation tool parses the predefined SCADE
blocks and the local variables to build a dictionary of the connections between the different
blocks. The type of the SCADE blocks is captured based on the type of local variables,
constants or inputs. Using the collected information, we can generate the nodes and the
connections between them. The generated graph is a directed network. Figure 5.3 is an
example of a generated graph, which is equivalent to the SCADE model of Figure 5.2.

>

RegThrottleMax DL

Saturate
ZeroPercent
| AN {1 L >
| / i s ThrottleOut
Throttleln

Figure 5.2: Saturate Throttle SCADE model

The graph generation tool explodes recursively the models called by other models to
use only the primitive predefined SCADE blocks such as Plus, Minus, Multiply, AND, etc.
Figure 5.7 shows an example of the graph of the SCADE model presented in Figure 5.4.
Figure 5.7 is the graph of the Throttle Regulation model. It reflects the call to the Saturate
Throttle model as it includes its graph presented in Figure 5.3. The tool generates the
graphs in Graph Modeling Language (GML) and Graph Description Language (DOT)
representations for usability purposes. The use of these formats made the generated graphs

14
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Figure 5.3: Saturate Throttle graph representation

compatible with various analysis and drawing tools. We present in Listing 2 the Saturate
Throttle model in DOT representation.

The models presented in Figure 5.3 and Figure 5.4 are developed by ANSYS SCADE [10]
and are provided as example models.

We focused on centrality metrics [22], which determines the importance of a node in the
graph. The term importance is subject to various interpretations. We present the centrality
metrics that aims to investigate the importance of the data flow of the SCADE blocks and
the importance of the SCADE operators within the SCADE model. The centrality metrics
assign a real value to the nodes, which reflects its importance weight. To extract the
network metrics, we used the Python package Networkx, which provides several methods
to construct, analyze and study complex networks.

e Fan-out of a node refers to the number of edges pointing out of the node [26]. The
fan-out metric is important as it reflects the number of SCADE blocks and model
outputs that depend on the data flow generated by the operator. The extraction of
the fan-out metric is linear to the number of blocks.

15
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Figure 5.4: Throttle Regulation SCADE model

e Page Rank is a Google search algorithm used to rank web pages based on the count
and the quality of its incoming links [33]. The algorithm assigns higher values to
the most referenced pages. PageRank highlights the most referenced blocks in the
model, the relevant ones of the model structure.

e Closeness of a node is the inverse of the sum of shortest path distances from a
given node to the entire nodes in the network [31]. In our study, the closeness metric
reflects the importance of a SCADE block to communicate the generated data flow
to other SCADE blocks. A large closeness value for a particular node implies that
the data flow would navigate a short distance to impact the model.

e Betweennes of a node measures the number of times the node acted as an inter-
mediate in the shortest path between two other nodes [21]. In other words, given a
node, betweenness reflects the number of pairs of nodes that has the selected node
in the shortest path to reach one another. Betweenness reflects the strength of the
connection between a SCADE block and the other blocks in the model.

e Eigenvector measures the influence of a node on the network [6]. It is based on the
assumption that each node’s centrality is the sum of the centrality values of the nodes
that it is connected to. The eigenvector metric reflects the centrality of a given node
with respect to all other nodes in the graph as it weights each connexion between the
nodes.

Table 5.1 shows the result of the described network metrics for the Throttle Regulation

16



model presented in Figure 5.4

\ Fan-Out \ PageRank \ Closeness \ Betweenness | Eigenvector

ifelse_Real 7 2.857 6.123 15.870 27.924 23.577
ifelse_Real 2 2.857 4.700 12.895 6.579 23.511
ifelse_Real_3 2.857 6.570 13.940 16.959 28.698
inputs_ThrottleRegulation 8.571 0.967 21.126 0 0

minus_Real 2 5.714 1.516 22.088 3.801 0

fby_Bool 2 2.857 5.114 14.529 26.608 30.155
outputs_ThrottleRegulation 0 5.114 0 0 30.155
inputs_SaturateThrottle 8.571 7.502 17.484 35.965 16.876
ifelse_Real 8 2.857 6.404 12.429 4.971 27.607
constants_ThrottleRegulation 14.286 0.967 24.951 0 0

or_Bool._1 2.857 3.771 13.940 13.450 20.632
plus_Real_3 5.714 11.761 17.484 35.088 35.310
plus_Real 2 2.857 7.688 15.870 37.135 21.585
multi_Real_1 2.857 1.776 14.803 7.310 0

multi_Real 2 2.857 6.130 14.529 26.608 27.607
strictlyLess_Real_1 5.714 3.298 16.118 6.579 13.195
fby_Real_3 2.857 6.576 14.529 4.240 21.585
strictlyGreater_Real_1 5.714 3.298 14.529 12.865 13.195
outputs_SaturateThrottle 5.714 9.757 15.170 33.333 38.569
constants_SaturateThrottle 11.429 0.967 20.776 0 0

Table 5.1: Network metrics of the Throttle Regulation model

After extracting the metrics, we encode them as constraints. We focus on the static
ratio metric as an example to detail the process of generating microbenchmarks as shown
in the workflow of Figure 5.1.

Figure 5.5 is an example of a SCADE model. It has six math operators, one comparison
operator, and one Boolean operator. Based on the presented metrics, we encode the
metamodels of the modeling language and the metric extracted values as a set of constraints
and feed them into a solver. We use Clafer [3] as the constraint language and its associated
solver, which is based on the Choco constraint solver. Table 5.2 shows block occurrence
and ratio data for the model in Figure 5.5.

Given the extracted measurements in Table 5.2, we produce constraints for the solver
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Figure 5.5: SCADE model example

tool. For example, given that the size of the microbenchmarks is n, the number of Plus
operators would be 50% = n, the number of Multiply operators would be 25% * n, and the
number of And operators would be 12.5% * n

‘ Occurrence ‘ Ratio

Plus 4 50%
Multiply 2 25%
LessOrEqual 1 12.5%
And 1 12.5%

Table 5.2: Extracted measurements data

Clafer (class, feature, reference) is a lightweight modeling language with first-order re-
lational logic. The Clafer compiler takes a model written in the Clafer modeling language
as input and does some processing before invoking a backend solver to output instances
conforming to the input model. Multiple solvers are supported such as Boolean SAtisfi-
ability (SAT), Satisfiability Modulo Theories (SMT), and Constraint Satisfaction Prob-
lem (CSP). In this work, the input is a SCADE metamodel written in Clafer, conjointed
with the metric data constraints, and the output is a random SCADE model generated by
the CSP solver.

Listing 5.1 shows an example of the Clafer representation of the constraint: we want to
generate exactly one addition operator either integer or real. We only show the constraints
in Listing 5.1; while a minimized description of the SCADE modeling language can be
found in Listing 1. Line 1 in Listing 5.1 specifies that plus_Int is an instance of the class
MathBlockInt. The cardinality constraint 0..n indicates that we would like to generate
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between 0 and n instances. Line 3 represents the constraint the sum of the number of
instances of plus_Int and the number of instances of plus_Real must be equal to 1.
plus_Int : MathBlockInt 0..1

plus_Real : MathBlockReal 0..1
[#plus_Int + #plus_Real=1]

Listing 5.1: Metric data encoded in Clafer

Clafer generates random solutions, subject to the metric data and SCADE metamodel
constraints, which we parse and convert to textual SCADE language. Textual SCADE is
a declarative language; each line defines an element (e.g., one connection) in the model
structure. Thus, the order of the lines is usually not relevant as in the case of imperative
languages such as C.

For each set of constraints, we generated multiple random microbenchmarks. This is
necessary to obtain a statistical characterization of the microbenchmark models’ perfor-
mance, which is necessary for the prediction. Listing 5.2 shows an example of the textual
representation of one generated microbenchmark in the SCADE language. In this example,
the first line indicates that we have an addition between the inputs intlnputl and intlnput2,
and the result is stored in the variable plus_Int0.

function microbenchmark( /+ Inputs , Outputs */)
var

/* Local variables x/

let

/* Update inputs x/

plus_Int0 = intInputl 4+ intlnput2;
plus_Intl = plus_.int0 + intInput3;
and_Bool0 = boollnput2 and lessOrEqual_IntO;
lessOrEqual_Int0 = multi_Int0 <= plus_Int0;

multi_Int0 = plus_Intl % intInput4;
multi_-Intl = intInputb % plus_Int0;
/+* Update outputs x/

tel

Listing 5.2: SCADE code of a sample microbenchmark

We generated C code using the toolchains KCG5.1 and KCG6.4 to compare the perfor-
mance of the two toolchains. KCG is the automated code generator tool used to generate
C code from SCADE models. KCG5.1 is the code generator tool used for SCADE 5 mod-
els, and KCG6.4 is the code generator tool used for SCADE 6 models. We automated
the entire process flow to run the experiments. The scripts encode the metric, extract the

19



application characteristics, generate SCADE microbenchmarks, run the SCADE checker,
fix any causality errors by adding delay blocks, and generate C code. We compiled and ex-
ecuted the generated code for benchmarking. The DataMill infrastructure was used in our
benchmarks to evaluate the performance of the C code generator of the SCADE toolchain.
DataMill offers various architectures and software and hardware factors that can be used
in the performance evaluation [12]. We used the x86.64, 1686, and ARM architectures
to benchmark the C code, and we used the same hardware and software factors for the
benchmarks.

5.2 The Constraint Solver

CSP [36] is a class of problems originating from the artificial intelligence community. A
CSP problem is conventionally specified as a triple: V' the set of variables, D the set of the
variables” domains, C' the set of constraints. A solution to a CSP problem is an assignment
for each variable to a value in its domain such that none of the constraints are violated.

A CSP solver searches for solutions of a CSP problem by constructing an implicit search
tree, where the variables are vertices and edges are assignments. The solver traverses the
search tree in pre-order looking for leaf vertices such that every variable is assigned to
a value, and none of the constraints are violated. These leaves are the solutions. The
CSP backend for Clafer is implemented with the Choco library which supports integer
variables and set variables over integers. Set variables are necessary and sufficient to
encode the relational semantics of Clafer. For performance reasons however, the backend
will optimize by using integer variables in place of set variables whenever possible. Choco’s
solving algorithm is based on an implicit search tree. The tree traversal can be broadly
described in three steps starting at the root node:

1. Variable selection: Pick an unassigned variable using a heuristic. Most illustrations
of CSP search trees would label the current node with the picked variable. Suppose
the heuristic picked the integer variable ¢ with domain {0, 1,4}.

2. Decision: Assign the picked variable to a value in its domain and move down the
current node’s left branch. The right branch corresponds to the negative decision for
when the algorithm backtracks to this node in the future. For example, if the left
branch is ¢ = 1 then the right branch is ¢ # 1. More specifically, the left (respectively
right) branch sets the domain of variable i to {1} (respectively {0,4}). There are
other ways of making decisions such as domain splitting.
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3. Constraint propagation: Infer new domains based on the available constraints. For
example, if 7 # j is a constraint, then remove 1 from the domain of variable j because
assigning 7 to 1 will violate the constraint. If 1 is the only value in the domain of
J, then the search entered a contradiction and can no longer proceed because the
constraint ¢ # j is violated. The search then backtracks up the left branch(es) and
goes down the nearest right branch and proceeds from there. Goto step 1 for the
current node and repeat.

To generate random solutions, we modified the underlying CSP solver to construct
the search tree randomly, i.e. the vertices/variables and edges/assignments are chosen
randomly. Each search tree is used to generate only one solution. To generate n solutions,
we generate n random search trees. The solutions from this approach are random in
the sense that every solution has a non-zero probability of being found. However, the
probability distribution is not uniform.

5.3 Generation of Random Maodels

Model generation by searching random solutions to the constraints introduces some impor-
tant challenges such as the potential production of invalid models. A model is considered
invalid if it does not meet the language requirements. In fact, even if the generated models
satisfy the syntactic constraints of the modeling language, they might still not satisfy the
semantic logic behind.

We may fail to encode the entire semantics of the modeling language in Clafer. We are
limited to the description of the properties of the modeling language in UML meta-models.

In our study, SCADE is a synchronous language that guarantees that the data flow is
immediately computed at each cycle with no physical latency. A loop in the generated
model violates this rule, and the checker tool generates a causality error [7].

Y
+

Y

—_t >+
_,—>+

Figure 5.6: Example model with causality error
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Such an error is not restricted to the use of SCADE and can occur in other synchronous
modeling languages. To fix this issue, we developed a script that adds a delay block every
time a cycle is detected in the generated model. The script runs in a loop the SCADE
checker on the generated microbenchmarks, parses the errors and adds a delay block to
break the cycle [9]. This technique aims to add a minimal number of delay blocks to break
the cycle in the model. Few models had recursive loops due to the solver randomness. The
scripts failed to resolve this issue by adding delays and the models were eliminated.

SCADE imposes some restriction such as maintaining the same data flow and prohibit-
ing mixed data type. Such requirements were encoded as a set of constraints in Clafer.
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Figure 5.7: Throttle Regulation graph representation
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Chapter 6

Experimentation

Given that we want to generate small-sized microbenchmarks that are easy to migrate, we
fixed the size of the microbenchmarks. In that sense, the use of a constraint solver is not
an issue.

6.1 Experimental Setup

The experiment was designed to run on DataMill. Several architectures are used for the
benchmarking such as x86_64, 1686, and ARM. We developed scripts to setup the experi-
ment, run it and collect the data. The setup script uses GCC to compile the generated C
code with no optimization flags. While running the experiment, we measured the execution-
time of the microbenchmarks. The main function for the generated C code calls the main
node of the microbenchmark. In other terms, the microbenchmark function would corre-
spond to a call to one clock tick on the SCADE reduced model, and the data flow would
pass through all the blocks of the model.

Figure 6.1 shows the procedure of measuring the execution-time. In the first step,
we warmed up the system to compensate for measurement errors due to memory caches,
buffers, etc. This step is important as it warms up the caches in the system. In the
next step, we measured the execution of the microbenchmark code several times. The last
step is the calculation of the measured execution-time, and it is based on the different
measurements of the previous step. The measured data is stored in log files. Finally,
the DataMill scripts compress the log files and collect the results of the different models
submitted for benchmarking. After collecting the data from DataMill, we developed scripts
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Figure 6.1: Execution-time measurement

to sort the results by metric, compute the mean execution-time of the microbenchmarks,
and perform sanity checks on the data. For example, we checked for non-negative execution-
time values. We also inspected the distribution of the measured data by producing q-q plots
and histograms. Figure 6.2 is an example that shows the g-q plot of the mean execution-
times of 1000 microbenchmarks of the Water Level application. The x-axis shows the
theoretical mean values, while the y-axis shows the sample values. The linearity of the
points in the plot suggests that the data is normally distributed which is reasonable to
expect.

As the input values of the model can affect the execution-time, the benchmarking
process was designed to average out this effect. Random input values are generated for each
execution of each microbenchmark model. Each microbenchmark is executed many times
(10000 times) with randomly chosen inputs. The execution-time of one microbenchmark
is given by the mean value of these executions. The use of random inputs allows the
exploration of different paths in the code to obtain an “average behavior” that properly
describes the average execution and average code coverage. If a probabilistic model of the
inputs for the given application or application domain is available, such model should be
used as the source of random values for the inputs in the benchmarking process. This has
the advantage that the execution is now statistically representative of the execution that
the system will exhibit when in actual operation; thus, the prediction of the performance
is specific to the real operating conditions under which the system will execute.

The hardware environment can also introduce bias in the execution performance. The
execution-time can be mistakenly measured if executed on an exclusive architecture. The
DataMill project solves this issue and proposes various architectures to benchmark the
generated C code easily [12]. A set of scripts is used to setup the environment, run and
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Figure 6.2: Q-Q plot of the mean execution-time of the microbenchmarks of the Water
Level application

collect the execution-time across several architectures.

6.2 About the Experiments

We present in this work a framework to predict the performance parameters of model-
based applications. The steps of the framework are presented in Section 2.2. We developed
several scripts in this work to automate the process of the framework. The various scripts
are available under the following bitbucket repository [%].

First, we developed TCL scripts to extract the structure and performance properties
of the application models. We also developed scripts to generate the graph representation
of the SCADE models as described in Section 5.1. After encoding the modeling language
(SCADE) in Clafer, we developed scripts to compile the encoded meta-models, run the
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constraint solver and generate random solutions. The latter are described as Clafer models.
The effort of generating the microbenchmarks is equivalent to the effort of solving the
constraints introduced by the extracted metrics. The size of the microbenchmarks is then
correlated to the number of desired instances to generate. As the number of instances
and constraints drives the inputs of the constraint solver, the microbenchmarks generation
effort depends on the performance of the constraint solver. The generation of 2000 solutions
for the static metric took around 10 minutes in our case on an Intel i3 processor machine

with 6GB RAM.

We developed a script that parses Clafer generated models and generates textual models
in SCADE 5 and SCADE 6. As the script ports the Clafer models into SCADE models,
there is no human effort required in the migration process. The automation of this process
allows us to have straightforward and inexpensive migration. We also developed scripts
to fix causality issues as described in Section 5.3. After fixing the causality errors and
ensuring that the models are valid, a set of scripts is developed to run KCG and generate
the C code from the microbenchmarks. Another script is used to parse the inputs of the
random microbenchmarks and generate the C code for the function that feeds the inputs
with random inputs.

During the benchmarking process, we run, for each metric, 1000 generated fingerprints
1000 times with random inputs. We detailed the process in Section 6.1. A DataMill
experiment benchmarks all the microbenchmarks generated using the several metrics and
the validation application under both versions of SCADE. We execute the developed scripts
on DataMill to setup the benchmarking experiment, run it and collect the data. A DataMill
experiment takes around two days to finish the benchmarking process and report the
collected data. We developed scripts to perform sanity checks and analyze the collected
data.

6.3 Estimating Performance Parameters

Let Pbe a model with |P| blocks, and consider toolchains 7y and T5. Let by, bo,--- , b,
denote the C' classes of blocks in the toolchains. For example, in SCADE, they would
represent addition blocks, multiplication blocks, logical AND blocks, etc. Let T,iv be the
execution-time of the fragment of code generated for blocks of type by under toolchain 7.
We should expect execution-time for a particular type of block to be different under each
toolchain, since the code generator is different. On the other hand, we assume a fixed
execution-time for each type of block under the same toolchain, regardless of configuration
and interaction with neighboring blocks. This is a reasonable approximation if the code
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generator is not highly optimizing, which is the case for tools that generate safety-critical
qualified code such as SCADE.

Let p;, denote the fraction of blocks of type by in P, and let T, with v = 1,2 be the
average execution-times of the model’s main function generated by each of the toolchains
T». The averages are considered over the population of all possible models with |P| blocks
that maintain the fractions p, for each type of block. Notice that data-flow based models
such as SCADE have a directed acyclic graph (DAG) representation [11]. Evaluation of
the model’s main function requires traversal of the graph, either in a breadth-first traversal
until reaching all of the outputs or as a topological sort. In either case, the complexity
of the operation is O (V + E) where V is the number of vertices, and E is the number
of edges [11]. A further observation is that since blocks have inputs and outputs, and
outputs cannot be “short-circuited” together, then each input can only be connected to
one output. Since each block has O (1) inputs, then £ = O (V), and thus evaluation of
P’s main function takes O (|P|) operations. Thus, we have

C

D S 6
k=1
C

T® = [P Y a’pn” (6.2)
k=1

where the values 04,(;’) account for the average fraction of activity that each type of block

in the model is exercised (including the multiplicative constant hidden in the big-Oh no-
tation). If we consider a probability distribution of the inputs that does not vary for
the different models, then clearly the values oz,(:) are fixed and determined by the various
compatible ways to connect outputs of blocks to inputs of other blocks and the average
paths of propagation of input data (which depend both on the structure of the model and

the data).

Consider models with |P’| blocks that maintain the fractions of each type of block,
P1,P2, - ,Pe- 1t is reasonable to expect that the values of each 04,(;’) will be the same for
models with |P’| blocks, since the fractions of each type of block pj affect the possible

configurations in which the sets of blocks can occur. Then, the average execution-times
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T'™) for models of size |P’| are

7y = y7>’|2a,<j>p pr! (6.3)
T = [P Za?m (6.4)

From equations (6.1), (6.2), (6.3) and (6.3), we obtain

C
(2) (2)
> piTe
T(2) B T'(2) =i
n /(1) c
T r Za(l) (1)
k DT
k=1
T/(Q)
(2) @
= T T 70 (6.5)

If 7W and 7@ are the execution-times for a given model (as opposed to the average
execution-time over all possible models of this size), then Equation (6.5) yields an approxi-
mation, allowing us to obtain an estimate of the execution-time under 75 given a statistical
representation of 7" and T"(®):

7@ ~ 7O (6.6)

Estimation of the variance is done in a similar way; the variances of T) are the result
of the variances of the individual execution-times for the blocks, T,iv), since all of the other
terms are constants, provided that the fractions of the types of blocks are preserved. Thus,

assuming that the variables T,EU) are uncorrelated, we have:

c
Var (T")) = |P| Z,@,(f) Var <7’,§v)> (6.7)
k=1

where the values 5,(:) depend exclusively on the values of a,(:) and the probability distri-

bution of the T,Ev) variables.
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Following a reasoning identical to that for the execution-time, we obtain a similar
formula for the estimation of the variance of the execution-time under the new toolchain:

Var (T’(Q))

Var (T(Q)) ~ Var (T(1)>
Var (T'0)

(6.8)

Estimating Ratios from 7; to 75

Equations (6.6) and (6.8) give us an estimator for the parameters for models of one size
based on the ratio of the parameters for models of a different size when migrated from 7; to
T>. Thus, we estimate these ratios based on sampling them through multiple randomly
generated fingerprint models of a fixed size.

Each randomly generated model is executed multiple times with randomly selected in-
put data to obtain an estimate of the execution-time’s mean and variance for the particular
fingerprint model. We repeat this under both toolchains, to obtain one sample of the ratio
between the parameters (mean and variance) under both toolchains. Assuming that both
mean and variance, seen as random variables with respect to the population of all finger-
print models, follow a Gaussian distribution with non-zero mean, we empirically verified
that their ratio follows a Gamma distribution. Thus, the mean of the samples obtained
for each fingerprint model provides an adequate estimator for the required parameters.
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Chapter 7

Results

We present and discuss in this chapter the results of our case study benchmarks. We tried
our approach on several applications provided as part of the SCADE software. We refer
to these applications as validation models as they are provided as example applications,
and the models are available in both versions of SCADE. We used the SCADE example
applications Cruise Control and Water Level. We developed another validation application
that used a limited set of blocks; it used only Math operators such as addition and mul-
tiplication. For these applications, we had the models under SCADE 5 and the migrated
models under SCADE 6.

We first discuss the results of the static ratio metric for the different validation appli-
cations, we then focus on the comparison of the various metrics presented in Section 5.1
for the same validation application Cruise Control.

The microbenchmarks ratios represent the estimated results using our approach follow-
ing the inexpensive path of Figure 2.1. The application ratios represent the ratios of the
migrated models by following the expensive path of Figure 2.1. We calculate the mean
execution-time of the different executions with random inputs. The application ratio is the
mean execution-time of the entire application in SCADE 6 divided by the mean execution-
time of the migrated application in SCADE 5. We compute the ratio of the execution-time
for each microbenchmark. We refer to the mean value of the ratio of the microbenchmarks
as the microbenchmarks ratio. We used the R boot package to compute the ratios and the
95% confidence intervals of the microbenchmarks [7].

Table 7.1 shows the mean execution-time benchmarking results of the validation models
Math operators application, the Water Level application, and the Cruise Control applica-
tion. The rows show the target architectures that we used in our benchmarks, and the
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columns show the application ratio and the microbenchmarks ratio. The =+ refers to the
margin of error computed by 95% confidence interval. These results are obtained by sev-
eral executions of the C code with random inputs after a warm-up phase of the system as
explained in Chapter 6.

The Math operators application has the smallest difference between the estimated ratio
(the microbenchmarks ratio) and the actual ratio value (the application ratio) in both
architectures. This suggests that complex models may be subject to lower accuracy in
the prediction. For example, the introduction of multiple execution paths by conditional
blocks could justify such a difference. The benchmarking results suggest that the generated
models were executed faster in SCADE 6 than SCADE 5. The entire application shows
the same aspect for the evaluation of the execution-time. The above results show that the
estimated ratios are consistent with the actual application ratios. Both the estimated and
the migrated results show a speedup of the models when migrated to SCADE 6.

Architecture
\ 1686 | x86.64

Math Operators

Application Ratio 0.724 £+ 0.0007 | 0.664 £ 0.002

Microbenchmarks Ratio | 0.789 £ 0.146 | 0.592 4 0.012
Water Level

Application Ratio 0.489 4+ 0.001 | 0.454 £+ 0.001

Microbenchmarks Ratio | 0.421 £ 0.008 | 0.240 £ 0.008
Cruise Control

Application Ratio 0.791 £0.011 | 0.325 4 0.001

Microbenchmarks Ratio | 0.444 £ 0.011 | 0.292 4+ 0.013

Table 7.1: Execution-time ratio results

Even though the accuracy of the estimates is not too high, we notice that the framework
gives a reasonable prediction of the performance evolution of the application. We notice
that the 95% confidence intervals are tight which suggests that the effect of measurement
errors and noise does not play a significant role in our results.

We can estimate that our method prediction is off by approximately 28% with respect
to the correct performance for the migrated application (the geometric mean of actual ratio
to predicted ratio across the validation applications is 1.28). A prediction accuracy of 28%
can be useful in practice, since we can get severe performance regressions when migrating
a model from one tool to another. Indeed, we observed performance variations between
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toolchains of over 400%; for example, for the microbenchmarks for the Water Level model,
the ratio for the same microbenchmark executed under SCADE 5 vs. executed under
SCADE 6 varied from approx. 0.2 to 0.9. Predicting performance change within 28%
accuracy is a good starting point in the decision-making process. Furthermore, for all of
the models that we used in our experiments, our technique correctly predicted whether
performance would improve or deteriorate; we claim that trend prediction is as important
or even more so than the exact percentage.

We show the results of the variance prediction in Table 7.2. The application variance
ratio is the ratio obtained for the validation applications available under the two versions
of SCADE. The microbenchmarks variance ratio is the ratio of the variance of the en-
tire microbenchmarks. The microbenchmarks used in this experiment are the same that
were used for the execution-time prediction of Table 7.1. The figures that we obtained by
extracting the variance results from the experiments were unexpected and looked unrea-
sonable. One potential reason for this is the completely different way in which SCADE 5
and SCADE 6 handle the conditional blocks; from our observations of samples of generated
code in both versions, conditional blocks in SCADE 5 involve execution of both branches
followed by evaluation of the condition to choose one of the two already computed results.
In SCADE 6, conditionals lead to optimized code: the condition is evaluated first, and only
one of the two branches of the if-else is executed. This could have a profound impact on
the variance of the execution-time, and, in particular, could have an effect on the accuracy
of the prediction algorithm.

Architecture
| x86.64 | 1686

Math Operators
Application Variance Ratio 0.3048 | 0.3964
Microbenchmarks Variance Ratio | 0.0495 | 4.4482
Water Level
Application Variance Ratio 0.2558 | 0.0245
Microbenchmarks Variance Ratio | 0.1042 | 19.2726
Cruise Control
Application Variance Ratio 0.132 | 0.5426
Microbenchmarks Variance Ratio | 0.1783 | 0.2626

Table 7.2: Variance results

We focus on the comparison of the ratio and network metrics. Table 7.3 shows the
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collected results for the different metrics. These results were collected through the same
benchmarking process as detailed in Chapter 6.

Architecture

| xB6.64

| 1636

[ ARM

Application Ratio

0.2515 £ 0.0011

0.7822 £ 0.0125

0.206 4= 0.0059

Static ratio of C code
Microbenchmarks Ratio

0.4922 + 0.0014

1.2045 + 0.0789

0.6914 + 0.0056

Static ratio of SCADE model

Microbenchmarks Ratio 0.2822 £ 0.0092 | 0.4446 + 0.0093 | 0.467 4 0.0049
Dynamic ratio

Microbenchmarks Ratio 0.2677 + 0.0014 0.3 +0.0024 0.5295 4 0.0092
PageRank

Microbenchmarks Ratio 0.415+0.0025 | 1.1339 + 0.1377 | 0.5977 + 0.0065
Fan-out

Microbenchmarks Ratio 0.4958 4+ 0.0061 | 0.5047 4+ 0.005 | 0.9386 + 0.5538
Eigenvector

Microbenchmarks Ratio 0.4822 4+ 0.0034 | 0.3332 £0.002 | 0.4862 + 0.0044
Closeness

Microbenchmarks Ratio 0.4763 4+ 0.0026 | 0.6239 4+ 0.0395 | 0.6201 + 0.0032
Betweenness

Microbenchmarks Ratio

0.6354 £ 0.0049

0.4512 £ 0.0031

0.6164 = 0.0057

Table 7.3: Benchmarking results for the Cruise Control application

We focus here on the trend prediction of the performance parameters with our ap-
proach. We show in Table 7.3 the results of only one validation application Cruise Control.
However, the results would be similar for the different validation applications as shown
with the static ratio metric in Table 7.1. We benchmarked the Cruise Control application
and the microbenchmarks generated with the different metrics on DataMill infrastructure.
We used x86_64, 1686 and ARM as target architectures.

Based on the results of Table 7.3, we can claim that the execution of the SCADE 6
applications is faster than the SCADE 5 ones. The results of Table 7.3 support the results
collected in Table 7.1. All the metrics shows the same trend; there is a speedup in the
execution of SCADE 6 models comparing to the SCADE 5 ones.

We present in Table 7.4 the geometric means of the actual ratio to the prediction ratio of
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the different metrics. The equation is presented in (7.1), where z; is the microbenchmarks
ratio of the metric as presented in Table 7.3 and y; is the application ratio.

n (1/n)
ng
=1 (7.1)

n (1/n)
(1)
i=1

We qualify the metrics with results closer to 1 as the best metrics to perform the
estimates, because the geometric mean of the benchmarks of the microbenchmarks is closer
to the geometric mean of the benchmarks of the validation application.

Metrics Geometric Mean
Static ratio of C code 2.16
Static ratio of SCADE model 1.13
Dynamic ratio 1.02
PageRank 1.90
Fan-out 1.79
Eigenvector 1.24
Closeness 1.65
Betweenness 1.63

Table 7.4: Geometric means of the estimates with different metrics

The network metrics performed only moderately well with the SCADE modeling lan-
guage. The ratio estimates are around the same interval [0.5,1]. However, we notice that
the static ratio extracted at the model level, the dynamic ratio, and eigenvector metrics
performed well comparing to the others. We expect the metrics to perform differently with
other modeling languages. In fact, the estimates collected for each metric would depend on
the modeling language and the target architecture. Given the application domain, the user
would choose and tune the metrics to define the most efficient one ( the most representative
of the application models), implement it and use it in the prediction process.

The dynamic ratio metric seems to be the best metric in our case. The predicted
estimates with the x86_64 and ARM architectures are the closest to the benchmarks of the
migrated Cruise Control application. We believe that, in general, dynamic metrics would

35



perform better as they capture the characteristics of the application at run time. The
execution-time would depend on the execution paths of the application. The extraction
and benchmarking of the dynamic metric would require realistic input data. We will discuss
this point in details in Chapter 8.

Comparing the two methods of the extraction of the static ratio metric as explained in
Subsection 5.1.1, our benchmarks show that the estimates of the static ratio extracted at
the model level are closer to the migrated application results. We suspect that the KCG
code generator invokes some optimization. There are many hidden factors related to this
particular difference between the C code and the model. An extension of this work might
focus on this topic.
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Chapter 8

Discussion

In this chapter, we discuss some of the important aspects that we believe have a critical
impact on the validity and usability of our approach. Some of these issues could indeed
represent threats to this validity. They could be related to the modeling language and the
development toolchains. Below are some of the issues that we have considered:

e Validity of software metrics. The software metrics used to extract the data
about the application models might not truly capture the application structure and
architecture. For example, we might fail to detect the blocks patterns presented in
the application. These patterns may affect the execution-time performance. In-
deed, the interaction between connected blocks could have an important impact on
the generated code’s computational efficiency given low-level aspects such as cache,
pipelining, or other hardware-related aspects. This makes us believe that there may
be hard-to-capture underlying patterns in the structure that could have a significant
impact on the overall performance. Thus, the accuracy of the prediction might ben-
efit if the used metric would capture those patterns. The ratio and network metrics
proved to give reasonable results in our case studies, but we have to acknowledge the
possibility that it might be insufficient for some other cases. We are convinced that
this is the most important area that requires future work. Notice, however, that our
proposed framework is extensible, and practitioners can use any other metrics that
they have developed, and that may produce good results in the contexts being used.

e Dynamic ratio metric. The dynamic metric showed a slight improvement in the
prediction of the performance parameters using the ratio metric. We believe that the
dynamic metric would perform better if we used realistic input data collected from the
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domain application instead of randomly generated inputs. Random value generation
functions are used at the C code level to feed the models with random inputs. The
inputs do not follow a particular distribution and are randomly generated. The
use of random inputs triggers most of the model paths during the benchmarking,
which provides an accurate average of the execution-time. Knowing the environment
domain of the application, we could simulate the distribution of the inputs which
narrows the simulation errors and improve our prediction results. The distribution
of the inputs would trigger the models differently, as in the real environment, and we
would predict the execution-time more precisely. We emphasize that the generated
microbenchmarks based on dynamic metrics would require realistic data to predict
the execution-time of the application.

Validity under different architectures. We only benchmarked our experiments
on a limited number of architectures. There are other architectures like MIPS, Pow-
erPC, etc. However, ARM, Intel x86_64, and i686 cover an important fraction of the
target audience for our method. Additional architectures will be used in future work.

Non-uniform random solutions. The constraint solver does not generate per-
fectly random solutions, which could affect the accuracy of the prediction. We in-
spected the generated models and found a reasonable diversity in the models; we
trust that this was not an issue in our experimentation. Moreover, generation of
uniform random solutions by a constraint solver is a known complex problem, so our
framework could certainly benefit from any progress that the AI community may
make in this area.

Variance prediction sensitive to modeling tools. As already mentioned in
Chapter 7, the modeling tool could handle conditional and similar blocks in very
different ways that could affect the prediction of the variance. This is a potentially
critical aspect that we believe requires future work: changes in the variance may have
an effect on estimates of WCET analysis if they were performed using measurement-
based approaches. Even though this WCET analysis has to be done on the migrated
model, the ability to accurately predict changes in the variance provides important
information with respect to the risks that the migration could involve.

Restricted size of microbenchmarks. Conceivably, the sizes that we chose
for the microbenchmarks — which obey restrictions in the capacity of the constraint
solver — could limit the accuracy of the predictions. The intuition is that larger
microbenchmark models could have better ability to capture more complex charac-
teristics. As constraint solvers become increasingly powerful, our framework could
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in turn benefit from any such advances.

8.1 Contributions

The main contribution of our work is the established framework that can be used to
predict performance parameters without porting the entire application from one toolchain
to another. We present the steps that users can follow to implement our framework in
Section 2.2.

We also wrote scripts to implement the framework and predict the performance param-
eters of an application under SCADE 6 given the SCADE 5 models. We developed and
automated the experimentation workflow for validation of the framework. We developed
scripts to extract various metrics that describes the characteristics of the application mod-
els. First, the scripts extract several properties of the expressions and equations of the
SCADE models. Second, we generate random microbenchmarks and migrate them from
one toolchain to another. Last, we run benchmarking experiments and analyze the data
to extrapolate an estimate of the execution-time of the application under SCADE 6. A
detailed description of the developed scripts is provided in Section 6.2.

We provide in this work an initial implementation of the framework of our approach.
Our predictions for the SCADE systems, presented in Chapter 7, are the initial results
of our framework. The developed scripts and the tools for the SCADE language are
the first concrete implementation of our framework and are subject to improvement with
future work. We believe that our framework would benefit from future work focusing on
the characterization and the extraction of the performance relevant properties as software
metrics.

8.2 Generalization

The goal of this section is to discuss the generalization claim of the use of our approach with
different modeling language. In this work, we focused on the SCADE modeling language.
However, we would like to emphasize that our approach can be used for any modeling
language such as LabView, Simulink, SysML, ModelSim, etc. We show for example the
process of generating the microbenchmarks for estimation purposes with Simulink modeling
language.
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We believe that our tool can be generalized and used with any modeling language.
In fact, the benchmark generator uses a model similar to UML class models and Object
Constraint Language (OCL) and thus can be used to model the complete syntax of any
language. The grammar of any modeling language can be captured by our tool to gener-
ate syntactically valid models. We show in this section the application of our approach
with the Simulink modeling language. As explained in Section 5.3, the random generation
may require the use of checking procedures to confirm the validity of the generated mi-
crobenchmarks. Our approach benefits from the nature of synchronous languages (such
as limited use of iteration); the applicability of our approach to enterprise systems may
not be obvious.

Section 2.2 presents the steps suggested by our approach; we will detail in this section
its application on a Simulink model. Figure 8.1 shows an example of a Simulink model.
We can develop a set of scripts to extract several metrics. We showed in Section 5.1 few
metrics that can be used to identify the characteristics of the models structure and capture
the main properties affecting the execution-time.

Table 8.1 shows the occurrence and the static ratio of each type of blocks used in the
model of Figure 8.1. To extract the network metrics, we generate the graph representation.
Figure 8.2 is the equivalent graph of Figure 8.1. Table 8.2 shows the extracted results of
the network metrics for the Simulink example model. After extracting the metrics values,
we encode them as constraints in the Clafer language as presented in Listing 8.1.
Substract : MathBlock 2

Gain : GainBlock 3
Integrator: IntegratorBlock 2

Listing 8.1: Static ratio metric data encoded in Clafer

The constraints are the cardinality of the instances in this example. We emphasize that
the user should define the classes MathBlock, GainBlock, IntegratorBlock to represent the
characteristics of the Simulink language. The solutions of the constraint solver are the
application-specific microbenchmarks.
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Figure 8.1: Example of Simulink model

\ Occurrence \ Ratio

Substract
Gain
Integrator

2
3
2

28.58%
42.86%
28.58%

Table 8.1: Extracted static ratio metric of Simulink example

\ Fan-Out \ PageRank \ Closeness \ Betweenness \ Eigenvector

Integratorl 11.111 11.085 20.833 16.071 38.776
Integrator 22.222 21.751 34.722 33.929 46.294
Substract 11.111 14.308 24.038 30.357 27.206
Gainl 11.111 11.085 20.833 1.786 38.776
Substract1 11.111 23.424 26.042 37.500 55.268
Gain2 11.111 11.262 22.321 12.500 32.480
Gain 11.111 3.405 23.684 10.714 0
outputs_Simulink 0 1.840 0 0 0
inputs_Simulink 11.111 1.840 23.558 0 0
Table 8.2: Extracted network metrics of Simulink example
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Chapter 9

Conclusions

We presented in this work a framework to predict the execution-time performance param-
eters of model-based applications under different toolchains. Our approach has low cost
as we avoid the migration cost by automating the migration of the models between the
two toolchains. We can predict the performance parameters with minimal porting efforts
expressed as the number of changes in the model.

To follow our framework, the application should be analyzed to extract software metrics
that are relevant to the modeling language. The metric should be encoded in a constraint
solver to generate application-specific microbenchmarks. The generated microbenchmarks
are representative of the application, and the benchmarking of the microbenchmarks pro-
vides an estimate of the execution-time of the application under the two toolchains.

To illustrate our framework, we presented a SCADE Systems case study. We veri-
fied that our approach produced performance predictions that are reasonably close to the
performance that we measure with concrete results.

As a future research direction, we think that this work can be extended by studying
the industrial practicality of our approach. We can then study the impact of the inputs on
the models. This may be important as particular models in a given industrial application
may have known distributions for the input data. A more detailed analysis of the effect
of the distributions could have a positive impact in the applicability of our methodology.
Furthermore, this could be useful when applying the technique to application domains
instead of specific applications — for a given domain, typical distributions of input data
may be known. Comparing and combining our approach with analytical approaches are
important future research directions.
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List of Acronyms

MDD Model Driven Development
IE Information Extraction

WCET Worst-Case Execution Time
SAT Boolean SAtisfiability

SMT Satisfiability Modulo Theories
CSP Constraint Satisfaction Problem
GML Graph Modeling Language
DOT Graph Description Language
TCL Tool Command Language
UML Unified Modeling Language

OCL Object Constraint Language
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APPENDICES

// general blocks

abstract Block
isOutput—> int
[isOutput=0]|isOutput=1]

abstract BlockWithIntOutput : Block

abstract BlockWithBoolOutput : Block
abstract BlockWithRealOutput : Block

// array blocks

abstract BlockWithArrayOutput : Block

arrayDimension —> integer
[arrayDimension > 0]

abstract BlockWithIntArrayOutput

7 abstract BlockWithBoolArrayOutput

abstract BlockWithRealArrayOutput
// matrix blocks

abstract MatrixBlock : Block
firstDimension —> integer
[firstDimension > 0]
secondDimension —> integer
[secondDimension > 0]

abstract BlockWithIntMatrixOutput

abstract BlockWithRealMatrixOutput
abstract BlockWithBoolMatrixOutput

[ [ ook Mathsess soksorokokokokorsx [/

BlockWithArrayOutput
BlockWithArrayOutput
BlockWithArrayOutput

MatrixBlock
MatrixBlock
MatrixBlock
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34

35

36

abstract MathBlockInt : BlockWithIntOutput // blockl.input may be connected
to block2.input
i —> BlockWithIntOutput 0..2 // an input may be connected to an output
of another block that has an BlockWithIntOutput // up to 2 inputs for a
block
[!'(this in i.ref)] // looping is not authorized

abstract MathBlockReal : BlockWithRealOutput
i — BlockWithRealOutput 0..2
[!(this in i.ref)]

s [ [k ok Comparison s sk k% [/ /

5 abstract ComparisonBlockInt : BlockWithBoolOutput

i —> BlockWithIntOutput 0..2

; abstract ComparisonBlockReal : BlockWithBoolOutput

i —> BlockWithRealOutput 0..2

[ [ *# x50 nkk Boolean s s s xkkokoskokskx /[ /

; abstract BooleanBlock : BlockWithBoolOutput

i— BlockWithBoolOutput 0..2
[!'(this in i.ref)]

abstract NOTBlock : BlockWithBoolOutput
i— BlockWithBoolOutput 0..1
['(this in i.ref)]

[/ #xxkknkkxMath Instances ssksssskksxsx [/
plus_Int : MathBlockInt =

plus_Real : MathBlockReal x

minus_Int : MathBlockInt *

minus_Real : MathBlockReal x

multi_Int : MathBlockInt =

multi_Real : MathBlockReal =

/[ **xxxxxxxkk Comparison Instancessxkskkssssxx [/
strictlyLess_Int : ComparisonBlockInt =
strictlyGreater_Real : ComparisonBlockReal x
greaterOrEqual_Int : ComparisonBlockInt =x
different _Int : ComparisonBlockInt =
equal_Int : ComparisonBlockInt =

equal_Real : ComparisonBlockReal =
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/[ xxxxxxxxxx Boolean Instancessksksksrsxx [/
and_Bool : BooleanBlock x*

or_Bool : BooleanBlock x

not_Bool : NOTBlock x*

Listing 1: Minimal description of SCADE modeling language in Clafer syntax

digraph{

constants_SaturateThrottle —>ifelse_Real_3;
ifelse_Real_3 —>outputs_SaturateThrottle;
inputs_SaturateThrottle —>ifelse_Real_2;
constants_SaturateThrottle —>ifelse_Real_2;
ifelse_Real_2 —>ifelse_Real_3;
or_Bool_1—outputs_SaturateThrottle;
inputs_SaturateThrottle —>strictlyLess_Real_1;
constants_SaturateThrottle —>strictlyLess_Real_1;
strictlyLess_Real_1—>ifelse_Real_2;
strictlyLess_Real_1 —>or_Bool_1;
inputs_SaturateThrottle —>strictlyGreater_Real_1;
constants_SaturateThrottle —>strictlyGreater_Real_1;
strictlyGreater _Real_1—>ifelse_Real_3;
strictlyGreater_Real_1—>or_Bool_1;

}

Listing 2: DOT representation of Saturate Throttle model
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