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Abstract

Advances in technology have given rise to applications that are deployed on wireless

sensor networks (WSNs), the cloud, and the Internet of things. There are many emerg-

ing applications, some of which include sensor-based monitoring, web traffic process-

ing, and network monitoring. These applications collect large amount of data as an

unbounded sequence of events and process them to generate a new sequences of events.

Such applications need an adequate programming model that can process large amount

of data with minimal latency; for this purpose, stream programming, among other

paradigms, is ideal. However, stream programming needs to be adapted to meet the

challenges inherent in running it in distributed environments. These challenges include

the need for modern domain specific language (DSL), the placement of computations

in the network to minimise energy costs, and timeliness in real-time applications.

To overcome these challenges we developed a stream programming model that

achieves easy-to-use programming interface, energy-efficient actor placement, and time-

liness. This thesis presents Curracurrong, a stream data processing system for dis-

tributed environments. In Curracurrong, a query is represented as a stream graph of

stream operators and communication channels. Curracurrong provides an extensible

stream operator library and adapts to a wide range of applications. It uses an energy-

efficient placement algorithm that optimises communication and computation. We ex-

tend the placement problem to support dynamically changing networks, and develop a

dynamic program with polynomially bounded runtime to solve the placement problem.

In many stream-based applications, real-time data processing is essential. We propose

an approach that measures time delays in stream query processing; this model measures

the total computational time from input to output of a query, i.e., end-to-end delay.
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Chapter 1

Introduction

Emerging applications for contemporary distributed computing technologies, including

wireless sensor networks (WSN) and cloud computing, have renewed interest in stream

programming. The applications range from disaster area monitoring [1], [2], health

care monitoring [3], financial data tracking [4], to network traffic monitoring [5]. These

applications process continuous unbounded streams of information. WSN applications

comprise a multitude of sensors that generate streams of data. Sensors are tiny devices

deployed at distant locations that monitor and generate stream comprising data like

temperature, pressure, and gas readings. Cloud computing, also known as utility com-

puting, is another distributed environment. Cloud computing provides various services

like storage, database, and software tools; cloud application developers can subscribe

to these services and pay for their usage. Applications such as financial data tracking

and network data analysis are built in the cloud environment, where the data stream is

collected from the cloud nodes and over the cloud network, respectively. The stream

applications for WSN and cloud have a broad spectrum. We briefly described some of

them below.

One of the important streaming applications include early bushfire detection [2].

Bushfire is a frequent event in Australia. Each year, they impact extensive areas causing

property damage and loss of human life. One of the most intense and deadly bushfire

occurred in 2009, in which 173 people lost their lives [6]. Researchers from the Bushfire

Cooperative Research Centre (Bushfire CRC) [7], University of Technology, Sydney,

and the University of Western Australia [8] have developed an early detection WSN

applications that continuously measure temperature, moisture in the air, wind speed

and direction, and the presence of certain chemical particles. These applications collect

1



CHAPTER 1. INTRODUCTION 2

data streams and generate an alert when a bushfire threat is encountered.

Health monitoring is another WSN streaming application [9, 10]. With advances in

intelligent wireless sensors and embedded computing technologies, miniaturised perva-

sive health monitoring devices have become practically feasible. These sensors contin-

uously monitor and analyse the stream of physiological parameters like heart rate, body

position, and snoring. A supervisory medical worker accesses the database to monitor

patients and the system alerts other personnel in case of a health emergency. These types

of WSN applications can provide new rehabilitation therapies while patients remain in

their home environment [10].

Another WSN streaming application includes volcanic event detection [1, 11]. To

prevent loss of life and property due to such disastrous events, WSN applications are

now possible as early warning event detection systems. Researchers from Harvard Uni-

versity deployed 16 Tmote Sky sensors in the vicinity of a volcano. The sensors con-

tinuously captured data including acoustic, seismic events, and discharged gases over a

specific time interval. The data are evaluated and if the measurements exceed a thresh-

old then an alert is transmitted via a long distance FreeWave radio modem.

Another streaming example is network traffic monitoring application for intrusion

detection [5]. An internet service provider can sustain traffic volume from some con-

nections in the range of tens of gigabytes per second. For an application that analyses

network traffic to detect possible intrusion threats requires high processing capacity for

two reasons. First, the application needs to analyse huge traffic volumes that must be

processed in real time to block possible harmful events. Second, the type of computa-

tions used to process the data usually require non-trivial aggregation and comparison of

online and historic data.

Monitoring the cloud is a task of paramount importance for both cloud providers

and consumers. This streaming application continuously captures data such as CPU

and network bandwidth usage, and number of reads and writes, across all nodes in a

cloud cluster and use them to generate alerts when particular system parameters reach

a threshold. There are widely spread commercial and open-source platforms for cloud

monitoring as well as services that can help cloud user to assess the performance and re-

liability of cloud services. Some of such monitoring systems include CloudWatch [12],

AzureWatch [13], and Nagios [14].

Another scenario involving online credit card and debit card transactions analysis

can be drawn from financial data analysis and fraud detection applications that demand
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Figure 1.1: History of programming models and languages

high processing capacity [4]. It is important for such applications to provide low latency

guarantee, since they must comply with strict time limits.

The above applications emphasise the need of stream programming in real-world

applications, where a continuous stream of data is collected over an interval of time,

processed, and forwarded to a sink. Understanding these data streams is crucial for

managing and troubleshooting a large network. Apart from a complex real-time stream-

ing applications, distributed environments like WSN and the cloud have their own set

of challenges and limitations. A detailed explanation of two distributed technologies

and the challenges associated with them are given in the following section.

1.1 Stream Data Processing

The concept of a stream programming has a long history in computer science [15].

Figure 1.1 presents the timeline of various programming paradigms over the timeline.

The idea of stream processing stems from fundamental data flow models like the Kahn

process model (KPN) [16] and synchronous data flow (SDF) [17].

The Kahn process model is a programming paradigm suitable for streaming-based

multimedia and signal-processing applications. KPN is a simple model where an appli-

cation is modelled as a collection of concurrent autonomous processes communicating
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streams of data through FIFO channels. In a network, a process reads from input chan-

nels and queues items in their output channels. The network blocks the operation until

data has arrived in the input channel. If each process in the network works determinis-

tically, the entire network is deterministic; but it is not possible to statically determine

the amount of buffering required for each channel to avoid deadlock.

Synchronous data flow is a restricted form of KPN, where processes execute atom-

ically. Unlike KPN, in SDF the number of data items read and produced by process

is known at compile time. Because of deterministic processing it is possible to stati-

cally check the network processing for deadlocks. The amount of buffering required

in an application can also be determined statically, which helps in determining poten-

tial scheduling and optimisation for computation. In data flow, a program is divided

into pieces, known as nodes or blocks, which can execute (fire) whenever input data

are available. An application in SDF is described as a SDF graph – a directed graph

with nodes indicating computational block and edges representing communicating data

paths between nodes. Figure 1.2 (a) shows a synchronous data block, including num-

bers (referred as a, b, and c) associated with consumed inputs and produced output data

tokens. A SDF is a network of synchronous blocks (Figure 1.2 (b)). SDF graphs are

closely related to computation graphs [18], where each input to a block has two numbers

associated with it, a threshold and the number of data tokens consumed. The threshold

indicates the number of data tokens required to invoke the block, and could be different

from the number of tokens consumed by the block. Drawing on all of the fundamental

models, the main features of stream programming model are listed as follows.

• continuous unbounded incoming data,

• volatile data streams,

• sequential data access,

• real-time requirement, and

• limited main memory to buffer data.

As shown in Figure 1.1, the notion of streams has produced several programming

paradigms. These include dataflow languages such as Lucid [19] and Sisal [20], which

use a demand-driven model for data computation. In this model, each statement can be
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Figure 1.2: (a) Synchronous block (b) Synchronous data flow graph

understood as an equation defining a network of processors and communication lines

between them, through which data flows. Each variable is an infinite stream of values

and every function is a filter or a transformer. Other paradigms include synchronous lan-

guages such as LUSTRE [21], Esterel [22], and Signal [23]. LUSTRE and Esterel were

designed for programming reactive systems such as automatic control and monitoring

systems. Their synchronous nature is similar to temporal logics, and therefore makes it

well suited for handling time in programs. Likewise Signal is another synchronous data

flow language designed for domain-specific signal-processing applications. The formal

model of Signal describes a system with several clocks. Among general-purpose lan-

guages are Occam [24] and Erlang [25]. The domain-specific languages (DSLs) for dis-

tributed environments require the notion of communication between nodes, with which

users could build an entire system. Existing generalised stream processing systems

include Medusa [26], Aurora [27], Borealis [28], and STREAM [29]. The recently-

developed MaD-WiSe [30] is another distributed stream management for WSN. How-

ever, these approaches have several restrictions. Generalised stream-processing engines

like Borealis require users to write an XML file for a query as well as for deployment

of operators in the network. MaD-WiSe uses SQL-based queries, which limits stream

management to aggregation and does not support flexible application design.
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Likewise, a number of recent systems have been developed for the cloud environ-

ment. Twitter’s Storm system [31] and LinkedIn’s Samza [32] are both intended to

co-exist with a Hadoop ecosystem. Yahoo! Research has proposed S4 [33], and UC

Berkeley offers Spark Streaming [34]. These existing streaming platforms have many

powerful features. In the cloud, some of them require the developer to write an applica-

tion with lots of code in Java or a similar language. Systems like Storm require explicit

deployment; the developer needs to identify which node will perform each aspect of the

computation. To develop a domain-specific stream processing system, it is important to

understand the domain and the challenges associated with it. This thesis has developed

stream programming model for distributed environment, after detailed analysis of the

features and challenges associated with it.

1.2 Wireless Sensor Network

Advances in wireless communication technologies have enabled the development of

small, low-cost and low-power multi-functional sensor nodes that can sense the envi-

ronment, process the data, and communicate with each other over a short range. A

sensor node consists of five basic units, for processing, memory, sensing, power, and

communication. A processing unit is responsible for executing the set of routines that

form a sensor’s task. A memory unit consists of three parts. First, the program flash

memory used by the processing unit as a temporary storage area to execute routines.

Second, measurement flash memory to store sensory measurements obtained by the

sensing unit. Third, an EEPROM configuration where all configuration data for a sen-

sor node are kept.

A sensing unit includes different kinds of sensors to measure such factors as temper-

ature, light, and humidity, depending on the application. The most important component

is the power unit, which supplies all other units with the required power to operate. A

communication unit connects a sensor node with its neighbours via radio communica-

tion. The power consumption, available memory, processing ability, and programability

of sensors has been rapidly improving. Table 1.1 lists out some of the available com-

mercial sensor nodes also known as motes.

WSN consists of a large number of those tiny sensors deployed randomly in an area

of interest. Nodes in a sensor network communicate in multi-hop fashion to deliver the
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Table 1.1: Comparison between selected commercial motes
Sensor Node Microcontroller Tranceiver Memory Programm-

Name (Program + ing
data)

BTnode ATmega 128L Chipcon CC1000 64 KB + C and
[35] Bluetooth (2.4 GHz) 180 KB RAM nesC

EPIC mote MSP430 250 kbit/s 2.4 GHz 10 KB RAM C
[36] IEEE 802.15.4

Chipcon
Iris Mote ATmega 128L Atmel AT86RF230 8 KB RAM nesC

[37] 802.15.4/ZigBee
Mica2 ATmega 128L Chipcon 868/916 4 KB RAM nesC
[38] MHz

Shimmer MSP430F1611 802.15.4 Shimmer 48 KB flash C and
[39] SR7 10 KB RAM nesC

SunSPOT ARM 920T 802.15.4 ZigBee 512 KB RAM Java
[40]

T-Mote Sky MSP430 802.15.4 Chipcon 10 KB RAM C
[41]

FireFly ATmega 32L Chipcon CC2420 2 KB RAM C
[42]

Waspmote ATmega 128L ZigBee/802.15.4/ 8 KB SRAM C
[43] DigiMesh/RF

WISense TI TI CC2520 4 KB RAM C
[44] MSP430G2955 (2.4 GHz)
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collected data to a central processing unit called the base station or the sink node. The

networking of sensor nodes has been a challenging area of research due to its special

characteristics. The main challenges of a WSN include:

• Ability to withstand harsh environmental conditions – For WSN, the challenges

lie in sectors where conditions are harsh or devices are inaccessible once de-

ployed. Requirements in such operating conditions are stringent enough to make

it impossible to even consider wired sensors or battery operated devices. One

such application is volcanic activity monitoring [45], where researchers deploy

sensor nodes in more than three square kilometres around the volcano.

The Berkeley Micromechanical Analysis and Design (BMAD) group is working

on sensors for harsh environments [46], some of them using silicon carbide or

even aluminium nitride, which retains its mechanical stability and piezoelectric

properties up to temperatures over 1000 oC. These qualities enable the sensors to

structurally sense and actuate material in harsh environment conditions.

• Power consumption constraints for battery-powered nodes – As per Moore’s law,

sensor devices are getting smaller in size, and as physical size decreases, so does

energy capacity. Power consumption is the most important factor to determine

the life of a sensor network, because usually sensor nodes are driven by battery

and have very limited energy. After deploying sensor nodes to an observation

site, it is difficult to charge the device batteries with sufficient frequency. This

constraint challenges the user to design power-efficient systems.

Existing power-aware solutions include systems like TinyDB [47], Corona [48,

49], and task mapping [50]. TinyDB automatically reorders operators such that

operators with higher data transfer rate are executed earlier and on the same node,

reducing data transfer over the network. Corona allows the user to specify a

freshness constraint on queries, which state the time limit of old sensor data to

be reusable for the current query. This improves cache hit and minimises energy

costs. In [50], the authors provide a model for the task-mapping problem for both

energy balance and total energy spent, and suggest mixed integer programming

(MIP) formulations that gives optimal results with long runtime, coupled with a

greedy heuristic.

• Ability to cope with node and communication failures – As a network ages, nodes
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will fail. Periodically the network will have to be reconfigured to handle node/link

failure or to redistribute network load. As researchers learn more about the envi-

ronment they are studying, they may decide to insert additional sensing points. A

simple solution to this problem is to increase the transmission range of all nodes;

but this has the side-effect of creating undue congestion in other parts of the net-

work. Two existing solutions for robustness in WSN are described in [51], [52].

• Heterogeneity of nodes – Early studies of WSNs focused on technologies based

on homogeneous WSNs in which all nodes have the same system resource. How-

ever, heterogeneous wireless sensor networks have recently become more pop-

ular: the results of research [53] show that heterogeneous nodes can prolong

network lifetime and improve network reliability without significantly increasing

the cost. An example like volcano activity detection requires different types of

sensors that can sense temperature, emitted gases, and seismic activities.

• Scalability to large scale of deployment – The number of sensor nodes may be

in order of hundreds or thousands, and may reach millions. The system is re-

quired to incorporate and support a scaled network. In [54], the authors present

a scalability analysis for WSN routing protocols.

In general, WSN programming abstractions fall in two major categories: node- and

network-centric. The basic approach to developing a WSN application is to program

sensor nodes using a low-level language like nesC [55], which makes program analysis

and optimisation simpler and more accurate. An alternative approach is the network-

centric, or macro-programming, approach [56, 30]. The network-centric approach pro-

vide high-level programming abstraction that includes a suitable programming model,

compiler and runtime support for WSN. In this concept the programmer does not deal

with low-level interfaces of WSN. The node-centric approach for stream data process-

ing requires major code changes to be adapted for various applications. The higher-

level abstraction provided by the user-friendly programming model in network-centric

approach helps in developing complex real-time streaming applications.
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1.3 Cloud Network

In the past most companies stored their data within their own system on a single server

that was backed up by several replication servers. These servers were very expensive,

and the company itself was in charge of maintaining the infrastructure. Microsoft’s re-

port on ’Economics of the Cloud’ [57] shows that apart from storage and maintenance

costs, electricity cost is rapidly rising to become the largest element of total burden of

ownership, representing around 15–20% of total cost. Due to these financial reasons,

companies have started using cloud services to store data reliably and to use the higher

processing power provided by cloud services. With more people using the cloud, it has

become one of the most notable trends in the past few years. Cloud computing uses vir-

tualised processing and storage resources in conjunction with modern web-technologies

to deliver abstract, scalable platforms and applications as on-demand services. The

billing of these services directly depends on cloud service usage. In general, cloud

service providers tend to offer services that can be grouped into three categories:

The first category is Infrastructure as a Service (IaaS), where the cloud provides

access to computing resources like server space, network connections, bandwidth, IP

addresses, and load balancers in a virtualised environment across a public connection,

usually the internet. One of the examples of IaaS is Amazon Elastic Compute Cloud

(EC2) [58]. Amazon EC2 is a web service that provides resizable compute capacity in

the cloud. The simple EC2 web service interface allows user to obtain and configure

capacity with minimal effort; it provides complete control of computing resources and

lets user run services on Amazon’s reliable, quickly scalable, and secure computing

environment.

The second category is Platform as a Service (PaaS), where the cloud provides a

platform and environment to allow developers to build applications and services over

the internet. PaaS services are hosted in the cloud and accessed by users simply via their

web browser. It allows users to create software applications using tools supplied by the

provider. PaaS services can consist of set of features that customers can subscribe to;

they can choose to include the features that meet their requirements while discarding

others. Like most cloud offerings, PaaS services are generally paid on a subscription

basis. PaaS features include operating systems, database management systems, storage,

network access, and tools for design and development. Examples of PaaS includes

Microsoft Azure [59] and Google AppEngine [60].
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Table 1.2: Benefits of cloud services

IaaS PaaS SaaS
Scalability No need to invest in Cross device compatibility

physical infrastructure
Data Security Development is possible Accessible from anywhere

for non-experts
No single point of failure Flexibility in choosing Automated updates

platform and software tools
Only pay for the resources Adaptability if
that are actually used circumstances change

Data security, backup and
recovery

The last category is Software as a Service (SaaS), where the consumers access on-

line software applications hosted in the cloud and useable for a wide range of tasks.

Google, Twitter, Facebook and Flickr are all examples of SaaS, with users able to ac-

cess the services via any internet-enabled device.

Table 1.2 lists the benefits of the each category of cloud services. The challenges in

building cloud applications includes:

• Scalability on demand – Cloud computing workloads must scale rapidly, seam-

lessly and automatically to meet dynamic user demand, and the applications have

to be developed with this in mind.

• Minimise data transfer cost – Most people think about computing and storage

costs in running an application in the cloud. But, delivering data out of a dat-

acentre costs money too and can be a hidden design decision. Minimising data

transfer costs are critical in designing cloud systems.

• Getting skilled programmers – Mobile development has to be combined with

cloud computing platforms to build efficient cloud-based applications. But find-

ing a skilled programmers with this expertise is very difficult. To overcome this

challenge, there should be a simple and easy-to-use high-level language with

which a programmer can build any light-weight application.
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• Heterogenity – Cloud clusters consist of heterogeneous computing nodes that dif-

fer in processing power, storage and main memory. The data processing system

needs to support this heterogeneity of the cloud environment to add flexibility.

One special type of cloud service is concerned with streaming. Streaming refers to

content that is processed to generate new stream. Examples are incoming RSS feeds

(streams) that are combined to produce new RSS feeds. Other streaming applications

watch the payments in a web-shop or analyse server loads and inform the system ad-

ministrator as soon as a load peak is detected. A number of stream data management

systems are available, among them Aurora [27], Borealis [28], and TelegraphCQ [61].

1.4 Problem Definition

The distributed nature of sensor and cloud applications, the scarce resources of sensor

nodes, and the poor debugging facilities of distributed networks make the development

of these applications a challenging task. To overcome or at least alleviate these prob-

lems, distributed programming environments seek an optimal trade-off between pro-

ductivity, flexibility, and energy efficiency. Apart from these three major requirements,

the programming model needs to support dynamic nature of the domain and timeliness

for real-time streaming applications.

1. Productivity – Productivity is a key issue in designing distributed programming

environments. Since most application developers are domain experts with limited

formal training in programming, the programming model needs to be simple and

easy to use. Existing programming models such as TinyDB [47], Mad-WiSe [30]

provide SQL-based query language, while other models like Borealis [28], Reg-

iment [56], and Storm [31] require XML files or Java to write an application

query.

2. Flexibility – The complexity of applications require adequate flexibility in writing

a wide range of applications such as data mining, monitoring, and signal process-

ing. The SQL-like languages does not support complex arithmetic, analytical,

and application-specific operations. We need a flexible model that supports a

wide spectrum of operations and platforms without specific restrictions while de-

veloping an application. Wireless motes are becoming more intelligent and have



CHAPTER 1. INTRODUCTION 13

better resources, and new and better platforms are continually being introduced.

The programming model need to cope with these technological changes without

major design modifications.

3. Energy-efficiency – An important challenge in distributed environments is to de-

ploy the computation units in the network to minimise communication and local

computation costs and provide an efficient use of available resources like battery

and communication bandwidth. The new programming model should provide

an energy-efficient solution for the placement of computation over the available

nodes.

4. Dynamic redeployment of computation units – In WSN, some nodes disconnect

over time due to battery or network failure, and therefore topology may dynami-

cally change over time. Similarly, cloud services may require scaling up or down

of a cluster based on user traffic, which leads to topology change. The new data

processing system should be robust enough to dynamically redeploy the compu-

tation units on the available nodes.

5. Real-time Data Processing – Some real-time streaming applications like bushfire

warning, financial data analysis and server monitoring require timely and reliable

processing. To determine the reliability and timeliness of the data, the model

should be capable of performing time analysis and determining delay caused dur-

ing computation.

Programming environments for distributed environments can be classified by their

extent of productivity, flexibility, and efficiency, which can have opposing effects on

each other. For example, high productivity often reduces the energy efficiency because

node- or system-level details are abstracted from the user if they use abstracted lan-

guage. Apart from these three challenges, the programming model needs to meet mo-

bility and timeliness requirements in distributed applications.
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1.5 Contribution

This thesis introduces Curracurrong, a distributed programming environment for WSNs

that achieves a trade-off between the productivity, flexibility, and efficiency. We ob-

tain productivity by introducing a new domain-specific language for stream program-

ming. The model represents computations as a stream graph [15]. Any node in the

stream graph represents a computational element called a stream operator, and any

edge represents a communication channel. To succinctly represent high-level queries

as stream graphs, we hierarchically compose stream graphs with from filters, pipelines,

and splitter-joiners. We support data-rate annotations for stream operators that permit

static computations of communication bandwidths. We provide an extensible library

of predefined stream operators that offers flexibility in designing complex applications.

Curracurrong facilitates in-network computation that lowers the communication over-

head, in contrast to the standard approach of forwarding the raw data of sensor nodes

directly to the base station. To improve energy efficiency, Curracurrong employs an

algorithm that places stream operators optimally by minimising local computation and

communication costs. We extend the placement problem to migrating operators and

introduce what we refer to as the migrating operator placement problem (MOPP); this

places operators of stream graphs on network nodes so that energy costs are minimised.

The placement takes changes of queries and migration of operators into account that

targets the problem of the dynamic nature of distributed environments. We propose an

approach that measures time delays in stream query processing that aims to achieve

timeliness in the system. Our model establishes a causality relationship between con-

sumed and produced data tokens at each operator and their corresponding occurrence

times. The total time taken for computation from the input to the output of a query

(end-to-end delay) is computed by the causality relationships and periodic schedules

for stream queries. A summary of the contributions of our work is as follows:

• The design and implementation of a stream programming environment for WSNs

based on an easy-to-use query language and a runtime environment that improves

development productivity.

• A predefined library of stream operators that includes signal processing and light

data mining tasks. Curracurrong facilitates the user to write domain- specific

stream operators for achieving flexibility.
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• Curracurrong Cloud, a light-weight distributed stream processing system designed

for deployment in large distributed clusters hosted using cloud computing infras-

tructure.

• The modelling of energy-efficient operator placement problem as multiway cut [62],

and the implementation of an approximation heuristic that bounds the quality of

the placement.

• The modelling of the NP-hard migrating operator placement problem (MOPP)

that computes a placement and minimises computation, communication, and tran-

sition costs. We devise a dynamic program that computes an optimal opera-

tor placement for compositional streams which is a sub-class of general stream

graphs in polynomial time.

• Denotational semantics for stream data processing that explains time information

propagation and an algorithm to measure the end-to-end delays in a stream graph.
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1.7 Organisation of the Thesis

The thesis is organised as follows. Chapter 2 gives the details about the new program-

ming model along with query language syntax. We discuss Curracurrong’s novel ap-

proach to operator placement and deployment on the sensor nodes with the goal of

energy efficiency. The operator placement problem is modelled as multiway cut prob-

lem and find an approximation using heuristic. In Chapter 3 we describe Curracurrong

Cloud, a light-weight, distributed stream processing system designed to be deployed

in large distributed clusters hosted on cloud computing infrastructure. We describe the

changes we made to the existing Curracurrong system so that it runs in a cloud-hosted

cluster where the computational resources are much less constrained than WSNs. In

Chapter 4 we introduce the NP-hard migrating operator placement problem (MOPP),

which computes a placement that minimises computation, communication, and transi-

tion costs, where transition cost is the cost incurred while moving an operator to a new

node. We devise a dynamic program that computes an optimal operator placement for

compositional streams – a sub-class of general stream graphs in polynomial time. Chap-

ter 5 discusses the timeliness in Curracurrong system, where we present denotational

semantics for stream data processing that explains time information propagation. We

design an algorithm to measure the end-to-end delays using event causality in a stream

graph, and show the effectiveness of the approach. Chapter 6, a literature review, shows

the detailed related work in the area of stream data processing. Conclusions and direc-

tions for future work are presented in Chapter 7.



Chapter 2

Curracurrong for WSN

Wireless sensor networks (WSNs) are distributed networks composed of a set of small

sensor devices comprising a processor, memory, a set of transducers, and a radio trans-

ceiver. Typical applications of sensor networks include habitat monitoring [63], en-

vironmental sampling [64], disaster area monitoring [11], and surveillance [65]. The

development of sensor applications is a challenging task because of the distributed

nature of sensor applications, the scarce resources of sensor nodes, and the poor de-

bugging facilities of WSNs. To overcome or at least alleviate these problems, a WSN

programming model seeks an optimal trade-off between productivity, flexibility, and

energy efficiency.

Productivity is one of the key issues in designing WSN programming environments.

Since most users will be domain experts with limited formal training in programming,

the model needs to be simple and easy to use. Models for WSN applications are broadly

classified into node-centric [55, 66] and network-centric [67, 56, 68]. In the node-

centric model, apart from application logic, users specify nodes’ local behaviour with

low-level details such as communication between nodes and efficient resource usage.

This requires users to have a thorough understanding of embedded and distributed sys-

tems programming. In contrast, the network-centric programming model expresses the

behaviour of a sensor application in a declarative fashion and provides high develop-

ment productivity [47, 67, 56, 68].

Flexibility is another key issue for WSN programming environments. The com-

plexity of WSN applications requires flexibility in writing a wide range of applications

such as data mining, monitoring, and signal processing. The low-level details in node-

centric programming models offer good flexibility in allowing users to write diverse

17
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applications. However, network-centric models such as database models [47, 69] only

support SQL queries; this can limit a range of applications, and therefore the approach

has lesser flexibility.

Energy efficiency is critical in the design of WSN programming environments. Sen-

sors are powered by on-board batteries, which have limited lifetime. In node-centric

programming models, users have the capability and the responsibility to configure

system-level settings to reduce the energy consumption. However, the higher levels

of abstraction in network-centric models means that the language or deployment envi-

ronment needs to optimise the task partitioning to achieve efficiency.

WSN programming environments can be classified by their extent of productivity,

flexibility, and efficiency, which can have opposing effects on each other. For example,

high productivity often reduces the energy efficiency because node-level details are

abstracted from the user. The trade-offs between productivity, flexibility, and efficiency

are illustrated in the triangle below: finding a “sweet spot” is a challenge.

Prod
uc

tiv
ity

Flexibility

Efficiency

We develop Curracurrong [70], a stream programming system for distributed en-

vironments like WSN and cloud. The model achieves an optimal trade-off between

productivity, flexibility, and efficiency. We obtain productivity by introducing a new

domain-specific language for stream programming. The model represents computa-

tions as a stream graph [15]. Any node in the stream graph represents a computational

element, called a stream operator, and any edge represents a communication channel.

To succinctly represent high-level queries as stream graphs, we hierarchically compose

stream graphs built from filters, pipelines, and splitter-joiners. This is similar to other

structured stream programming languages such as StreamIt [71]. An implicit type sys-

tem ensures the type compatibility of stream operators. We support data rate annotations

for stream operators that permit static computations of communication bandwidths. An

extensible library of predefined stream operators is provided to offer flexibility in de-

signing complex applications. Curracurrong facilitates in-network computations that

lower the communication overhead; this is in contrast to the standard approach of data
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forwarding, which propagates the raw data of sensor nodes directly to the base station.

To improve energy efficiency, Curracurrong employs an algorithm that places stream

operators optimally by minimising local computation and communication costs. This

chapter explains the Curracurrong system for WSN and in the next chapter we discuss

the same for cloud environment.

The contributions of our work in this chapter are as follows:

• The design and implementation of a stream programming environment based on

an easy-to-use query language and a runtime environment that improves devel-

opment productivity.

• A predefined library of stream operators that includes signal processing and light

data mining tasks. In addition, Curracurrong facilitates the user to write domain-

specific stream operators for achieving flexibility.

• The modelling of energy-efficient operator placement problem as multiway cut [62],

and the implementation of an approximation heuristic that bounds the quality of

the placement.

The chapter is organised as follows. Section 2.1 provides a detailed description

of Curracurrong’s query language and data model. Section 2.2 presents the Curracur-

rong query processing system that is responsible for handling activities at sensor node

level. Section 2.3 discusses a novel operator placement algorithm to optimise energy

consumption. Section 2.4 provides an evaluation of the algorithm.

2.1 Curracurrong Query Language

The model of computation in Curracurrong is based on the notion of a stream – a se-

quence of values that are seen successively over time. A program in Curracurrong is

a stream graph, consisting of independent nodes representing stream operators (also

called actors) that communicate over edges representing FIFO data channels. Each

channel carries a stream of data values. As Figure 2.1 shows, each stream graph in

Curracurrong is a composition of five types of stream operators, namely sense, sink, fil-

ter, split, and join. Each operator has two stages of execution: initialization and steady

state. During initialisation, input and output channels are created and static parameters

are initialised, whereas during the steady state there is an endless repetition of a single
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Figure 2.1: Curracurrong stream operators

step, driven by the stream of values on the input channel(s) and placing a stream of

values onto the output channel(s). One step of a stream operator pops or peeks data

items from input channels, processes or transforms them, and pushes the transformed

items into output channels. The number of data items peeked, popped, and pushed by

each step of a given stream operator is constant throughout invocations. This allows us

to compute communication bandwidths statically. The stream operators in Figure 2.1

are explained below:

(a) The sense operators in Figure 2.1(a) are the initial nodes of the graph. Sensor

nodes sample the environmental data and through sense operators inject sampled

data streams into the network. A sense operator has only one output channel and is

located on predetermined sensor nodes.

(b) The sink operator in Figure 2.1(b) is a terminal node of the stream graph. It collects

the final results of the computation from the incoming channel, after which they

might be passed to other forms of computer system. A sink has only one input

channel and is located on the predetermined base station.

(c) The filter in Figure 2.1(c) is an operator with a single input and single output chan-

nel. It reads the data items from its input channel, applies a computation to trans-

form them, and pushes results into the output channel. The results may have differ-

ent values, data type, and rate from the input.

(d) The split operator in Figure 2.1(d) has a single input stream and distributes data
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items between its output streams. There are two types of split operators: dupli-

cation and round-robin. The duplication split copies each input item to all output

channels. On the other hand, a round-robin split distributes its input data to the

output channels following a particular sequence given to the channels.

(e) The join operator in Figure 2.1(e) combines multiple input channels into one output

channel. The output has the same values and data types as the input channels, but

possibly with different rates.

The stream graphs in Curracurrong are constructed by a hierarchical composition of

pipeline, split, and join structures [71]. The pipeline is composed of two or more graphs

arranged in a sequence, whereas split and join structures are illustrated in Figure 2.1(d)

and Figure 2.1(e), respectively. These compositions allow the modular comprehension

of a query program, improving the programmer’s productivity. Because Curracurrong

has a query language with hierarchical structured queries, it is easy to represent queries

with graphical notation when desired (Figure 2.6); however, our system expects queries

to be defined using the textual representation (Figure 2.5).

Curracurrong has a complete data type system that includes all basic primitive data

types, such as integers of various sizes, single- and double-precision floating points,

and character strings. The type system includes composite types such as fixed-length

arrays and records. The elements of composite types in turn can be either primitive or

composite types. The Curracurrong type system is implemented in Java. It is extensible

via an interface for data type classes.

2.1.1 Language Syntax

The basic syntax for a stream operator in Curracurrong query language includes a pa-

rameter list with zero or more parameters specified in brackets. These parameters are

used either for the initialisation of a stream operator or as runtime variables. For exam-

ple, in a sense operator

Sense[node="1.1.1.1", interval=20, starttime=12345]

the user passes three parameters to a sense operator, including the location of the oper-

ator on a sensor node 1.1.1.1, an execution interval, and a start time of the execution.

Interval and starttime parameters specify the scheduling semantic of the operator,

where sampling is performed every 20 ms starting from the wall clock time 12345.
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query Average =
(Sense[node="1.1.1.1", rate=100] ->
Select[field=3] ->
AverageFilter[window=5] |
Sense[node="1.1.1.2", rate=50] ->
Select[field=3] ->
AverageFilter[window=5] |
Sense[node="1.1.1.3", rate=200] ->
Select[field=3] ->
AverageFilter[window=5])

Figure 2.2: Average query

Curracurrong has a set of predefined stream operators for data collection and sig-

nal processing applications, including: Sense, representing sensing operation; Select,

to select a data field to propagate further, AverageFilter to compute the average

of a number of data; VarianceFilter, to compute the variance of a set of sensor

readings; Threshold, to specify a threshold on the data value to be propagated; and

LowPassFilter and HighPassFilter to remove low- and high-frequency signal read-

ing, respectively. Users can expand this set of operators by extending a Java abstract

class, StreamOpFilter, enabling them to define any kind of application-specific com-

putation.

Figure 2.2 shows the Average query. In this example, we compute average temper-

ature sensor readings at each node and send the results to the base station. We define

the query using query command with a query expression. The query is composed of

the Sense, Select, and AverageFilter stream operators of the predefined library.

The symbol “->” between stream operators indicates the pipeline structure, and pipes

the output stream into the subsequent operators. The join operator – expressed as “|”

between query expressions – merges its input streams and sends the data to its single

output stream.

In this query, the Sense operators sample the data with rates of 100, 50, and 200

ms, given explicitly as rate parameters. Curracurrong query language supports dif-

ferent sample rates for the Sense operators. The output channel of a Sense operator

consists of sensor-sampled values in the Curracurrong data record format. Each field

in the record represents the reading of one of the sensors. The Select operator picks

a temperature value indicated by the field parameter. The AverageFilter is applied
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to selected values based on the window size specified by the window parameter, which

indicates the number of data elements to be averaged.

Curracurrong supports selection, join, split, and aggregation queries, and the envi-

ronment allows commands for defining, executing, stopping, visualising, and checking

the status of a query in the system. Queries are defined by the query clause, which is

associated with an identifier. The identifier can be used by other commands to control

the query. Figure 2.3 gives the syntax of the language in Backus-Naur Form (BNF).

The commands to control the queries are listed below:

• exec Id executes a query with an identifier Id. This command activates a query

by sending stream graph construction messages to the nodes, and executes the

operators.

• kill Id stops an active query specified by Id. This command deactivates the

query, destroying all of the stream operators on the nodes.

• visualize Id shows a graphical presentation of the stream graph of a given

query.

• status Id displays the status of the query.

• print Id displays the query.

Instead of using an explicit kill command, we can limit the execution time of a

query via a repeat parameter – for example, repeat=10 stops the query execution

after 10 iterations, or we can include a stopping condition triggered by an event.

2.1.2 Case Study: Seismic Event Detection

We demonstrate how Curracurrong is used for a seismic event detection application

from literature [11]. Curracurrong programmability is compared with that of TinyDB

[47] and Borealis [28]. A seismic event detection dataflow graph is illustrated in Figure

2.4. This application attempts to detect the onset of an earthquake or other interesting

seismic events using a simple “ratio of two low-pass filters” approach on a seismometer

signal. The program samples the seismic sensor every 10 ms and passes the resulting

data through two exponentially weighted moving average (EWMA) operators with dif-

ferent gain settings. If the ratio of these operators exceeds a threshold, this indicates that
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〈program〉 ::= 〈command〉; ||
〈command〉; 〈program〉

〈command〉 ::= exec Id || status Id ||
visualize Id ||
kill Id || print Id ||
query Id = 〈expression〉

〈expression〉 ::= 〈term〉 || 〈term〉 -> 〈expression〉
〈term〉 ::= || 〈operator〉 || 〈operator〉 | 〈term〉

〈operator〉 ::= Name || Name [〈paramlist〉] || (〈expression〉)
〈paramlist〉 ::= Id=〈value〉 ||

Id=〈value〉, 〈paramlist〉
〈value〉 ::= Id || String || Int || Float

Figure 2.3: Curracurrong query language BNF

Sample Seismometer
High-gain EWMA

Low-gain EWMA
Ratio Value > 10 Eruption

Figure 2.4: Seismic event detection – dataflow graph

the seismic signal is significantly larger than the background noise, then a “detected”

message is transmitted to the base station.

Figure 2.5 shows the Curracurrong query Event for the seismic event detection

application. The query uses the Sense stream operator (defined in the operator library)

with an interval parameter. The application samples the seismometer reading using a

sensor with address “1.1.1.1” every 10 ms. The time-stamped data stream is pushed

into a Split operator that generates two copies of the input stream. The output stream

from the splitter is given to the EWMA operators with two different gain values: 0.2 and

0.8. The average values from two EWMA operators are passed through the built-in join

operator and forwarded to the next user-defined operator Ratio. Ratio calculates a

ratio of the two averages and pushes the resulting value to the next built-in operator

Threshold. An event detection signal is sent to the sink operator located on the base

station if the average ratio is beyond the threshold value – here, 10. We next show the

complete code for user-defined operators EWMA and Ratio. Figure 2.6 demonstrates the

corresponding stream graph for the Event query.
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query Event =
Sense[node="1.1.1.1",interval=10] ->
([type="duplicate"] EWMA[gain=0.2] | EWMA[gain=0.8]) ->
Ratio ->
Threshold[value=10];

Figure 2.5: Seismic event – Curracurrong query

Sense

(Duplicate) Split

(Low) EWMA (High) EWMA

Join

Ratio

Threshold

Sink

Figure 2.6: Seismic event detection – Curracurrong stream graph

• EWMA

1: public class StreamOpEWMA extends StreamOpFilter {

2: private float gain;

3: private float state, out;

4: public void initialize(int opID, Hashtable propertyMap) {

5: super.initialize(opID, propertyMap);

6: String value = getPropertyValue("gain").tostring();

7: if(value != null) {

8: gain = Float.parseFloat(value);

9: }

10: state = 0.0f;

11: }

12: public void execute() {
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13: DRecord rec = (DRecord) receive();

14: float in = Float.parseFloat(rec.getElement(1));

15: out = state = gain * in + (1.0 - gain) * state;

16: rec.setElement(1) = out;

17: send(rec);

18: }

19:}

EWMA operator extracts a parameter ‘gain’ from the parameter list during initialisation –

in initialize function and uses it during execution. The execute method is called when the

scheduler puts StreamOpEWMA operator in a ready queue (cf. 2.2). During execution,

the operator receives first data from its input queue using receive(), performs computation

and sets output data in the record, and sends it to the output queue.

• Ratio

1: public class StreamOpRatio extends StreamOpFilter {

2: private float out;

3: public void initialize(int opID, Hashtable propertyMap) {

4: super.initialize(opID, propertyMap);

5: }

6: public void execute() {

7: DRecord rec = (DRecord) receive();

8: float in1 = Float.parseFloat(rec.getElement(1));

9: rec = (DRecord) receive();

10: float in2 = Float.parseFloat(rec.getElement(1));

11: out = in1/in2;

12: rec.setElement(1) = out;

13: send(rec);

14: }

15:}

When Ratio operator is scheduled for the execution, it collects first two data from its

input queue, computes the ratio by dividing first data into second data, and sets the out

value in the record. Finally the record is sent to the output queue of Ratio.

We compare the expressiveness of our language with that of TinyDB. TinyDB query

processing system is a declarative SQL-like query interface that uses clauses, such as
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SELECT, FROM, WHERE, HAVING. As mentioned in the literature [47], in the latest

version of TinyDB, the WHERE and HAVING clauses contain only simple conjunc-

tion over arithmetic comparison operators; arithmetic expressions are limited to the set

{+,−,∗,/}. Due to limitations in the query language, this is less expressive than the

Curracurrong query language. An advantage is that operators such as EWMA can be eas-

ily implemented in the Curracurrong system, while this is not the case with the TinyDB

system.

We further compare our query with a sample Borealis query for the same appli-

cation (cf. Figure 2.7). In the Borealis system, a user writes XML files to define a

query. As shown in the XML code, a Borealis query contains stream, schema, and

boxes definitions. Each box represents a query operator and corresponding input and

output streams. For example, the sense operator is defined within box and requires 10

XML tags. In a Curracurrong query, specifying the sense operator is much shorter.

Other issues of complexity in writing Borealis queries include choice of predefined box

type, definition of input–output streams, manual type inference over I/O streams, man-

ual definition of connection points between boxes, and the need for a separate XML file

for query deployment.

The latest version of the Borealis system supports a graphical editor to define queries [72].

However, there are several reports that frequent users of a programming system prefer

a traditional textual interface over the graphical [73]. The current case study shows that

defining any query using the Curracurrong programming model is simpler and shorter

than using the Borealis system’s textual interface. The case study also illustrates that

Curracurrong offers adequate flexibility in defining domain-specific queries using built-

in and user-defined query operators. Unlike Borealis, Curracurrong provides an auto-

matic type inference feature that reduces the burden of application developer. The query

deployment in Borealis requires the user to write a separate XML file, while Curracur-

rong performs deployment automatically, as explained in the next section.

2.2 Query Processing System

Curracurrong’s query processing system consists of two subsystems: a server module

and a runtime environment. The server module is responsible for parsing the query,

mapping it onto a stream graph, computing the placement of the stream operators on
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<?xml version="1.0"?>
<!DOCTYPE borealis SYSTEM "../../src/src/borealis.dtd">
<borealis>

<input stream="ElementInput" schema="Element" />
<output stream="SenseOutput" schema="Element"/>
<output stream="LowEWMAOutput" schema="Element"/>
<output stream="HighEWMAOutput" schema="Element"/>
<output stream="JoinOutput" schema="Element"/>
<output stream="ThresholdOutput" schema="Element"/>

<schema name="Element">
<field name="timestamp" type="int"/>
<field name="id" type="int"/>
<field name="reading" type="float"/>

</schema>

<query name="Event">
<box name="sense" type="map">

<in stream="ElementInput"/>
<out stream="SenseOutput"/>
<parameter name="expression.0" value="timestamp"/>
<parameter name="output-field-name.0" value="timestamp"/>
<parameter name="expression.1" value="id"/>
<parameter name="output-field-name.1" value="id"/>
<parameter name="expression.2" value="reading"/>
<parameter name="output-field-name.2" value="reading"/>

</box>
<box name="LowEWMA" type="aggregate">

<in name="SenseOutput" />
<out name="LowEWMAOutput" />
<parameter name="aggregate-function.0" value="ewma(0.2)" />
<parameter name="aggregate-function-output-name" value="ewma"/>
<parameter name="order-on-field" value="TUPLENUM" />
<parameter name="group-by" value="id" />
<parameter name="window-size" value="" />
<parameter name="window-size-by" value="TUPLES" />

</box>
<box name="HighEWMA" type="aggregate">

<in name="SenseOutput" />
<out name="HighEWMAOutput" />
<parameter name="aggregate-function.0" value="ewma(0.8)" />
<parameter name="aggregate-function-output-name" value="ewma"/>

Figure 2.7: Borealis query definition – Event.xml (Part-1)
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<parameter name="order-on-field" value="TUPLENUM" />
<parameter name="group-by" value="id" />
<parameter name="window-size" value="" />
<parameter name="window-size-by" value="TUPLES" />

</box>
<box name="joinRatio" type="aurorajoin">

<in stream="LowEWMAOutput"/>
<in stream="HighEWMAOutput"/>
<out stream="JoinOutput"/>
<parameter name="predicate" value="left.id==right.id" />
<parameter name="left-order-by" value="VALUES" />
<parameter name="right-order-by" value="VALUES" />
<parameter name="left-order-on-field" value="timestamp" />
<parameter name="right-order-on-field" value="timestamp" />
<parameter name="out-field.0" value="left.timestamp" />
<parameter name="out-field-name.0" value="timestamp" />
<parameter name="out-field.1" value="left.id" />
<parameter name="out-field-name.1" value="id" />
<parameter name="out-field.2" value=

"left.reading/right.reading" />
<parameter name="out-field-name.2" value="reading" />

</box>
<box name="threshold" type="filter">

<in stream="JoinOutput"/>
<out stream="ThresholdOutput"/>
<parameter name="expression.0" value="reading &lt;= 10"/>

</box>
</query>

</borealis>

Figure 2.8: Borealis query definition – Event.xml (Part-2)
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Figure 2.9: Curracurrong system components. Here, S indicates the server module and
RE is the runtime environment. The broken lines are administrative channels and bold
lines are data channels.

sensor nodes, and computing the channel bandwidths and data types of the channels.

The runtime environment, on the other hand, manages all aspects of the in-network

execution of the queries, such as communication between the stream operators and

their scheduling on sensor nodes. The server module resides on the base station, while

each sensor node executes an instance of the runtime environment. Figure 2.9 illustrates

the structure of the system including server module and runtime environment, on base

station and sensor nodes.

2.2.1 Server Module

The server module parses user queries using a syntax processor. The syntax processor

is implemented using ANTLR, a parser generator for LL(k) grammars [74]. The parsed

user-defined queries are translated to an internal representation of stream graphs, where

the vertices are stream operators and the directed edges are FIFO channels. Figure 2.10

shows the stream graph of the Average query, where the -> symbols in Figure 2.2 are

translated into channels, and the outputs of streams separated by | are joined by a joiner

operator.

The server module performs specific tasks on the stream graph to prepare for de-

ployment, including the computation of bandwidth and data types of channels followed

by the computation of the optimal stream operator placement on the sensor nodes. On
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Sense Sense Sense

Select Select Select

Average Average Average

Join

Sink

Figure 2.10: Average stream graph. The graph is generated by the server module from
the query of Figure 2.2, by converting “->” into a FIFO channel and “|” into a join
operator with the corresponding channels.

receiving the deployment commands from the server module, the runtime environment

module in the base station sends commands to the runtime environment module on each

sensor node to initialise the stream operators. Once all stream operators are initialised,

each sensor node sends an acknowledgment message to the server, which in turn sends

a command to start the query execution on each sensor node.

2.2.2 Runtime Environment

The Curracurrong runtime environment is implemented in Java. To run WSN applica-

tions the system runtime was targeted for the SunSPOT virtual machine Squawk [75],

an open-source Java ME virtual machine for embedded systems and small devices that

supports dynamic loading of Java bytecode. Thus, Curracurrong runtime environment

can be dynamically reprogrammed. The runtime environment manages the communi-

cation, execution and administration of stream operators on each sensor node. It has

three main components: the administrator, communicator, and scheduler. Figure 2.11

illustrates the components of runtime environment.

• The administrator runs as a single thread and receives administrative commands

(exec and kill) from the base station. It executes the construction and destruc-

tion of stream operators on the sensor node and other commands.
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• The communicator is implemented as a parallel running thread. It is responsi-

ble for handling the communications of input and output channels of the stream

operators placed on sensor nodes. When the communicator received a data mes-

sage, it places it in the queue of recipients based on queue id. At the end of each

execution of the stream operators, the communicator checks the output channels.

If the receiver operator of the new data is located on the same node, it puts the

data in its input channels; otherwise, it sends the data to the communicator of

the sensor node where the receiver operator is located. The communicator has a

routing table that indicates the placement of stream operators on the nodes.

One of the design characteristics of the runtime environment is the separation of

data and administration channels so that the communicator is responsible for data

communication between the stream operators only; whereas the administrator

handles administrative tasks such as operator creation, query deletion.

• The scheduler manages and controls the execution of stream operators on the

sensor node based on their scheduling semantics. During the initialisation, each

stream operator registers itself to the scheduler. The scheduler has two queues:

run and wait. The run queue is a time-triggered priority-based blocking queue

that orders tasks (operators) based on their execution time. The wait queue main-

tains the stream operators that do not have sufficient data items for execution. The

communicator notifies the scheduler when it stores data items in the input chan-

nels of an operator in the wait queue. The scheduler moves the stream operator

from the wait queue to the run queue if the queue has sufficient data items in its

input channels.

To optimise energy consumption by a sensor node during runtime, we provide a

curfew model in the runtime environment, to delay the data communication between

sensor nodes. The model collects the data and sends a data packet to other sensor as

a relatively big chunk rather sending small-sized data packets individually. The model

exploits the possibility for an energy drop at sensor radio while communication is idle

– that is, between two consecutive communications. When the curfew is set, the sensor

radio is turned off until the output buffer is full. During this time, the sensor goes into

shallow sleep mode, reducing energy consumption. The curfew model is ideal for event

log applications, but not for real-time event-detection applications. It is a decision of
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Figure 2.11: Runtime environment components

the application developer to apply the curfew model to get an added energy optimisation

on top of the optimised operator placement; this is discussed in the next section.

2.3 Operator Placement and Deployment

We discuss Curracurrong’s novel approach to operator placement and deployment on

the sensor nodes in terms of energy efficiency. Curracurrong takes advantage of a stream

graph to compute data types and bandwidth requirements of the channels, and uses the

information to compute an optimised placement of operators on sensor nodes. Our

placement approach could be applied in other WSN query processors, provided that the

query can be converted to a graph of operators and each source has bounded bandwidth

on its data stream. The former condition holds in most systems, but the latter is not

a common assumption; instead most stream processing systems target widely varying

data rates.

2.3.1 Data Type and Bandwidth Computation

Query construction of the Curracurrong system involves channel type and bandwidth

inferencing. The data types and bandwidth of the channels are deduced ahead of time

for the construction of the input and the output data channels by the server module. A

type propagation algorithm computes the data type of all stream edges in the structured
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Assume:
G = (V,E) a stream graph with V ordered by a

mapping α : V → N such that α(v1)< α(v2) if
(v1,v2) ∈ E, and 1≤ α(v)≤ |V | for any v ∈V

for i = 1 to |V | do
Assume v such that α(v) = i

Iv,Ov ⊆ E input/output channels of v
for each c ∈ Ov do

τ(c),β(c) = T (c)(Iv),B(c)(Iv) end for
end for
Output τ,β

Figure 2.12: Topological sort-based graph walk. Here T (c)(Iv) and B(c)(Iv) are re-
spectively the functions that computes the output channel c’s type and bandwidth given
input channels Iv.

stream graph by traversing the graph based on a topological ordering [76] of the opera-

tors, where an operator that produces data into a channel precedes another operator that

consumes the data produced.

Figure 2.12 shows the pseudocode of the data type and bandwidth assignment algo-

rithm. Starting with operators without input channels (Sense operators), the algorithm

assigns the data type of the output channels. By following the topological sort, when-

ever the algorithm visits an operator during the walk, their input channels data types

from which output channel types are computed are known. The algorithm continues

to traverse the graph following the topological sort until data types have been assigned

to all channels. It exhibits a linear running time in the number of nodes and edges:

when V and E are respectively the sets of operators and channels, the running time is in

O(|V |+ |E|).
The stream graph does not change throughout execution, and the output bandwidth

of sense operators are statically known, therefore the bandwidth of data channels are

computed statically. Each stream operator has a specific method, which returns the

bandwidth of the output channels based on input bandwidth and operator type. For filter

operators input and output bandwidth remains same; for join operator, output bandwidth

is addition of all its input bandwidths; for duplicate splitter, each output channel has

bandwidth same as its input and round-robin splitter divides the input bandwidth into

the number of output channels. As shown in the pseudocode Figure 2.12, the bandwidth
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1.1.1.1 1.1.1.2 1.1.1.3

Sense 1 Sense 2 Sense 3

DRecord [
DInteger32,
DInteger32,
DInteger32]

10

DRecord [
DInteger32,
DInteger32,
DInteger32 ]

20

DRecord [
DInteger32,
DInteger32,
DInteger32]

5

Select 4 Select 5 Select 6

DInteger32 10 DInteger32 20 DInteger32 5

Average 7 Average 8 Average 9

DInteger32

2
DInteger32 4

DInteger32

1

Join 10

DInteger32 7

Sink 11

Figure 2.13: Average data type, bandwidth, and placement. The number in boxes
denote topological ordering, the numbers attached to edges denote bandwidth require-
ment, DRecord and DInteger32 are channel data types. The record types (DRecord)
have three elements of the primitive 32-bit integer types (DInteger32).

information is computed along with data types during the walk over the graph following

the topological sort.

In the Average query example from Section 2.1, the query processor parses the

query upon submission and constructs its stream graph (cf. Figure 2.10). During con-

struction, the parser assigns a unique identifier to each operator in the stream graph

based on topological ordering. Figure 2.13 illustrates the data type and bandwidth infer-

ence in the Average query stream graph based on the topological ordering of operators.

2.3.2 Placement of Operators

By minimising the local cost of executing operators on sensor node and communication

between the nodes, we expect to effectively reduce the power consumption of the whole

network. Communication between sensor nodes depends on the allocation of stream

operators in the network, since it is costlier for operators located on different sensor

nodes to communicate in comparison to operators located on the same node. However,

it is unreasonable to place all operators on the same sensor node, because sensor nodes

are tiny devices with low power resource. If operators requiring heavy computations
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are placed on the same node will have potentially higher energy consumption and this

may lead to the failure of the computation.

Formally, we model Curracurrong queries as a graph G = (V,E). We are also given

a set N ⊆V of sensors, which includes the sink operator placed on the base station. The

operator placement problem is to find a mapping p : V → N that allocates the operators

to the sensors and base stations, with the constraint that for all n ∈ N, p(n) = n. The

aim is to find a mapping p that optimise the following two costs:

Local cost: The local cost represents the execution cost incurred while placing an

operator on a given sensor node. The cost depends on the available energy level

of the sensor node. For an operator u∈V and the placement p, the placement cost

is wL(u, p(u)) ∈ Q+ which is given as we(u) · e(p(u)), where we : V → N is, for

example, the worst-case execution time (WCET) in clock cycles and e : N→Q+

the energy consumed per clock cycle.

Communication cost: The communication cost represents the cost when two commu-

nicating operators are placed on different sensor nodes. For channel (u,v) ∈ E,

the communication cost is wC(u,v, p(u), p(v))∈Q+ defined as ws(u,v) · I(p(u) 6=
p(v)), where ws : (V ×V )→ Q+ is, for instance, the bandwidth requirement in

bytes for communication over the channel. I is an indicator function, such that

I(ϕ) = 0 if the condition ϕ did not hold, and I(ϕ) = 1 otherwise. Therefore,

I(p(u) 6= p(v)) = 1 when operators u and v are placed on the different nodes, and

0 otherwise.

The total cost of operator placement to be minimised for stream graph G = (V,E) is

defined as:

f (p) = ∑
u∈V

wL(u, p(u))+ ∑
(u,v)∈E

wC(u,v, p(u), p(v)). (2.1)

One simple approach to processing a query is to transmit all collected samples to

the base station, and to perform all computations at the sink. This approach, which

we refer to as forwarding, causes considerable burden on the network because of the

high communication overhead. An alternative common approach is that of in-network

computation [77], where raw data is read from sensor nodes, and after computations

is aggregated and sent to the sink operator. The Curracurrong system further improves

in-network operator placement by computing an optimal placement, using an algorithm
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in which the problem is viewed as an instance of the multiway cut problem, also known

as k-way cut (e.g., [78]). The placement in effect pushes some or all of the query

execution tasks and stream operators to the sensor nodes, which in turn reduces the

overall communication cost.

We now present a modelling of our placement problem as the multiway cut problem.

Multiway cut is defined on an undirected graph GMC = (V MC,EMC), where V MC is

the set of vertices, and EMC is the set of edges. We are also given a set T ⊆ V MC

of k = |T | terminal vertices. A multiway cut, is a set C ⊆ EMC of edges such that in

G′= (V MC,EMC−C), no path exists between any two nodes of T , – that is, the terminal

vertices become disconnected from each other. The multiway cut problem seeks a cut

such that |C| becomes minimal; the weighted multiway cut problem seeks a cut C such

that ∑e∈C w(e) becomes minimal where w(e) is the weight of edge e.

The placement problem is that of assigning labels to the stream operators, where

each label corresponds to a sensor node (some specific operators in the stream graph

have a fixed labelling, where the sense and sink operators are located on specific sensor

nodes or the base station, respectively). First, we equate the set N of sensor nodes

and base station to the set T of the terminal vertices of the multiway cut: T = N. A

stream graph can then be viewed as a graph of a multiway cut problem. Due to the

fixed assignments of sense operators to sensor nodes and sink operator to base station,

we equate sensor nodes with sense operators, and base station with sink operator, such

that T = N ⊆ V. We view the set of vertices V MC as the set of all operators V and

edges EMC as communication channels along with edges from vertices to the sensor

node: EMC = E∪ ((V \N)×N), with weights on the edges determined by the local and

communication costs as follows:

w(u,v) =

{
(∑q∈N wL(u,q))−wL(u,v) if v ∈ N,u 6∈ N

wC(u,v) otherwise.

The formula (∑q∈N wL(u,q))−wL(u,v) represents the cost that is paid for not placing

u on node v (see [79, 80]). Obtaining the minimum cut, then, corresponds to obtaining

a set of edges with the least weights. Hence, the placement problem has a natural

mapping to the multiway cut.

For k= 2, the multiway cut problem reduces to the s−t min-cut problem [81], which

can be solved via its dual problem: the maximum flow problem with a complexity bound
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Assume T = {t1, . . . , tk} ⊆V
for i = 1 to k do

Connect terminals in T −{ti} with a new terminal
u 6∈V via edges of weight +∞.

Ci = minimum s− t cut between ti and u.
end for
Assume for some 1≤ l ≤ k,w(Cl)≥ w(Ci)

for all 1≤ i≤ k.
Output C1∪ . . .∪Cl−1∪Cl+1∪ . . .∪Ck.

Figure 2.14: Isolating cut heuristic algorithm

Op\ Node 1.1.1.1 1.1.1.2 1.1.1.3 Base Station
1 0 ∞ ∞ ∞

2 ∞ 0 ∞ ∞

3 ∞ ∞ 0 ∞

4 2 30 40 5
5 25 3 25 5
6 10 25 35 5
7 3 15 20 5
8 20 40 45 5
9 30 45 40 5

10 35 30 30 5
11 ∞ ∞ ∞ 0

Table 2.1: Local cost for operators on sensor nodes (fig. 2.13), here ∞ indicates very
high cost; the cost for each operator on the base station is same except for sense and
sink operators, which have fixed placement

polynomial in the size of the graph. However, the multiway cut problem is known to

be NP-hard for k ≥ 3. We therefore employ the algorithm of Dahlhaus et al. [82]

(Figure 2.14), which provides a simple combinatorial isolation heuristic with an ap-

proximate solution bounded by 2− 2
k to the optimal solution. In this algorithm, we

select a terminal and solve the s− t min-cut between the terminal and the remaining

k−1 terminals, which minimally disconnects the two sets. The union of these isolating

cuts excluding the cut with the heaviest weight gives the approximation to the optimal

solution, because the union of k−1 isolating cuts is a cut. Although this algorithm has

a worse approximation bound than the algorithms of [83, 84], it has the lower runtime

complexity. Therefore we have adopted it for Curracurrong.
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Figure 2.13 shows the outcome of the placement algorithm for the Average query.

In the first case, for the ease of explanation we assume a uniform local cost wL , i.e.,

wL(u, p(u)) = c, for each u ∈V , where c is a constant. Placement with this assumption

gives a trivial cut that can be easily seen from the stream graph. In the figure, larger

dotted boxes depict sensor nodes enclosing a number of operators, with operators 10

and 11 placed on the base station. However, our placement algorithm is capable of

computing non-trivial cuts. This is represented as the second case, where we consider

the non-uniform local costs (Table 2.1) in addition to the communication costs; this

placement is shown as dashed boxes. The remaining operators numbered 6,8,9,10,

and 11 are placed on the base station.

In practice, the communication cost between two sensor nodes is affected by the

number of hops required to send information on the physical network. Hence, de-

pending on the connectivity of the nodes, communication might be cheaper or more

expensive. Such consideration can be incorporated into the isolating cut heuristics by

introducing a connectivity scaling factor Φstep : N → Q+, defined as follows for any

x ∈ N.

Φstep(x) =
∑y∈N shortest path(x,y)

|N|
,

where shortest path(x,y) denotes the minimum scaling for communication between

nodes x and y, which is proportional to the least number of hops between them. The

scaling factor Φstep(ti) is applied to the communication edges in the solving of s− t

min-cut problem between ti and u in Figure 2.14.

2.4 Experiments

We implemented the Curracurrong runtime environment in Java. For WSN the runtime

is targeted for the SunSPOT virtual machine Squawk [75], an open-source Java ME vir-

tual machine for embedded systems and small devices, which supports dynamic loading

of Java bytecode. The implementation contained 2,000 lines of Java code for the ad-

ministration, communication, and scheduler components as explained in Section 2.2.2.

Along with Curracurrong’s runtime environment, we implemented the server module

with query parser, the operator placement algorithm, and a library of commonly used

operators, such as Sense, Select, and AverageFilter.

We evaluated the Curracurrong runtime environment and the operator placement
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algorithm with a network of SunSPOT sensor nodes, measuring the energy consumption

by the SunSPOT nodes to run particular Curracurrong queries. We assume that every

node uses its local time and all nodes are synchronised. If clocks drift, we need to

employ global time synchronisation protocols [85, 86],which is beyond the scope of

this work. For precise measurements, we used a stabilised external power supply and

resistors connected in series to the SunSPOTs. To measure the energy consumption, we

used the voltage drop on the resistors and the voltage of the stabilised power supply with

National Instruments’ Data Acquisition (DAQ) devices. A small application collected

the voltage readings from the DAQ device and computed the energy consumed by the

node for a predefined time.

We performed experiments for up to five nodes, where we confirmed that the optimi-

sation technique improves energy efficiency. In all the experiments, we run queries in-

definitely and stop them explicitly. The results were validated by comparing them with

those of an analytical model. We confirmed the execution efficiency of the heuristics by

a comparison with an ILP solver. More detailed analysis of our system is illustrated by

the experiments measuring the computation resource usage and cost distribution over

query (cross-reference section number).

2.4.1 In-Network vs. Forwarding

Pushing computations to sensor nodes based on local and communication costs re-

duces energy consumption by nodes. Our experiments compared the forwarding (non-

optimised) approach in which the raw data was sent to the base station for computa-

tion with our in-network (optimised) approach, where our operator placement approach

pushed computations to the sensor nodes. We ran the following two queries:

Average Traffic: A query to log the vehicle traffic measurements from sensors placed

at various locations. We took readings from the sensors in intervals of 10 s and

log the average traffic from each sensor at every 60 s.

query Average = Sense[node="1.1.1.1",interval=10000] ->

Select[field=2] ->

Average[window=6];

Temperature Variance: A query to detect the temperature variance in the laboratory.

Query samples the temperature reading at every 5 s and compute the variance
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with past five readings. If the temperature variance exceeds 10 oC, the signal is

sent to the base station.

query NetVariance = Sense[node="1.1.1.1",interval=5000] ->

Select[field=2] ->

Variance[window=5] ->

Threshold[value=10];

The Average query induces a simple in-network computation, where the optimisa-

tion algorithm allocates most operators on the sensor nodes instead of the base station.

With optimal placement, the number of packets sent per second was reduced by a fac-

tor of six, thus considerably reducing the communication overhead and hence the en-

ergy required by the SunSPOT motes. Whereas Average query sends an average of all

sensed data to the base station, the NetVariance query sends the data only if the vari-

ance of samples exceeds a specific threshold. In this query, the optimised in-network

computation significantly decreases the number of sent packets.

As explained before, we ran these queries connecting the external power supply

to the SunSPOTs. Due to the spatial limitation of experimental setup, we used light-

intensity sensor readings for both the queries. We ran these experiments for two network

topologies:

1. single-hop, a scenario where sensor nodes were close to the base station and

nodes communicated with the base station in single hop without routing through

intermediate nodes; and

2. multi-hop, where each sensor node communicated with base station via all other

remaining nodes.

Figure 2.15 shows the difference of the two topologies. Single hop is the ’best’ case

because it is the least costly topology for communication, whereas multi-hop is the

’worst’. Figure 2.16 shows the percentage of energy reduction when using in-network

computation instead of forwarding for single- and multi-hop topologies. We observed

that energy consumption can be reduced up to 5–7% for single-hop, and 22–24% for

multi-hop. Potentially our approach becomes more effective the further the topology is

from the ’best’ and the closer it is to the ’worst.’

The results show that optimised in-network computation significantly reduces the

communication overhead for the aggregating queries like Average and NetVariance.
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N2
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Figure 2.15: Single-hop (a) vs. multi-hop topology (b). For single-hop, a sensor node
N1 communicates directly to the base station, whereas for multi-hop, the data goes
through N2–N5 before reaching the base station.

Figure 2.16: Experimental results. The maximum reduction of energy usage for single-
hop topology is 5–7%, and for multi-hop topology is 22–24%.

2.4.2 Analytical Model

Due to the constraints in the availability of sensors and physical arrangements, we only

ran our experiments on a small number of nodes. The validity of the results rests on

the fact that the experimental results coincide with an analytical model, where energy

consumption is given as:

Energy = (U×NormalCurrent×RadioOnTime)+

(U× IdleCurrent×RadioOffTime).
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Figure 2.17: Analytical results. The maximum reduction in energy usage is approxi-
mately 5% for single-hop, and 45−46% for multi-hop topology.

Figure 2.18: Scaled analytical results

Where, U indicates the voltage requirement for SunSPOT mote (5V), RadioOnTime is

the amount of time a node performs communication and computation, and RadioOff-

Time is the time amount without communication and computation. These properties do

not depend on the number of nodes in the single-hop case, but they depend quadrat-

ically to the number of nodes in the multi-hop case. In the formula, NormalCurrent

indicates the current drawn in the mote’s run mode (120 mA), and IdleCurrent is the

current drawn during SunSPOT’s idle mode (24 mA). The data is from [40].

Figure 2.17 illustrates the analytical reduction in energy requirement for Average

and NetVariance queries for up to five sensor nodes, for both single- and multi-hop

topologies. Here the reduction in energy consumption is approximately linear to the
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Sensors ILP (s) Heuristic (ms)
1 0.1 0.011
2 0.1 0.024
3 3.3 0.040
4 176.2 0.063
5 * 0.093
6 * 0.114
7 * 0.144
8 * 0.165
9 * 0.198

10 * 0.229

Table 2.2: GLPK running time on Average instances

number of nodes, as is the case with the experimental results. In analytical results, the

energy requirement with in-network computation can be reduced up to 5% with single

hop and 45–46% with multi-hop. In our experimental results, on the other hand, the

improvement was 5–7% with single-hop and 22–24% with multi-hop.

There are two potential causes for the difference between analytical and experimen-

tal results, specifically for multi-hop. The first can be attributed to slight changes in

the environment, such as the light-intensity sensed by the motes at the time of the ex-

periments, and the fluctuations in the power supply output. We observed in our initial

experiments that the capacity of the batteries used varies widely, making it difficult

to obtain measurement for a prolonged period. We therefore used an external power

supply, but this still did not completely eliminate variations in the input current.

Figure 2.18 shows the percentage of reduction in energy requirement between in-

network computation and forwarding from 5–300 nodes. The results in Figure 2.18

are for the Average query with window size 5 and a sampling period extended to two

hours, as a low sample rate is typical in real wireless sensor networks. Thus, with

the reduced communication overhead, we observed that the energy requirement can be

reduced up to 51% in a network of 300 nodes with multi-hop topology. Importantly, we

can confirm the approximately linear improvement in the energy requirement with the

increasing number of nodes, demonstrating a potential scalability.
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2.4.3 Heuristic Efficiency

We compare the runtime of the placement heuristics that we employed with the solving

of an integer linear programming (ILP) formulation of the multiway cut, using the

GLPK [87] with the AMPL [88] program, which is discussed in Section 2.4.3.1. The

comparison is set out in Table 2.2. We ran both experiments on a dual-core 2.2 GHz

Intel machine with 4 GB RAM. In Table 2.2, Sensors indicate the number of sensor

nodes, ILP indicates the running times for GLPK runs in seconds (where ∗ represents a

run that takes more than 2 h), and Heuristic indicates the running times for the heuristic

runs in ms. As expected, the time taken to execute the heuristic was much smaller than

for GLPK. We expect the difference to be more pronounced as we increase the number

of nodes.

2.4.3.1 AMPL Program

1: set V:={1..n};
2: set T within V;
3: set E:=V cross V;
4: param cost{E};
5: var x{V,T}, binary;
6: var y{E}, binary;
7: minimize objective:
8: sum{(u,v) in E} cost[u,v] * y[u,v];
9: subject to
10: mapping_constraint {u in V}:
11: sum {t in T} x[u,t] = 1;
12: terminal_mapping {u in T}:
13: x[u,u] = 1;
14: cut_constraint{(u,v) in E, t1 in T,

t2 in T:t1<>t2}:
15: y[u,v] - x[u,t1] - x[v,t2] >= -1;

Figure 2.19: AMPL program for multiway cut problem

Figure 2.19 is the ILP formulation in AMPL of the multiway cut. Here, V is a set

of vertices in stream graph and T is set of terminal vertices in V ; E =V ×V is a set of

edges/channels; cost : E → Q+ is a mapping from an edge to the communication cost

(bandwidth requirement) on that edge; x : V → T →{0,1}maps each vertices to one of

the terminals; y : E → {0,1} indicates whether or not the specified edge is a cut edge.
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In the program, the objective of ILP problem is to minimise total cost of cut edges as

follows:

∑
(u,v)∈E

cost(u,v)× y(u,v).

This minimisation objective is shown on Line 8. The constraints for ILP are defined

on lines 10−−15, where mapping constraint indicates that each node in the graph is

mapped to exactly one terminal node; terminal mapping specifies that each terminal

node must be mapped to itself; and cut constraint indicates that for each cut edge,

(u,v), u and v are assigned to distinct terminal nodes. The constraint encodes a logical

relationship between the variables x and y as logic predicates stating that if x(u, t1) and

x(v, t2) hold then (u,v) is a cut edge, formally written as

x(u, t1)⇒ x(v, t2)⇒ y(u,v)

≡ x(u, t1)⇒ (¬x(v, t2)∨ y(u,v)).

We transform this logic formula into an arithmetic one by rewriting implication⇒ as

≥, disjunction as addition, and logical negation as arithmetic negation incremented by

1 :
x(u, t1)≤ (1− x(v, t2))+ y(u,v)

≡ −1≤ y(u,v)− x(u, t1)− x(v, t2).

The last formula appears on Line 15.

2.4.4 Computation Resource Usage

We compare the number of operators placed in the network between our approach and

data forwarding. We ran this experiment using the Average query varying the size

of the query (the number of Sense operators). We applied our placement algorithm

on two network models: First model is uniform, where all the nodes start with same

maximum energy level; and the second model is non-uniform, where energy levels

are set non-uniformly to the nodes, here, a third of the nodes are set with a third of

maximum energy level (thus three times more costly to execute an operator than for

the remaining sensor nodes using maximum energy level). The number of nodes in the

network, however, is the same as the number of Sense operators in the query, and hence

is proportional to the size of the query. We show the result in Figure 2.20, where we

ran the placement algorithm and counted the number of all operators placed in-network
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Figure 2.20: Number of operators placed in the network (on the sensor nodes excluding
the base station)

(on the sensor nodes excluding the base station). The figure illustrates the computation

requirement for data forwarding.

In Figure 2.20, the difference in the number of operators between our approach and

data forwarding indicates the difference in the amount of additional memory/computation

power required by our approach, compared with that of data forwarding. On average,

our approach with network model of non-uniform energy level constantly requires ap-

proximately 125% more computation resources from the network. With uniform maxi-

mum energy level the approach requires 195% more computation resources. The figure

illustrates that our approach with uniform-energy network model requires 31% more

computation resources than that of non-uniform energy levels model. The difference

in the number of operators between the two in-network approaches is because both the

network with non-uniform energy levels has some nodes with smaller available energy,

and our algorithm places more operators on the base station.

We compare our result with the previous result in Figure 2.18, where we considered

uniform computation costs. Hence, the reduction in energy consumption indicated in

the figure corresponds only to the savings in communication costs. At 300 nodes, the

cost saving is more than 50%; therefore, when the computation resources are costly,

such as when most of the sensor nodes are low on available energy, it is no longer

beneficial to perform in-network computation. Intuitively, in such situation, it is best to

perform all computations in the base station.
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Figure 2.21: Cost distribution over query branches

We similarly employ the information on the number of in-network operators to pre-

dict the memory usage, assuming 100 MB memory consumption per operator. Based

on SunSPOT specification of 512 MB maximum memory capacity, we computed the

radio off-time for implementing the curfew model in the runtime environment (Section

2.2.2).

2.4.5 Cost Distribution

We observed the cost distribution over the sensor network by deploying the Average

query with the optimised operator placement and computing the total cost over each

branch of the query. Each branch represents a communication link between a sensor

node and the base station. Where energy levels were uniform among the sensor nodes,

all branches have the same cost. However, each sensor node generally has different

energy levels that can be queried before placing the operators on the network. Our

experiment considered a network with 20 sensors with randomly assigned energy levels.

Figure 2.21 demonstrates the cost distribution over query branches. The result was

obtained by computing the average distribution of three experiments. The figure shows

that most of the query branches run with low communication and computation cost.

In other words, our heuristic places the query operators on randomly charged sensor

operators in such a way that a major part of the query runs at low cost.
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2.5 Chapter Summary

This chapter has described Curracurrong, a stream programming system, for distributed

environments, that facilitates in-network computing. Curracurrong consists of a high-

level query language and a query processor that translates network-level query to node-

level execution environment. We have addressed the programming language challenge

for WSNs by allowing application domain experts to develop flexible and complex ap-

plications with a simple query language. We employed a novel optimisation algorithm

to find energy efficient placements of stream operators to sensor nodes. The experimen-

tal results confirm the energy efficiency of the system.



Chapter 3

Curracurrong Cloud

Cloud (or utility) computing [89] has been a huge success to provide elastically adjus-

table computation resources for large and small enterprises [90]. Much of the large-

scale data manipulation and computation in cloud platforms follows the Map-Reduce [91,

92] programming paradigm, which has been the foundation of widely used platforms

like Apache Hadoop [93]. The Map-Reduce model is essentially one of batch process-

ing; starting with data in the file system, successive stages of computation transform the

data step-by-step to produce the desired output at the end.

For a range of important applications, a different, stream-like, computational model

is needed. These applications require the ability to quickly respond to changes to the

cluster; this includes cluster monitoring, web-service rate limiting, and dynamic re-

source provisioning. For instance, a typical use case involves monitoring the system

metrics across a cluster of hosts. Vital statistics from each individual node in the cluster

– such as CPU utilisation, the number of bytes read and written to and from the disk

and network interfaces, the number of page faults – are captured every second. These

metrics are sent along a previously defined operator graph that deals with the data in

a streaming manner and are acted on accordingly. A typical application would involve

monitoring the average CPU utilisation across the cluster and would raise an alert when

the average CPU utilisation across the cluster exceeds 95%. This can be used to trigger

a provisioning task to add a node in the cluster, thus sharing the load and reduce the

average CPU utilisation.

The key characteristic of stream applications is that new data keeps arriving and

the computation keeps generating outputs. This style of computation has been stud-

ied extensively in smaller-scale environments, as a class of systems called data stream

50
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management systems (DSMS) [94]. In the cloud context, a number of recent examples

have been developed. Twitter’s Storm system [31] and LinkedIn’s Samza [32] are each

intended to co-exist with a Hadoop ecosystem; Yahoo! Research has proposed S4 [33],

and UC Berkeley offers Spark Streaming [34].

These existing cloud-located streaming platforms have many powerful features.

However, there are several restrictions on these approaches. First, since these plat-

forms are intended for data-intensive computation, they separate the computation in a

cloud-hosted cluster that is different from the origins of the continual updates to the

data. For the monitoring use-case above, there is no need to set up separate clusters

within the cloud; instead, we would wish to run the alerting checks on the same nodes

that are generating the observations. Second, existing proposals require the developer

to write a monitoring pipeline with a great deal of code in Java or a similar language.

Storm, for example, uses the Builder pattern extensively, so the computation has to be

done by extending classes with a regrettably large amount of code. For the sort of appli-

cation we are targeting, a simple pipeline ought to be expressible just as a combination

of simple operators such as selection, merge, and window aggregation. Third, systems

like Storm require explicit deployment: the developer needs to identify which node will

perform each aspect of the computation. In contrast, we want the runtime environment

to make sensible deployment decisions, to achieve efficiency (especially, to minimise

inter-machine data transfer).

To overcome these drawbacks of existing designs, we exploited and made changes

to our Curracurrong platform (Chapter 2) to run on cloud environment, which we will

refer to as Curracurrong Cloud. Like WSN, a cloud-hosted cluster is an environment

where data transmission should be minimised, and where rapid lightweight application

coding is valuable.
The following program, written in the Curracurrong Query Language, illustrates

the use of Curracurrong Cloud to perform the monitoring task described earlier in this
section.

query monitor = (Sense[node="10.0.0.1"]

| Sense[node="10.0.0.2"]

| Sense[node="10.0.0.3"])

-> Select[field="5"]

-> Average[window="1000"]

-> Threshold[check="$5 > 95"]



CHAPTER 3. CURRACURRONG CLOUD 52

-> Sink[sink="EmailAlert"]

In this chapter:

• We describe Curracurrong Cloud, a lightweight, distributed stream processing

system designed for deployment in large distributed clusters hosted on a cloud.

Curracurrong Cloud does not ask the programmer to decide on the placement of

computation among nodes of the cluster, but rather automates the deployment

decisions.

• We provide a preliminary evaluation of the system.

The chapter is organised in two sections. The first shows the changes made in

Curracurrong system to run on a cloud environment. In the second, we present experi-

mental results to demonstrate the efficiency and scalability of the system, especially of

its automated placement decisions.

3.1 Curracurrong Cloud

This section describes the changes we made to the existing Curracurrong system so

that it runs in a cloud-hosted cluster, where the computational resources are much less

constrained compared with WSNs. We originally built the Curracurrong system using

Java Micro Edition and targeted it towards the Squawk virtual machine that is designed

for tiny embedded devices. However, the new system was implemented to run on Java

Standard Edition so that it can be deployed in a cloud environment. We now describe

the changes made to the code to achieve this.

3.1.1 ZigBee vs. UDP

The ZigBee Radiogram protocol is the default communication protocol used between
SPOT nodes in a WSN. Curracurrong uses this protocol for data communication among
the nodes in the network and with the base station. ZigBee provides a reliable, buffered,
connectionless input/output communication mechanism between nodes. Since this means
of communication is connectionless, it requires buffering and application-level acknowl-
edgements to implement successful communication. This is further complicated by the
fact that individual nodes have the capability to shutdown their communicating device
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to conserve power. This is managed using node-level buffering in combination with a
store-and-forward mechanism. A SPOT client connects to the server as follows:

RadiogramConnection conn = (RadiogramConnection)

Connector.open("Radiogram://1.1.1.1:100");

where, 1.1.1.1 is the node address and 100 is the port number.

In the Curracurrong Cloud, we retain the connectionless nature of the communica-

tion between the nodes. This allows the system to deal with temporary node failures and

network outages more easily. In the current version, we replaced the ZigBee protocol

with the User Datagram Protocol (UDP) for communication between nodes in a cluster.

This means that there is no guarantee of data delivery, ordering, or duplicate protection.

This is similar in behaviour to the ZigBee Radiogram protocol, making UDP a natural

replacement in the new deployment platform.

There is nothing in the code that prevents the use of any other communication pro-

tocol between the nodes. If a more reliable form of communication is needed, UDP can

be replaced with Transmission Control Protocol (TCP/IP) without significant rewriting.

The choice of UDP versus TCP is purely for the sake of simplicity and similarity with

the ZigBee Radiogram protocol. A snippet of sample code for the datagram socket

programming is given below.

DatagramSocket socket = new DatagramSocket();

DatagramPacket packet = new DatagramPacket(

buffer, offset, destination_address,

port_number);

3.1.2 Broadcast and Multicast

In a WSN environment, Curracurrong is able to leverage the ZigBee Radiogram pro-

tocol’s inherent broadcast and multicast capability; this simplifies the task of commu-

nication across the nodes in the network. The base station sends the routing table and

other administrative commands over broadcast or multicast.

Broadcast or multicast over UDP is not a viable option for communication in a

public cloud. Amazon Web Services, for instance, blocks all broadcast and multicast

UDP datagrams, even when a Virtual Private Cloud is defined. This behaviour is due to
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the immense complexities involved in efficiently implementing it in a multi-tenant IaaS

environment, where there are constant updates to routing tables.

We used multiple unicast operations to simulate broadcast in current version of the

Curracurrong Cloud to work around this restriction. A simple way to manage and im-

plement this is to define a CNAME that contains IP address entries for all the nodes in

the cluster. This allowed ease of dynamically adding and deleting entries in the cluster.

The task of broadcasting or multicasting messages to the entire cluster, then, consisted

of sending a unicast message to each address defined by the CNAME.

3.1.3 Scheduler

The scheduler component was re-implemented from the previous version. The exist-

ing Curracurrong system for WSN inserts all the operators in a wait queue until they

have data to be processed in their input channels. An operator ready to be executed is

removed from the wait queue and added to the ready queue before it can be executed.

Just one independent scheduler thread schedules and executes operators atomically.

The modification to the scheduler enables it to more efficiently handle both event-

and time-triggered operators simultaneously. The earlier design was focused on effi-

ciently managing power use in sensor nodes; however, power consumption is less of an

issue in the cloud, and reducing message latency and network bandwidth use is a higher

priority.

To address this, we made two major changes to the scheduler. Each event-triggered

operator is executed in its owns thread, and blocks execution when there are no data in

its input channels. When data are written to a channel, the operator is woken and its

execute() method is called in the thread of control asynchronously, independently of the

scheduler thread.

On the other hand, time-triggered operators are executed in the context of the sched-

uler thread. This allows the scheduler to precisely control the execution of each time-

triggered operator, ensuring that its execute() method is executed at regular intervals.

This dual scheduling mechanism ensures that time-triggered operators are executed

precisely at regular time intervals as specified in the query, and that event-triggered

operators do not hinder the execution of time-triggered operators by ensuring that each

is executed in a separate thread.
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3.1.4 Operators

Curracurrong Cloud extends the built-in operator library to expand the functionality

of the system. The existing Curracurrong system for WSN only allows time-triggered

sense operators that operate at user-specified time intervals. By adapting sense operator

design, we can change the scheduling semantics to allow both time- and event-triggered

sensors. This new functionality enables the user to process only data of interest. In

Curracurrong for WSN, the operator library contained one default time-triggered sense

operator, while with adaptation we have introduced multiple sensor operators into the

library.

In the Curracurrong system for WSN, sense operators always operated in time-

triggered scheduling mode. For the cloud version, we extended this capability to allow

the scheduling mode to be set in the query definition via the sched node property. If the

scheduling mode is not set for a sense operator, it defaults to time-triggered mode. In

the event-triggered mode, the sense operator executes only when there is an event to be

processed. For instance, in case of an error log file sensor, the sensor blocks until an

error log entry is written to the log file.

In addition, we extended the sense operator to enable the sensor to be set via the

sensor property. The sensor parameter takes a valid class name derived from the Java

class Sensor. An example of the error log file sensor is called the ErrorLogSensor. The

following specifies the way to define a sense operator with the properties defining the

scheduling semantics and the sensor class name.

Sense[sensor=<sensor_name>,

sched="EventTriggered"|"TimeTriggered",

node=<address>]

Like the sense operator, we extended the functionality of the sink operator. The

new sink operator can load any user defined class that is derived from the Sink class

if specified. The default sink still dumps the received data to a log file, but can be

overridden using the sink property as follows:

Sink[sink=<sink_name>, email=<email_address>,

db=<DB_connection_string>, logfile=<file_name>]

Apart from the default sink operator that logs the end data in a file, we have in-

troduced Sink classes that can be loaded from sink operators to allow the user to store
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the data in a user-specified database (DBsink), send an alert email to a registered email

address (EmailSink), and write the result to a remote machine (RemoteSink).
Similarly, we added operators that perform useful tasks in a stream graph. For

instance, we introduced a Skyline operator to the library that records the maximum and
minimum values for the data during a specified time or message window, and passes the
envelope values to the next operator. The Skyline operator is represented as follows:

Skyline[type="message"|"time", window=<size>]

The operator can be used to detect events to trigger provisioning events in a cluster,

when the maximum envelope for a sustained period may trigger the launching of new

virtual machines (VMs). A continuous period of low utilisation, where maximum val-

ues are below a threshold could trigger a scale down effectively shutting down instances

in the cluster.

3.2 Evaluation

For evaluation, we deployed the Curracurrong Cloud runtime environment on a cloud-

hosted cluster to evaluate its performance. The nodes and the server components of

the system were deployed on a cluster using Amazon Web Services (AWS) and Elastic

Compute Cloud (EC2). We used Virtual Private Cloud (VPC) to easily define our cluster

firewall rules. Out of the six EC2 instances, one instance had Curracurrong Cloud

server running on it, while the others had Curracurrong Cloud nodes on them. Due to

the unreliability of communication over UDP, we evaluated the current version of the

system with six instances, to answer following questions:

• How efficient is our automated operator placement mechanism?

• Does the network load affect the latency of data records?

• How does the scheduling semantic affect the message latency and network band-

width?

3.2.1 Operator Placement Algorithm Efficiency

Network communication cost is typically higher than computational cost in most net-

work applications. Curracurrong strives to move computation to the edge nodes to
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reduce the network traffic. We devised a simple experiment to calculate the unopti-

mised approach: the raw data is sent to the server for further computation against an

optimised approach in which the computation is performed in the network where the

operator scheme pushes computation to the edge nodes.

We used the following query to evaluate the efficiency of the algorithm:

query place = Sense[node=<address>] ->

Select[field=<list_of_fields>] ->

Sink[logfile=<file_name>]

The query place induces a simple in-network computation, where the optimisation

algorithm allocates the select operator on the edge node instead of the server. With

optimised placement, the number of packets transferred between node and server is

reduced by the number of fields discarded by the Select operator. Figure 3.1 shows

the comparison between default data forwarding and in-network computation. The in-

network computation reduces the amount of network data by almost 40% compared

with default placement.

Figure 3.1: Network data transfer with operator placement

We compared the runtime of the in-network placement algorithm with the default

placement. Figure 3.2 shows the efficiency of the placement algorithm. As expected,
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the time taken by the default placement approach is uniform and nearly 0.3 ms, whereas

the time taken by the in-network placement heuristic increases with the number of nodes

but appears to be typically less than 2 ms for five nodes. The advantage of optimised

network usage may allow us to dispense with milliseconds of algorithm runtime.

Figure 3.2: Placement algorithm efficiency

3.2.2 Measuring Message Latency

To measure latency, we monitored the health of the cloud-hosted cluster at predefined

intervals and send an alert to the server if a particular system parameter reaches a thresh-

old. For measuring the latency of an alert message, we computed the difference between

the time at which a cluster instance collects system parameters and the time at which

the corresponding alert message is received at the sink/server. We ran the following

query to measure the latency and observe the effect of system/network load on it.

query threshold = Sense[node=<address>]

-> Threshold["$7 > 95"]

-> Sink[logfile=<file_name>]

We executed threshold queries with five cloud-hosted instances, where each in-

stance ran a Sense operator at regular intervals of 5 s, and collects system parameters
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Figure 3.3: Effect on latency while varying the network load

such as CPU usage, disk write, disk read, and number of bytes/packets sent over the

network. In the experiment, we monitored CPU usage and checked whether its usage

exceeded 95%. In the query, Threshold operator was set to check the seventh field of

the incoming sensed data. We varied the system load and gradually increased the CPU

usage of each instance to more than 95%. When the measured value reached the thresh-

old, it sent an alert to the sink operator and logged them in a file along with the local

time.

As shown in Fig. 3.3, the effect of system/network load on the latency is in millisec-

onds. With one node, the average latency is 10 ms, which increases with the number of

nodes. On average the delay is nearly 60 ms, with all five nodes sending alerts to the

sink. The result ensures the scalability of our system, where alerts are sent to the server

within few milliseconds irrespective of the network load.

3.2.3 Time-triggered vs. Event-triggered

The Curracurrong Cloud supports operators with two scheduling semantics: time- and
event-triggered, as described in Section 3.1. This section evaluates the effect of schedul-
ing semantics of the Sense operators on the latency and network bandwidth while run-
ning the following time-triggered query:
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query time-t = Sense[sensor="ErrorFileSensor",

file=<error-file>,

node=<address>,

sched="TimeTriggered",

interval=<time_in_milliseconds>]

-> Sink[logfile=<file-name>]

and the following event-triggered query:

query event-t = Sense[sensor="ErrorFileSensor",

file=<error-file>,

node=<address>,

sched="EventTriggered"]

-> Sink[logfile=<file-name>]

In these queries, the ErrorFileSensor operator reads from an error log file and gen-

erates a message for each new entry in the file. In time-triggered mode, the Sense

operator checks the error log file for new log messages at the specified interval. In

event-triggered mode, the Sense operator reads the message as soon as the error log file

has a new entry. A simple shell script with a while loop sleeps for 1 s and writes the

current system timestamp to the error log file.

Figure 3.4: Effect of the sense time interval setting on time-triggered Sensors

Figure 3.4 shows the impact of latency of the message from when it is logged to the

error log file to when it is received at the Sink. In the event triggered mode, the latency

of the messages is well within 120 ms. In time-triggered mode, the latency shows a
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saw-tooth pattern where the peaks are at a regular intervals corresponding to the time

interval setting. The messages are read only when the operator is scheduled, giving rise

to the characteristic pattern. The latency in the event-triggered mode does not display

such a pattern. In time-triggered mode with sense interval setting of 1 s, rather than a

reasonably flat line, we see a longer saw-tooth pattern.

Figure 3.4 shows three separate runs of 120 ms, where the sense time interval is

1010 ms. The latencies are relatively stable throughout. Each run displays a different

latency between a few milliseconds to just over 1 s. This saw-tooth pattern occurs

because the shell script takes 1010 ms to run. When the Sensor sense interval is exactly

1 s, the Sensor is just out of sync by approximately –10 ms causing the latency to drop

slowly and then rise sharply in the characteristic saw-tooth pattern.

Figure 3.5: Network data with time-triggered sensors

Next, we compare the network bandwidth usage for both scheduling semantics. Fig-

ure 3.5 displays the network bandwidth while using the time-triggered ErrorFileSensor.

The number of packets transferred are plotted over the network against time. Here,

sensor time interval is set to 10 s, and error file entry is simulated at every 2 s. The

sense operator queues up the sensed data locally at the node for 10 s – illustrated in the

figure with no network activity during that interval. Otherwise, the network data shows

a spike at every 10th second, when the sense operator sends the buffered data out over
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Figure 3.6: Network data with event-triggered sensors

the network.

We then ran the ErrorFileSensor in a event-triggered mode and plotted the network

data as displayed in Fig. 3.6. The data was sent over the network as soon as it was

available, which is shown as a spike every 2 s. The network is continuously busy and

the bandwidth is not well-used. This scheduling semantics can be used for time-critical

applications; otherwise time-triggered semantic is a better option for optimised network

bandwidth usage.

3.3 Chapter Summary

This chapter has provided a detailed description of the Curracurrong Cloud, a lightweight,

distributed stream processing system designed for large distributed clusters hosted on

clouds. Our changes in system design and technology enable Curracurrong to run on a

cloud-based cluster of nodes instead of an ad-hoc cluster of wireless sensor nodes. We

developed a simple cluster monitoring application to demonstrate the technology and

used parts of it to evaluate the performance characteristics of our system. We analysed

the results of the evaluations.



Chapter 4

Migrating Operator Placement

In sensing applications, queries need to be dynamically replaced on the nodes due to

the changes in nodal energy level and in the network configurations. This chapter pro-

poses a method for energy-efficient query execution in relation to operator migration.

We introduce the migrating operator placement problem (MOPP), which arises in ap-

plications such as mobile cloud computing [95, 96] and wireless sensor networks [50,

97, 49]. The queries are represented as stream graph using stream programming model

similar to MaD-WiSe [30] and query processing [97]. The stream programming model

(surveyed in [98]) expresses computations by independent computational units called

operators and communication channels between them. In our context, the stream graph

consists of operators that sense the environment and operators that process and for-

ward the information to a base station. To minimise the energy cost of the system,

we placed operators on nodes so that the associated operator placement costs become

minimal. The costs comprised (1) placement of an operator to a specific sensor node,

(2) sending data between two connected operators, and (3) transition incurred by mi-

grating operators from its current node to a new node. The operator placement can be

conducted either when the stream graph representing queries changes, the distributed

system changes, and/or the energy levels of the nodes change after a fixed time interval.

As an example, consider a volcanic activity detection application that deploys sev-

eral sensors in the proximity of the volcano and measures temperature, gas, and seismic

activity. In an initial step, the application executes two queries: The first query collects

the temperature reading from the sensors placed at distant locations and computes the

average temperature. The second query collects the reading from seismometer, com-

putes the high- and low-gain moving averages, and reports an event if the ratio of the

63
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(a) Gpre = (V pre,Epre) (b) G = (V,E)

Figure 4.1: Running example. (a) Stream graph Gpre for queries Q1 and Q2 with place-
ment ppre; (b) Stream graph G for query Q1, newly added query Q3, deleted query Q2,
and new placement p.

two averages is beyond threshold. The results from the two queries are merged to detect

the volcanic activity as illustrated in Fig. 4.1 (a), which shows the stream graph of the

queries. Subgraph Q1 represents the temperature-reading query with two sense opera-

tions o1 and o2, a join operation j1 to merge the data from the two sensors, and a filter

f1 to compute the average temperature. The second subgraph Q2 represents the seismic

query with a sense operation o4 that reads the data from a seismometer, a split operator

s1 that duplicates the incoming data to compute the high- and low-gain exponentially

weighted moving average (EWMA) [11] using filters f2 and f3, and a joiner j3 that

merges the data from two filters to compute the ratio. Finally, a joiner j2 combines the

data from both the queries Q1 and Q2 before forwarding it to the sink c. In Fig. 4.1 (a),

operator placement is shown by the shapes of the graph nodes; i.e., rectangle, hexagon,

circle, and pentagon denote the placement of operators to sensor nodes n1, n2, n4 and

base station b, respectively.

In our volcanic activity detection application, sensor nodes might be destroyed or

become temporarily unavailable. Hence, the migration of operators from inoperable to

operable sensor nodes is of paramount importance. In addition, the application may

require the alteration of queries: e.g., the observation from seismic event detection to

the measurement of expelled gases. For this example, the altered stream graph is shown
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Op\Node n1 n2 n3 b
o1 0 ∞ ∞ ∞

o2 ∞ 0 ∞ ∞

j1 10 6 13 20
f1 7 4 15 17
o3 ∞ ∞ ∞ ∞

j2 9 12 11 13
c ∞ ∞ ∞ 0

Op\Op o1 o2 j1 f1 o3 j2 c
o1 0 0 5 0 0 0 0
o2 0 13 0 0 0 0
j1 0 21 0 0 0
f1 0 0 7 0
o3 0 10 0
j2 0 11

(a) Placement cost for Q1 and Q3 (b) Communication cost for Q1 and Q3

Op\Node n1 n2 n3 b
j1 0 10 16 21
f1 0 11 13 19
j2 0 8 5 10

(c) Transition cost for Q1

Figure 4.2: Incurred costs in operator placement

in Fig. 4.1 (b), which contains new query Q3, and from which query Q2 of the orig-

inal graph was removed. For the operator placement of the altered stream graph, we

take placement cost, communication cost, and transition costs into account that are tab-

ularised in Fig. 4.2. The placement of sense operators o1, o2, o3, and the sink c are

not arbitrary, and are fixed to nodes n1, n2, n3, and base station b, respectively. The

placement of the other operators is chosen so that energy costs of the placement are

minimised. While recomputing the placement for modified stream graph, the differ-

ence of placement between the old and modified graphs incurs transition cost. In our

example, query Q1 carries transition cost for the operators j1, f1, and j2, since they

are placed on different sensor nodes in the old and new stream graphs (Fig. 4.1 (a) and

Fig. 4.1 (b), respectively).

The contributions of this chapter are as follows.

• We introduce the NP-hard migrating operator placement problem (MOPP) that

computes a placement and minimises computation, communication, and transi-

tion costs.

• We devise a dynamic program that computes an optimal operator placement for

compositional streams which is a sub-class of general stream graphs in polyno-

mial time.
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• To improve the performance of our approach, we introduce a locality heuristic

that, at any step in the algorithm, only considers the placement onto a subset of

the network close to the base station.

• We present an experimental evaluation confirming the efficiency of our approach

and its effectiveness in reducing energy usage.

The structure of the chapter is as follows. Section 4.1 explains the problem statement

as a discrete optimisation problem, and argues that the general problem is NP-hard.

Section 4.2 details the graph composites. Section 4.3 details the dynamic program

for compositional streams and its correctness and complexity proofs. We present an

experimental evaluation that confirm the efficacy of our approach, together with locality

heuristics that improve its efficiency in Section4.4.

4.1 Migrating Operator Placement Problem

We introduce the MOPP. At any one time in the program execution, there are a number

of active queries, so that the whole program can be represented as a stream graph G =

(V,E), with V = Vse ∪ Vsi ∪ Vf i, with Vse a set of sense operators, Vsi a singleton of a

sink operator, and Vf i a set of filters, that performs computation on its input and sends

the result to the output. Vse, Vsi, and Vf i are pairwise disjoint, and E ⊆ V 2. We are

given a set N of sensor nodes with a distinguished element b called the base station.

We introduce a placement x : V → N where xu is a variable denoting the sensor on

which u ∈ V is placed. We write X for an unordered sequence of such variables, and

XG for a restriction of the sequence to placements of all nodes in V 1. The placement

x is constrained so that xu 6= xv when u 6= v and u,v ∈ Vse (assuming |N| is sufficiently

large), and xu = b for u ∈Vsi.

We assume there is a change in the graph such as the addition and removal of

queries, such as we had a pre-existing graph Gpre = (V pre,Epre) that transformed into

G = (V,E). We denote the pre-existing placement xpre : V pre→N, with variables xpre
u for

u ∈V pre denoting xpre(u). The problem of MOPP is to find the placement x for the new

graph G = (V,E) with the following three costs minimised.

1A variable xu for some u can appear more than once in the sequence, therefore for sequences X1 and
X2, X1 = X2 modulo reordering and repetition. X1 \X2 removes all occurrences of xu from the placement
sequence X1 for any xu ∈ X2. X1∪X2 concatenates both sequences.
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Placement cost: This is the local cost incurred by placing an operator on a given

sensor node. The cost depends on the available energy level on sensor node and

computational load for executing the operator. For an operator u ∈ V and the

placement x, the placement cost is wP(u,xu) ∈Q+.

Communication cost: This is associated with each channel. For a channel (u,v) ∈
E, the cost is a product of two values: wC(u,v) ∈ Q+ denoting the bandwidth

requirement of the channel, and wD(xu,xv) ∈ Q+ denoting the distance factor

between the allocated nodes. By knowing the maximum distance factor, it is

possible to incorporate it into wC(u,v) and allowing wD(xu,xv) = 1 when xu 6= xv

and 0 otherwise, as assumed in Fig. 4.2 (b).

Transition cost: This is the cost incurred while moving an operator to a new sensor

node. In other words, if an operator u is to be relocated to other sensor node, the

transition cost is wT (u,x
pre
u ,xu) ∈Q+.

The following function encapsulates both placement and transition costs.

wTP(u,xu) =

{
wP(u,xu)+wT (u,x

pre
u ,xu) if u ∈V pre∩V,

wP(u,xu) otherwise.

Here we assume that the costs for removing or installing queries onto the network are

insignificant, where the nodes may already include the program or library functions to

execute the operators. Although it may seem at first that it is less expensive to remove

the queries entirely from the network and reinstall them rather than transitioning the

operators, here we assume a need to preserve the existing computation and to pay the

associated costs. The transition costs arise from transferring computation along network

nodes from source to destination. In wireless sensors, this movement is costly [99].

The cost fG(XG) of MOPP to be minimised, given a stream graph G = (V,E), is the

sum of computation and transition costs for each operator, and the communication costs

are:

fG(XG) = ∑
u∈V

wTP(u,xu)+ ∑
(u,v)∈E

wC(u,v) ·wD(xu,xv) (4.1)

Theorem 1. MOPP is NP-hard.

Proof. We show the NP-hardness by reducing the multiway cut problem (see [82]) to

MOPP. The input of a multiway cut problem is an undirected graph GMC = (V MC,EMC)
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and a terminal set T = {t1, . . . , tl} ⊆ V MC. A multiway cut is a partition of V MC into

disjoint sets R1, . . . ,Rl
(⋃

i Ri =V MC) such that terminal ti ∈ T is contained in Ri for

all i. We denote by δ(Ri) = |(EMC ∩Ri)× (V MC \Ri)| the number of cut-edges that

separate the disjoint set Ri from nodes outside the set. The goal of the multiway cut is

to minimise the number of cut-edges 1
2 ∑i δ(Ri).

We map multiway cut to an instance of MOPP such that the vertex set V MC becomes

set V, the edges EMC become the channels E, and the terminals T correspond to the

set of sensor nodes N, i.e., N = Vsi ∪Vse. For MOPP, we assume in addition that the

placement of the operators is unchanged such that transition costs are zero, and wTP

represents placement cost as follows.

wTP(u, ti) =

∞, if u ∈ T ∧ ti 6= u

0, otherwise,

Note that the mapping p : V → N partitions the domain V , i.e., Ri = {u|xu = ti} for all i,

and
⋃

i Ri =V . We also assume that for any u,v∈V, wC(u,v) = 1. Further, wD(xu,xv) =

1 when xu 6= xv and 0 otherwise. By rewriting the objective of the MOPP, we obtain:

fG(XG) = ∑
u∈V

wTP(u,xu)+ ∑
(u,v)∈E

wC(u,v) ·wD(xu,xv)

= ∑
i

∞, if xti 6= ti

0, otherwise
+ ∑

(u,v)∈E

1, if xu 6= xv

0, otherwise

The first summand is a dualised constraint xti = ti; that is, the function fG(XG) is less

than ∞ if xti = ti for all i. Since xti = ti, the terminal ti is contained in Ri, and:

∑
(u,v)∈E

1, if xu 6= xv

0, otherwise
= ∑

(u,v)∈E
(∃i : (u,v) ∈ Ri× (V \Ri))

= ∑
i
|(E ∩Ri)× (V \Ri)|= ∑

i
δi(Ri).

This shows the reduction of multiway cut problem to MOPP and hence, MOPP is

NP-hard.
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4.2 Graph Composites

Here we introduce a class of stream graphs called compositional streams that are con-

structed from building blocks called composites (cf. StreamIt [71]). Although MOPP

is generally NP-hard, compositional streams can be solved in polynomial time.

There are two types of composites: stream composites, which are graphs G =

(V,E,g,h) with g = s(G) and h = t(G) are respectively input and output operators,

and source composites, graphs G = (V,E,h), with h = t(G) ∈V as its output operator.

A source composite G has no input operator – that is, s(G) 6∈ V. The templates for the

composites are as follows.

g hG hG

(a) Stream composite (b) Source composite

Fig. 5.2 displays the types of stream and source composites. A stream composite is ei-

ther (a) a filter or sink operator, (b) a pipeline that joins the output of a stream composite

with the input of another stream composite, or (c) a split-join composite that splits an

input into the inputs of two stream composites and combines the outputs of the streams.

A source composite is either (d) a sense operator, (e) a pipeline joining the output of

a source composite with the input of a stream composite, (f) a join composite joining

the outputs of two source composites into one, or (g) a program (a pipeline that joins

the output of a graph with a base station). The split-join and the join composites are

constructed using special operators called splitters and joiners, which respectively split

the tokens of a communication channel and join them.

We define stream composite class S as follows.

(R1) If V =Vf i = {u} or V =Vsi = {u} then Gu = ({u}, /0,u,u) ∈ S.

(R2) If G1 = (V1,E1,g1,h1) ∈ S and G2 = (V2,E2,g2,h2) ∈ S, and V1 ∩V2 = /0, then

the pipeline G1 ∗s G2 = (V1∪V2,E1∪E2∪{(h1,g2)},g1,h2) ∈ S.

(R3) If G1 = (V1,E1,g1,h1) ∈ S and G2 = (V2,E2,g2,h2) ∈ S, and V1∩V2 = /0, then the

split-join composite G1||sG2 = (V1∪V2∪{s, j},E1∪E2∪{(s,g1), (s,g2), (h1, j),

(h2, j)},s, j) ∈ S, where s, j 6∈V1∪V2 are splitter and joiner respectively.

(R4) Nothing else is in S.

We define source composite class O as follows.
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(a) Stream filter (b) Stream pipeline ∗s (c) Stream split-join ||s
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Source
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(d) Source sense (e) Source pipeline ∗o (f) Source join ||o (g) Program

Figure 4.3: Composites

(R5) When V =Vse = {u}, then Gu = ({u}, /0,u) ∈ O.

(R6) If G1 =(V1,E1,h1)∈O and G2 =(V2,E2,g2,h2)∈ S, and V1 ∩V2 = /0 the pipeline

G1 ∗o G2 = (V1∪V2,E1∪E2∪{(h1,g2)},h2) ∈ O.

(R7) If G1 =(V1,E1,h1) and G2 =(V2,E2,h2) are in O, and V1 ∩V2 = /0, then G1||oG2 =

(V1 ∪V2 ∪{ j},E1 ∪E2 ∪{(h1, j), (h2, j)}, j) ∈ O, where j 6∈ V1 ∪V2 denotes a

joiner.

(R8) Nothing else is in O.

A program is a composite satisfying (R6), but with G2 = Gu and u∈Vsi. We now define

the function sub that returns the set of immediate children of a composite G, called its

substreams, as follows.

sub(G) =


{G1,G2} if G = G1∗oG2 or G = G1∗sG2,

{G j,G1,G2} if G = G1||oG2 = (V,E, j),

{Gs,G j,G1,G2} if G = G1||sG2 = (V,E,s, j), and

undefined otherwise.
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4.3 Dynamic Programming for MOPP

4.3.1 Dynamic Program

We define a dynamic program that computes the cost of allocating query operators

to available sensors in the network. The program is defined using two functions f̂ SG :

N2→Q+ and f̂OG : N→Q+ depending on whether G is a stream or source composite.

The arguments of f̂ SG are the sensors to which the input and output vertices of G are

respectively placed, whereas the argument of f̂OG is the placement of the output vertex

of G.

Definition 1 (Dynamic Program f̂ SG and f̂OG ).

1. G ∈ S.

• If G = Gu with V =Vf i = {u} then s(G) = t(G) = u and

f̂ SG(xs(G),xt(G)) =

{
wTP(u,xu) if xs(G) = xt(G),

∞ otherwise.

• If G = Gu with V =Vsi = {u}, then s(G) = t(G) = u and

f̂ SG(xs(G),xt(G)) =

{
wTP(u,xu) if xs(G) = xt(G) = b,

∞ otherwise.

• If G = G1∗sG2 then

f̂ SG(xs(G),xt(G))

= minxt(G1)
,xs(G2){

f̂ SG1
(xs(G),xt(G1))+ f̂ SG2

(xs(G2),xt(G))+

wC(t(G1),s(G2)) ·wD(xt(G1),xs(G2))

}

Intuitively, the cost is the sum of the communication cost between the output

operator t(G1) of G1 and the input operator s(G2) of G2 and the costs for

the substreams G1 and G2.
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• If G = G1||sG2 then

f̂ SG(xs(G),xt(G))

= minxs(G1)
,xt(G1)

,xs(G2)
,xt(G2)

f̂ SGs
(xs,xs)+ f̂ SG j

(x j,x j)+

f̂ SG1
(xs(G1),xt(G1))+ f̂ SG2

(xs(G2),xt(G2))+

wC(s,s(G1)) ·wD(xs,xs(G1))+

wC(t(G1), j) ·wD(xt(G1),x j)+

wC(s,s(G2)) ·wD(xs,xs(G2))+

wC(t(G2), j) ·wD(xt(G2),x j)


Here, given two substreams sub(G)= {G1,G2} (see also Fig. 5.2 (c)), joiner

j, and splitter s, the cost is the sum of the communication costs for channels

(s,s(G1)), (t(G1), j), (s,s(G2)), and (t(G2), j), the costs for the substreams

G1 and G2, and the costs for the splitter s and joiner j.

2. G ∈O.

• If G = Gu with V =Vse = {u} then

f̂OG (xt(G)) = wTP(u,xu).

• If G = G1∗oG2 then

f̂OG (xt(G))

= minxt(G1)
,xs(G2){

f̂OG1
(xt(G1))+ f̂ SG2

(xs(G2),xt(G))+

wC(t(G1),s(G2)) ·wD(xt(G1),xs(G2))

}

Here the cost is the sum of the communication cost of (t(G1),s(G2)) and the

costs of substreams G1 and G2.
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• If G = G1||oG2 then

f̂OG (xt(G))

= minxt(G1)
,xt(G2)

f̂ SG j
(x j,x j)+ f̂OG1

(xt(G1))+ f̂OG2
(xt(G2))+

wC(t(G1), j) ·wD(xt(G1),x j)+

wC(t(G2), j) ·wD(xt(G2),x j)


The cost here is the sum of communication costs on the channels (t(G1), j)

and (t(G2), j) and the costs for substreams G1 and G2, and the joiner j.

The following theorem states the correctness of the dynamic program

Theorem 2. For any program G ∈O,

min
xt(G)

f̂OG (xt(G)) = min
XG

fG(XG).

Proof. Theorem 2 is immediate from the following lemma.

Lemma 1. f̂ SG(xs(G),xt(G)) = minXG\{xs(G),xt(G)} fG(XG) when G ∈ S and f̂OG (xt(G)) =

minXG\{xt(G)} fG(XG) when G ∈O.

Proof. We prove by induction. Here we consider one base case when G = Gu ∈ S and

u∈Vsi, and one inductive case for G =G1||oG2 with joiner j. Other cases can be proven

similarly.

When G = Gu ∈ S and u ∈ Vsi, then necessarily xs(G) = xt(G) = xu = b. Now,

XG \ {xs(G),xt(G)} is empty, and therefore, f̂ SG(xs(G), xt(G)) = wTP(u,xu) = fGu(xu) =

minXG\{xs(G),xt(G)} fG(XG).

When G = G1||oG2 = (V,E, j), we consider that G1 = (V1,E1, t(G1)), G2 = (V2,E2,

t(G2)), G j = ({ j}, /0, j, j), and G = ({ j}∪V1∪V2, {(t(G1), j),(t(G2), j)}∪E1∪E2, j).

We assume inductively that

f̂ SG j
(x j,x j) = minXG j\{x j} fG j(XG j) = fG j(x j),

f̂OG1
(xt(G1)) = minXG1\{xt(G1)

} fG1(XG1), and

f̂OG2
(xt(G2)) = minXG2\{xt(G2)

} fG2(XG2)
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Substituting the rhs of the above equations for the lhs in Definition 1 we get

f̂G(xs(G),xt(G)) = minXG1∪XG2
fG j(x j)+ fG1(XG1)+ fG2(XG2)+

wC(t(G1), j) ·wD(xt(G1),x j)+

wC(t(G2), j) ·wD(xt(G2),x j).

= minXG\{x j}∑u∈V wTP(u,xu)+

∑(u,v)∈{(t(G1), j),(t(G2), j)}∪E1∪E2 wC(u,v) ·wD(xu,xv)

= minXG\{xt(G)} fG(XG)

4.3.2 Memo Table

For every call to f̂ SG and f̂OG , the algorithm allocates a table containing the possible return

values of the call. Each table is a matrix T (G), where for G ∈ S, T (G)x,y = f̂ SG(x,y),

and when G ∈O, T (G) is a row matrix with T (G)x = f̂OG (x). For a call to f̂ SG, the rows

and columns of the table correspond to the possible placements of s(G) and t(G). For a

call to f̂OG , the table only has a single row, and the columns similarly correspond to the

placements of t(G).

We illustrate the tabling mechanism using the stream in Fig. 4.1 (b). The algorithm

starts with the tables for the operators, as shown by the first three tables of Fig. 4.4,

which reflect the computation cost of an operator on a specific sensor node. The rows

and columns of the tables are labelled with the sensor nodes and the base station. The

entries of the tables are computed from the placement and transition costs of operators

displayed in Fig. 4.2 (a) and (c). For example, T (G j1)n2,n2 = f̂ SG j1
(n2,n2) = 16 reflects

the fact that when the operator j1 is placed on sensor node n2, the sum of the placement

and transition costs for the operator is 16, as the placement cost for j1 on n2 is 6 and

the transition cost from n1 to n2 is 10. Fig. 4.4 (d) shows a table for one sense operator

o1, which has fixed placement on node n1. Similarly, the tables are generated for other

sense operators based on Fig. 4.2 (a).

After generating the tables for each operator, the algorithm builds the tables for

the larger composites. Let us now consider how the elements of T ((Go1||
oGo2)∗o G f1)

(Fig. 4.4 (f)) is computed – in particular, when xt(G) = n2. To obtain this element, ac-

cording to Definition 1 for f̂OG with G1 ∗o G2, we enumerate possible placements for

t(Go1||
oGo2) = j1 and for s(G f1) = f1 such that f̂OG (xt(G)) is minimal, for xt(G) = n2.
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xs(G)\xt(G) n1 n2 n3 b
n1 10 ∞ ∞ ∞

n2 ∞ 16 ∞ ∞

n3 ∞ ∞ 26 ∞

b ∞ ∞ ∞ 41

xs(G)\xt(G) n1 n2 n3 b
n1 9 ∞ ∞ ∞

n2 ∞ 20 ∞ ∞

n3 ∞ ∞ 16 ∞

b ∞ ∞ ∞ 23
(a) T (G j1) (b) T (G j2)

xs(G)\xt(G) n1 n2 n3 b
n1 7 ∞ ∞ ∞

n2 ∞ 15 ∞ ∞

n3 ∞ ∞ 28 ∞

b ∞ ∞ ∞ 36
(c) T (G f1)

xt(G) n1 n2 n3 b
0 ∞ ∞ ∞

xt(G) n1 n2 n3 b
23 21 44 59

xt(G) n1 n2 n3 b
49 36 70 78

(d) T (Go1) (e) T (Go1||
oGo2) (f) T ((Go1||

oGo2)∗o G f1)

xt(G) n1 n2 n3 b
62 66 59 76

xt(G) n1 n2 n3 b
∞ ∞ ∞ 70

(g) T (((Go1||
oGo2)∗o G f1)||

oGo3) (h) T ((((Go1||
oGo2)∗o G f1)||

oGo3)∗o Gb)

Figure 4.4: Memo tables for operators and composites (see Fig. 4.1(b))

The element is therefore the minimal value among the following.

T (Go1||oGo2)n1 +T (G f1)n2,n2 +wC( j1, f1),

where x j1 = n1 and x f1 = n2 (1)

T (Go1||oGo2)n2 +T (G f1)n2,n2 ,

where x j1 = n2 and x f1 = n2 (2)

T (Go1||oGo2)n3 +T (G f1)n2,n2 +wC( j1, f1),

where x j1 = n3 and x f1 = n2 (3)

T (Go1||oGo2)b +T (G f1)n2,n2 +wC( j1, f1),

where x j1 = b and x f1 = n2 (4)

Here t(G) = t(G f1) such that f̂ SG f1
(xs(G f1)

,xt(G)) < ∞ only when xs(G f1)
= xt(G f1)

=

xt(G) = n2 (see Fig. 4.4 (c)), and therefore in the above we do not consider the values

computed from T (G f1)z,n2 with z 6= n2 as they cannot be minimal. From Fig. 4.4 (b) we

know that the value of wC( j1, f1), is 21 and is added when x j1 6= x f1 , since we assume

that wD(x j1,x f1) = 1 when x j1 6= x f1 and 0 otherwise. The minimal value of 36 is given
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by (2).

The tables also contain the information on optimal assignments. After constructing

all tables, we reconstruct the solution recursively in the following way. Given a com-

posite G in the graph, with an element of interest in the table T (G) (this value is the

optimal value when G is the top-level program), we can compute the placements for

the input/output operators of the immediate children from the definition of the dynamic

program. For example, when G = G1 ∗o G2, the following holds from the dynamic

program (Definition 1):

T (G)xt(G)

= minxt(G1)
,xs(G2)

{
T (G1)xt(G1)

+T (G2)xs(G2)
,xt(G)

+

wC(t(G1),s(G2)) ·wD(xt(G1),xs(G2))

}

Therefore, we compute the placement xt(G1), xs(G2) by enumerating their possible value

pairs (for which there are |N|2) and for each value pair, see if the rhs sub-expression

T (G1)xt(G1)
+ T (G2)xs(G2)

,xt(G)
+ wC(t(G1),s(G2)) ·wD(xt(G1),xs(G2)) equals T (G)xt(G)

.

We further explain this method via example. In Fig. 4.2, the optimal cost of 70 for

the whole program is given in the table T ((((Go1||
oGo2)∗o G f1)||

oGo3)∗o Gb) – here, a

shaded element. Optimal cost is computed using the shaded elements for T (((Go1||
oGo2)

∗oG f1) ∗o Go3) and T (Gb) (not shown), and this value is further computed from the

shaded cell T ((Go1||
oGo2) ∗o G f1), and so on. After marking the values, the optimal

placement can thus be inspected from the tables, which is o1 7→ n1, o2 7→ n2, o3 7→ n3,

j1 7→ n2, f1 7→ n2, j2 7→ n3, and c 7→ b. The placement is partially shown by the shaded

elements of Fig. 4.4, and is indicated in Fig. 4.1 (b) with nodes enclosed in rectangle,

hexagon, circle, and pentagon respectively indicate the placement of the operators to

node n1, n2, n3, and b.

4.3.3 Complexity Bounds

We now discuss the complexity bounds of the algorithm based on the dynamic program.

In the following discussions, m = |V | is the number of operators of the composite under

consideration, and n = |N| is the number of sensor nodes. There are two important

procedures in the algorithm:

1. construction of tables for each composite, and
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2. reconstruction of optimal solution from the tables.

The following theorem holds:

Theorem 3. Given a compositional stream graph G and with operators V to be placed

on nodes N, there is an algorithm to compute optimal placement with time complexity

in O(mn4).

Proof. We first discuss several lemmas that specify the complexity bounds of each of

the above procedures. Here |V |= m and |N|= n.

To reason about the complexity bounds of steps 1 and 2, we first state a bound on

the number of tables constructed by the algorithm.

Lemma 2. The number of tables constructed is in O(m).

Proof. Here we first prove that for every composite G = (V, E,g,h) or G = (V,E,h),

the number of generated tables is |V |+b, with 0≤ b < |V |.
In the base case where |V |= 1, the number of tables is 1, which clearly satisfies the

invariant for b = 0.

Next we show the proofs for when G = G1 ∗o G2 and G = G1||sG2 only, since other

cases can be proven similarly.

In case G = G1 ∗o G2, with G1 = (V1,E1,h1) and G2 = (V2,E2,g2, h2), we assume

the number of tables for G1 and G2 are respectively |V1|+b1 and |V2|+b2, where 0 ≤
b1 < |V1| and 0≤ b2 < |V2|. We add another table for the composite such that the total

number of table is |V1|+ |V2|+b1 +b2 +1 = |V |+b1 +b2 +1 since |V | = |V1|+ |V2|.
Here, 0≤ b1 +b2 +1 < |V |.

In the case of G = G1||sG2, with G1 = (V1,E1,g1,h1) and G2 = (V2,E2, g2,h2), we

assume the number of tables for G1 and G2 are respectively |V1|+ b1 and |V2|+ b2,

where 0≤ b1 < |V1| and 0≤ b2 < |V2|. Here we introduce two more actors – the splitter

and the joiner such that |V |= |V1|+ |V2|+2. – and add three more tables, one table each

for the splitter and the joiner, and another table for the whole composite. Therefore

the number of tables is |V1|+ |V2|+ 2+ b1 + b2 + 1 = |V |+ b1 + b2 + 1. Here, 0 ≤
b1 +b2 +1 < |V |.

Since for any composite G = (V,E,g,h) or G = (V,E,h) the number of tables is

|V |+b for some 0≤ b < |V |, the number of tables is bounded by 2|V |, hence in O(m).
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The construction of each table itself is in O(n4), and therefore the following lemma

holds:

Lemma 3. In placing a program G with operators V on nodes N, the minimal cost can

be computed in O(mn4).

Proof. We first demonstrate that at each table construction step, the computation time

required is in O(n4), with n = |N|. Here we consider two cases of composites.

• If G is an operator, the table construction involves considering just the table size,

which is n2.

• In case G = G1∗sG2, to compute the value of a table entry T (G)xs(G),xt(G)
, we need

to consider all possible combinations for xt(G1) and xs(G2). Their number is in

O(n2), and since there are n2 entries in the table to be constructed, the complexity

will be in O(n4).

Although the proof for all cases is not shown here; the case when G = G1∗sG2 has the

worst complexity bound, and therefore the table construction has a complexity bound

in O(n4). Since from Lemma 2 the number of tables constructed is in O(m) with m the

number of operators of a program, the complexity of table construction is in O(mn4).

Lastly, the reconstruction of the optimal solution from the tables (Section 4.3.2) is

in O(mn2).

Lemma 4. Given a program G with operators V to be placed on N, given minimal

placement cost, the placement can be computed in O(mn2).

Proof. The first challenge is to determine the complexity bound for recovering a solu-

tion from the substream tables, given the optimal value in the table of a composite G.

For this, we assume that G is an arbitrary composite, but we only consider two of them

as others can be proven similarly. First, in case G = Gu = ({u}, /0,u,u), there are al-

ready placements xs(G) and xt(G), and therefore the recovery terminates in O(1). In case

G = G1∗oG2, we need to choose the values for xt(G1) and xs(G2) such that T (G)xt(G)
=

minxt(G1)
,xs(G2)

T (G1)xt(G1)
+ T (G2)xs(G2)

,xt(G)
+ wC(t(G1),s(G2)) ·wD(xt(G1),xs(G2)) (see

Definition 1). This process examines the possible placement pairs for t(G1) and s(G2),

for which there are n2, and the execution time is therefore in O(n2), which is also the
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Figure 4.5: Sub-network two hops away from base station

worst possible running time bound for any composite. Since from Lemma 2 the number

of tables is in O(m), the complexity bound for recovering the solution from the memo

tables is in O(mn2).

From Lemmas 3 and 4, the most complex of the three procedures mentioned above

is table construction, hence Theorem 3.

The most expensive of these three steps is step 2, where the computation cost is

due to: a) generating O(m) tables (one for each composite), and b) computing the

elements of each table. For each table, there are at most n2 elements to be computed, and

the computation requires examining the tables of the substreams, a process in O(n2).

Therefore, the whole process is executed in O(m ·n2 ·n2) = O(mn4).

4.3.4 Mitigating Complexity by Locality

The time complexity of the dynamic program increases quartic in the number of sen-

sors, which makes the running time of the dynamic program infeasible for large net-

works. To overcome or at least alleviate this problem, we restrict the search space of

the dynamic program. A sub-network of the sensor network is created that contains

sensor nodes executing sense operators, the base station, and proximate nodes. The

size of the sub-network is smaller and hence improves the running time of the dynamic

program; however, the placement of operators becomes restricted and will affect the

energy-efficiency.

For creating the sub-network, we use a heuristic that chooses nodes for the sub-

network that are in the proximity of the base station. Fig. 4.5 illustrates an example
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network with 16 nodes, including a base station. In the figure, the size of the node

indicates its distance from the base station; i.e., bigger nodes are further away from the

base station. Our simple heuristic chooses a sub-network whose nodes are at most two

hops away from the base station, indicated in Fig. 4.5 by nine nodes enclosed within a

dotted shape. We increase or decrease the size of the sub-network by setting the distance

parameter, i.e., number of hops from the base station.

4.4 Experimental Evaluation

We evaluate our techniques for the migrating operator placement problem (MOPP) as

follows:

• Is dynamic programming more efficient than integer linear programming (ILP)

for MOPP ?

• What is the energy efficiency of in-network processing in comparison with data

forwarding?

• How does a restricted local search space affect speed and quality of the place-

ment?

For our experimental results we used a simulation approach to answer the experimental

questions above. We implemented the simulator in Python, which generates sensor

networks and stream queries, and runs the simulation in a fixed-time step mode. In

each time step the following events may be triggered: adding a query, migrating a

query, deleting query, adding a sensor node, and removing a sensor node. For activities

including communication, execution, and migration of operators, energy is consumed

at sensor node level. In each time step the simulator adjusts the energy levels of a

sensor node depending on the activities in the time step and the running overheads of

the sensor.

For our experiments we used instances of wireless sensor networks that are gener-

ated from the Erdös-Rényi graph model G(n, p) [100], where n indicates the number

of sensor or mobile nodes, and p is the probability with which each edge will be in-

cluded in the graph. This model is simple and widely used for mathematical analysis

that generates network graphs with varying degree of connectivity [101, 102]. In our

experiments we generated the network graphs with p = 0.5.
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Operators Nodes ILP (s) DP (s)
4 1 0.1 0.029
8 2 0.1 0.054

11 3 3.3 0.112
14 4 176.2 0.371
17 5 ∗ 1.165
20 6 ∗ 3.173
23 7 ∗ 7.659
26 8 ∗ 16.291
29 9 ∗ 32.088
32 10 ∗ 60.234

Table 4.1: GLPK and dynamic program running times

User queries are introduced and deleted throughout the simulation. A query is gen-

erated by a probabilistic scheme: We assign a composite (cf. Fig. 5.2) a probability

(i.e. 25% for sense and filter, and 10% for other composites). The composition tree of

a query is recursively constructed. The composite of a node in the composition tree is

chosen randomly according to its probability, and the construction ends as soon as all

leaves in the composition tree are sense operators (cf. Fig. 5.2(d)).

We ran our simulator and the algorithm for MOPP on a Core2 Duo 2.99 GHz Intel

machine with 4 GB RAM. The simulator and placement algorithm were implemented

in Python.

4.4.1 ILP vs. Dynamic Programming

We formulated the MOPP as an AMPL program [88] and compared the running time

of the dynamic program (cf. Section 4.3) with the running time of the ILP solver

GLPK [87], that solves our AMPL program. In Table 4.1, Operators represents the

total number of operators in a given set of queries, Nodes represent the number of

sensor nodes, ILP represents the running time for GLPK runs in seconds (where ∗ rep-

resents a run that takes more than two hours), and DP represents the running times for

the dynamic program in seconds. The time taken to execute the dynamic program is

substantially less than that for GLPK. As the table shows, the difference becomes more

pronounced with larger problem sizes.
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Operators Nodes cost(DP) cost(Fwd) DP (s)
2 2 39 39 0
6 2 95 121 0
8 3 208 296 0.015

12 5 428 225 0.031
17 3 395 584 0.016
18 8 215 517 3.5
20 6 295 579 1.64
26 13 470 844 72.782
38 10 669 1397 53.218
56 10 849 1782 60.891
57 12 815 1790 86.672

Table 4.2: Optimal in-network vs. data forwarding

4.4.2 In-network vs. Data Forwarding

Our algorithm (cf. Section 4.3) places operators on cost-efficient sensor nodes and

hence resembles an in-network processing scheme, where computations of operators

are performed inside the network to reduce communication overheads. An alternative

scheme is data forwarding, which places all operators except the sense operations on

the base station assuming that the base station’s energy resources are unconstrained.

Table 4.2 provides a comparison of energy costs between the in-networking pro-

cessing and the data forwarding schemes. The column Operators gives the number

of operators in a query, and column Nodes denotes the number of sensor nodes. The

energy costs for the in-network processing scheme are shown in column cost(DP) and

column cost(Fwd) shows the data forwarding costs. With smaller network and query

sizes, the cost incurred with dynamic programming is similar to data forwarding. The

data forwarding scheme becomes energy-inefficient with bigger queries and sensor net-

works. In our experiment, the in-network processing scheme based on dynamic pro-

gramming is up to 54% more energy-efficient and is well suited for energy-constrained

query processing.

4.4.3 Locality of Placement

As shown in Table 4.2, the running time of the dynamic program increases rapidly with

the number of sensor nodes. For large sensor networks, the algorithm’s running time
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Figure 4.6: Locality heuristic vs. optimal in-Network

becomes prohibitive. To mitigate this issue, we propose a locality strategy (cf. Sec-

tion 4.3.4) to select a sub-network for the dynamic program. The sub-network limits

the possible placement and hence will have an impact on the placement quality – that

is, it will be less than optimal. To evaluate this approach, we compute the running time

and in-network processing cost for the various sizes of the sub-network and compare

them with the optimal value (the result when considering all nodes in the network).

Fig. 4.6 shows the effect of locality. We represent the size of the actual network

as |V | and the size of a sub-network as |V ′|. The cost incurred with |V | is shown as

cost(V ) and the cost incurred with the sub-network of size |V ′| is shown as cost(V ′).

The in-network cost moves near to optimal as the size of the sub-network increases

towards the actual size of the network. We notice that the worst placement quality

appears to stabilise at 50% with the smallest sub-network sizes. The details provided in

Fig. 4.6 allow us to choose the size of the sub-network; using this size, we can compute

the nearly optimal placement of the query operators in a relatively short time. For our

experimental data, a sub-network with the size of 60% of the actual network computes

the placement in less than 5% running time, with a placement quality of 91% of the

optimal.

Fig. 4.7 depicts the comparison between the cost of our in-network processing with

locality and the cost incurred due to data forwarding. The worst results using locality

are still significantly better than data forwarding. This result supports our argument that

optimised in-network processing is superior to data forwarding, even with the locality
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Figure 4.7: Locality heuristic vs. data forwarding

heuristic.

4.5 Chapter Summary

We have presented the migrating operator placement problem (MOPP) on wireless sen-

sor networks and mobile clouds. The model is applicable to stream graphs, where the

system consists of operators and communication channels between them. The objective

was to minimise the energy costs of computation, communication and transition due to

the changes in the stream graph and the migration of operators. We devised an algo-

rithm based on dynamic programming that computes optimal operator placement on the

network, with running time polynomially bounded to the input graph size for an impor-

tant subclass of the stream graphs. To improve our algorithm, we developed a heuristic

that considers only nodes with close proximity to the base station. We presented an

experimental evaluation that confirms the efficiency of our approach, by comparing it

with integer linear programming. Using a simulator, we demonstrated the effectiveness

of the optimal placement by comparing the computed energy usage with that of data

forwarding. The results show that our approach is almost 54% more energy-efficient.

Our heuristic significantly improves the running time of the dynamic programming al-

gorithm and computes nearly optimal placement in less than 5% of the running time.



Chapter 5

Timeliness in Curracurrong

A wide range of sensors are deployed at distant locations to collect a stream of data like

temperature rise near disaster-prone areas and intrusion at highly secured locations. The

data collected at sensors can be numerical, digital, or discrete; to extract complex in-

formation, the sensed data need to be filtered, transformed, and merged. Some of the

existing systems – including Aurora [27], Medusa [26], Borealis [28], Mad-WiSe [30],

and Curracurrong [70] – express WSN queries with stream data processing. Existing

systems emphasise the provision of energy efficiency and flexibility in WSN applica-

tions. Apart from those features, it is important that sensed data should reach the base

station reliably and on time for time-critical applications such as health and disaster

area monitoring.

The ad-hoc infrastructure and resource constraints in WSN increase the uncertainty

of successful and real-time data transmission. Approaches to overcoming such chal-

lenges in WSN have been studied for a decade [103]. Recent studies have analysed

end-to-end timeliness in terms of probability distribution [104, 105] and first-order

statistics [106]. For unreliable networks, work on real-time queuing theory provides

stochastic models [107]. This chapter sets out a comprehensive approach for determin-

ing delays in stream query processing using event causality concepts. Based on event

causality, we introduce the notion of timeliness into the semantics for stream process-

ing, and an algorithm to measure end-to-end delays in processing.

Consider a disaster area monitoring application in the Curracurrong system [70],

which deploys several proximate sensors and measures temperature change. The query

collects the average temperature reading from the sensors placed at distant locations

and checks whether the reading goes beyond a certain threshold. Figure 5.1 (a) shows

85
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Figure 5.1: Stream graph and event causality with synchronised sensors

a stream graph for Curracurrong query of the given application, where the result is

recorded at the base station. The stream graph is composed of: two sense operations

Sense-1 and Sense-2; two filters Average-1 and Average-2 to compute average tem-

perature from Sense-1 and Sense-2, respectively; a join operation Join to merge data

from two filters; a filter Threshold that checks whether the average temperature read-

ings are above threshold; and a Sink operator, where the final data is recorded. All

operators are connected with uni-directional communication channels.

In the example, sensor nodes are deployed at distant locations and operators are

placed in the intermediate sensor nodes before the data reach the sink (at the base sta-

tion). It is important that temperature-related data collected at sensors reach the sink

on time so that the user can take required action. Determining the freshness of the

data relies on knowing how long it takes to propagate data from a sensor to the sink.

Various operations on the sensed data insert certain delays in information generation

at the sink (Figure 5.1 (b)). The figure shows that both sensors, represented as s1 and

s2, generate data with uniform frequency and propagate the sensed data to consecutive

operators until they reach the sink operator. During data propagation, the intermedi-

ate operators, such as average and threshold, consume more than one data token and

take time for computation, both of which ultimately result in delay. Sense operators

continuously generate data at every second and propagate them to average operators.
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Filter Average-1, represented as a1, has window size 3, and therefore waits 3 s for data

availability and computes the average, adding a few milliseconds delay. Likewise, filter

Average-2, represented as a2, waits for 6 s and inserts a few milliseconds delay during

computation. The Join operator merges the data from two average filters and forwards

them to Threshold (t) without any delay. The Threshold operator inserts a few mil-

liseconds delay before the data token finally reaches the sink, k. The first data token

generated at the sense reaches the sink with 2.5 s delay. The delays are not the same for

each token reaching the sink, for two reasons: the different data rates of each operator;

and sensor periodicity. The challenge is thus how to compute precise end-to-end delays

in a stream graph, as shown in Fig. 5.1 (b).

We used compositional stream graphs to establish a causality relationship for tokens

and a notion of a time steady state to compute end-to-end delays of stream queries. Our

approach was built on top of Curracurrong framework [70]. In summary, the chapter

makes three contributions:

1. a denotational semantics (cf. Section 5.2) for stream data processing that explains

time information propagation,

2. an algorithm (cf. Section 5.3) to measure the end-to-end delays in a stream graph,

and

3. an experimental evaluation (cf. Section 5.4) to show the efficiency and effective-

ness of our approach in determining end-to-end delays.

The chapter is organised as follows. Section 5.1 defines our model and formally

describes the problem definition statement. Section 5.2 defines compositional stream

graphs and semantics. Section 5.3 introduces an algorithm and defines the abstraction

of concrete semantics to determine delays. In Section 5.4 we present experimental

evaluations to confirm the efficacy of our approach, together with periodicity scaling.

5.1 System Model and Problem Definition

As in the data flow model [108], we represent a WSN query as a stream graph G =

(V,E), whose vertices V are called operators and whose edges E ⊆ V ×V are called

channels. The source of an edge (u,v), denoted by src(u,v), is u and the destination of

an edge (u,v), denoted by dest(u,v), is v. A channel (u,v) ∈ E queues data elements
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called tokens, which are passed from the output of operator u to the input of operator v.

The stream graph is augmented by two functions c : E→N and p : E→N, that associate

with each channel e ∈ E the number of consumed tokens c(u,v) and produced tokens

p(u,v) for edge (u,v). We refer to graph G(V,E,c, p) as a synchronous stream graph.

In our model, stream query generates data tokens (along a physical timeline), which

provide a useful abstraction for event-based distributed systems. We define an event as

a generation of a data token, as follows.

Definition 2. An event is the production of token v at time t ∈ R+, represented as a

pair (v, t). We use variables x, y, z and their indexed versions to denote events, and Ω

to denote the set of all events. We define a function τ such that when x = (v, t), τ(x) = t.

In event-based systems, causality is a key concept, which was introduced as a unique

formal modelling of communicating actors in [109]. The model concerns causality as

the propagation of events across the system. An actor has a semantics called its causal-

ity interface, which relates input with output events (pairs of time and data values). The

system semantics are algebraically defined in terms of the semantics of each compo-

nent, connected by the edges of the graph. Similarly, we formally define causality as

follows.

Definition 3. The causality relation δ(x,y) indicates that event x causes event y. Nec-

essarily for any events x and y, δ(x,y)⇒ τ(x) ≤ τ(y). The causality relation is transi-

tive; i.e., if δ(x,y) and δ(y,z) holds, then δ(x,z) holds. The causality relation is anti-

symmetric such that for any x,y ∈ Ω, if δ(x,y) and δ(y,x) both holds, then τ(x) = τ(y)

and therefore x = y. Each event x ∈Ω has an associated set Ψ(x) of events that caused

it, obtained through the function Ψ : Ω → P (Ω), which is defined as Ψ(x) = {y ∈
Ω|δ(y,x)}.

Figure 5.1 (b) shows the causality relation between events over time span t for

the stream graph in Figure 5.1 (a). Figure 5.1 (b) represents the events generated at

Sense-1 as xs1
1 ,x

s1
2 , and xs1

3 when three data tokens are produced. Average-1 oper-

ator consumes the three data tokens and generates two tokens represented as events

xa1
1 and xa1

2 . These are ‘caused’ by previous events xs1
1 ,x

s1
2 , and xs1

3 . Hence, there are

causality relationships between two sets of events, such that {δ(xs1
1 ,x

a1
1 ),δ(xs1

1 ,x
a1
2 ),

δ(xs1
2 ,x

a1
1 ),δ(xs1

2 ,x
a1
2 ),δ(xs1

3 ,x
a1
1 ),δ(xs1

3 ,x
a1
2 )} ⊂Ω . In the same way, at the sink the final

event generated is xk
1, which represents the data token at the output channel of the sink

operator. For example, in Figure 5.1 (b), Ψ(xk
1) = {x

s1
1 ,x

s1
2 ,x

s1
3 ,x

a1
1 ,xa1

2 ,xt
1,x

k
1}.
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5.1.1 Problem Definition

From the definition of event causality, an event at the sink is causally dependent on the

event(s) generated at the source of the stream graph. We measured the delays in the

stream graph – the time taken by a data token associated with an event x to reach the

sink:

∆(x) = τ(x)− min
y∈Ψ(x)

τ(y). (5.1)

∆(x) represents the maximum delay until event x occurs from the occurrence time

of another event that causes it. As mentioned in the system model, an event (at the

sink) may depend causally on the number of source events, based on the nature of an

application. Where this is this case, delays are measured between an event x at the sink

and the first source event that causally generates the event x. For the same reason, in

the second term of Equation 5.1, we represent the minimum occurrence time among

all events that are the prerequisites of event x. For example, in Figure 5.1 (b), the first

event generated at the sink is xk
1 and the list of events that causally generates the event at

sink is Ψ(xk
1) = {x

s1
1 ,x

s1
2 ,x

s1
3 ,x

a1
1 ,xa1

2 ,xt
1,x

k
1}. In a specific instance of an event timeline

(Figure 5.1 (b)), τ(xs1
1 ) ≤ τ(xs1

2 ) ≤ τ(xs1
3 ) ≤ τ(xa1

1 ) ≤ τ(xa1
2 ) ≤ τ(xt

1) ≤ τ(xk
1); therefore

the delay to be measured is ∆(xk
1) = τ(xk

1)− τ(xs1
1 ).

To compute delays, we consider the time taken for computation at each operator

during query processing. For the simplicity of our model, we assume uniform time for

communication between computing nodes. Any delay caused by communication failure

and data transmission is modelled as an additional delay operator, referred to as delayop

and added between the original stream graph operators. For example, communication

interruption between operators u and v is represented as an operator delayop, such that

(u,delayop) ∈ E and (delayop,v) ∈ E.

5.2 Semantics for Stream Graph Composites

Figure 5.3 represents the ways to build a compositional stream graph, using the com-

posites in Figure 5.2 (explained in Chapter 4), for the example Average query. We start

with the actual query as program composite, shown as the outermost dotted rectangle.

The source composite in the program is expanded as a source pipeline ∗o, consisting of

source and stream composites. The stream composite in the pipeline is transformed
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Filter
Stream

Stream

Split

Stream Stream

Join

(a) Stream filter (b) Stream pipeline ∗s (c) Stream split-join ||s

Sense
Source

Stream

Source Source

Join

Source

B

(d) Source Sense (e) Source Pipeline ∗o (f) Source Join ||o (g) Program

Figure 5.2: Composites

to a filter composite for Threshold operator, whereas the source composite is fur-

ther expanded as source join composite ||o, with two source composites expanded as

source pipelines ∗o. Two source pipelines are expanded Sense as source composites

and Average as filter composites.

5.2.1 Semantics

Figure 5.4 defines the semantics for the stream and source composites, where we as-

sume that each stream s belongs to the domain Stream.

Definition 4. A Stream is inductively defined as follows:

1. [ ], called the empty stream, is in Stream.

2. If s ∈ Stream, then [x : s] ∈ Stream, with x ∈Ω.

In any WSN query, a sense operator works as a source and atomically generates a

stream of tokens, and is defined as source composite OJGK with G = (u, /0,u,u). The

sensed raw data is further filtered and processed by filter composites. A filter f con-

sumes |c f | tokens from its input channel and generates output stream with |p f | tokens.
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∗o

Source
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Filter
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Filter
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Figure 5.3: Example of a compositional stream graph using stream and source compos-
ites
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Since each channel has finite memory, stream graph requires to have all the channels

in the same state as they were in original state; to achieve this, filters are executed re-

peatedly for certain number of times – referred as repetition vector r f . The detailed

explanation of repetition vector~r is given in Section 5.3.1.1. The semantics for filter is

presented as a stream composite rule SJGK with G = ( f , /0, f , f ). Some data process-

ing requires a number of consecutive composites connected as a pipeline. A pipeline

composite forwards an output stream of tokens to the input of another composite; this

is explained with stream and source pipeline semantics SJG1 ∗s G2K and OJG1 ∗o G2K,

respectively. Some WSN queries may collect data from different sensors and combine

those results using join composite while some other queries may process sensed data

in parallel using split-join composite; the semantics for both composites are defined as

OJG1||oG2K and SJG1||sG2K, respectively.

In our model, both join and split-join composites propagate the incoming data to-

kens based on their times of occurrences and, hence, produce an interleaved merge of

two incoming data streams. We denote the join interleaving as a function ⊕.

Definition 5. The function ⊕ : Stream×Stream→ Stream is defined inductively as fol-

lows.

1. [ ]⊕ s = s,

2. s⊕ [ ] = s,

3. [x1 : s1]⊕ [x2 : s2] =

{
[x1 : s1⊕ [x2 : s2]] if τ(x1)≥ τ(x2)

[x2 : [x1 : s1]⊕ s2] otherwise

It is important to note here that the sense operators in our system model generate

atomic data tokens on a physical timeline; therefore a stream of events at a sense oper-

ator is ordered by time. We define an ordered stream as follows:

Definition 6. A stream s is ordered, iff

1. s = [ ],

2. s = [x],

3. for any x,y ∈ s, if s = [. . . ,x, . . . ,y, . . .], then τ(x)≥ τ(y).
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S : S→ Stream→ Stream

SJGK = λs .
{

s′ if |s|= r f · c f
[ ] otherwise

where G = ({ f}, /0, f , f ) with f a filter and if |s| = r f ·c f , then s = [xr f ·c f ,
. . . , x1], s′ = [x′r f ·p f

, . . . ,x′1] and for any 1 ≤ i ≤ r f , [x′i·p f
, . . . ,x′(i−1)·p f+1]

= f̂ [xi·c f , . . . ,x(i−1)·c f+1]. Further, for any 1 ≤ i ≤ r f · p f , τ(x′i) =

τ(x(bi/p f c+1)·c f )+w f .

SJG1 ∗s G2K = λs . SJG2KSJG1Ks

SJG1||sG2K = λs . SJG1Ks⊕SJG2Ks

O : O→ Stream

OJGK = [xru·pu, . . . ,x1]

where G = ({u}, /0,u,u) is a sense operator, x1, . . . ,xru·pu are periodic sen-
sor reading events such that τ(xi+1)− τ(xi) is constant for any i such that
1≤ i≤ r f · p f −1.

OJG1 ∗o G2K = SJG2KOJG1K

OJG1||oG2K = OJG1K⊕OJG2K

Figure 5.4: Denotational semantics for stream composites. Given an operator u, cu is
the value of c(v,u), pu is the value of p(u,v), and ru is the repetition for the operator u
(Section 5.3). Given a filter f , f̂ is the function implemented by the filter, which takes
input data tokens as arguments and produces a sequence of output data tokens, and w f
is the computation time. Operator ⊕ is as for Definition 5.

As shown in Figure 5.4, SJ f K defines the semantics for the filter f . It consumes

[xc f , . . . ,x1] tokens and produces [x′p f
, . . . ,x′1] tokens. bi/p f c+1 is the position of firing,

which produces the i-th token at the output. The relationship between the set of incom-

ing events and the set of outgoing events is shown in Figure 5.5. To define the causality

between incoming and outgoing events at any stream graph composite, we prove that

for any graph composite, the outgoing stream preserves the orderedness whenever the

incoming stream is ordered.

Theorem 4. The following two holds.

1. For any G ∈ S, if s is ordered then SJGKs is ordered.

2. For any G ∈O, OJGK is ordered.
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xc f x1

x′p f x′1

x2·c f xc f+1

x′2·p f
x′p f+1

xi·c f x(i−1)·c f+1

x′i·p f
x′(i−1)·p f+1

Figure 5.5: Relationship between tokens consumed and produced

Proof. For the inductive proof of order preservation in any graph composite, we first

shows that the interleaving function ⊕ preserves the order of output stream.

Lemma 5. Given ordered streams s1,s2,s1⊕ s2 is ordered.

Proof. We prove by induction.

1. If s1 = [ ], then s1⊕ s2 = s2 is ordered.

2. If s2 = [ ], then s1⊕ s2 = s1 is ordered.

3. If s1 = [x1 : s′1],s2 = [x2 : s′2], then:

• In case τ(x1) ≥ τ(x2), s1⊕ s2 = [x1 : s′1⊕ s2]. By induction hypothesis,

s′1⊕ s2 is ordered and τ(x1)≥ τ(x), for any x ∈ s′1⊕ s2, because since s1 and

s2 are ordered,

τ(x1)≥ τ(x) for any x ∈ s′1 and

τ(x1)≥ τ(x2), and τ(x2)≥ τ(x) for any x ∈ s2.

Therefore, s1⊕ s2 is ordered.

• In case τ(x2)> τ(x1), s1⊕s2 = [x2 : s1⊕s′2]. By induction hypothesis, s1⊕s′2
is ordered and τ(x2)≥ τ(x), for any x ∈ s1⊕ s′2, because since s1 and s2 are

ordered,
τ(x2)≥ τ(x) for any x ∈ s′2 and

τ(x2)> τ(x1), and τ(x1)≥ τ(x) for any x ∈ s1.

Therefore, s1⊕ s2 is ordered.
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Next we prove Theorem 4 and provide separate proofs for the two cases.

1. We prove the first part of the lemma by induction.

• If G ∈ S is a filter f , that is, G = ({ f}, /0, f , f ), then

(a) In case |s|= r f · c f , then
SJGKs = [xr f ·p f , . . . ,x1]

= f̂ [xr f ·c f , . . . ,x(r f−1)·c f+1]

++ . . .++ f̂ [xc f , . . . ,x1]

= f̂ [xr f ·c f , . . . ,x(r f−1)·c f+1]

++ . . .++ f̂ [xi·c f , . . . ,x(i−1)·c f+1]

++ . . .++ f̂ [x j·c f , . . . ,x( j−1)·c f+1]

++ . . .++ f̂ [xc f , . . . ,x1]

In the above, since s is ordered, τ(xi·c f )≥ τ(x j·c f ), for any 1≤ j < i≤
r f , therefore, τ(xi·c f )+∆ f ≥ τ(x j·c f )+∆ f . If f̂ [xi·c f , . . . , x(i−1)·c f+1] =

[x′i·p f
, . . . , x′(i−1)·p f+1] and f̂ [x j·c f , . . . , x( j−1)·c f+1] = [x′j·p f

, . . . , x′( j−1)·p f+1],

then from the semantics definition,

τ(x′i·p f
) = . . .= τ(x′(i−1)·p f

) = τ(xi·c f )+∆ f ,

τ(x′j·p f
) = . . .= τ(x′( j−1)·p f

) = τ(x j·c f )+∆ f .

Since, τ(xi·c f )+∆ f ≥ τ(x j·c f )+∆ f , SJGKs is ordered.

(b) In case |s| 6= r f · c f , then SJGKs = [ ] and by definition [ ] is ordered.

• If G ∈ S, is G1 ∗s G2, then by the semantics, SJG1 ∗s G2Ks = SJG2KSJG1Ks.

By induction hypothesis, SJG1Ks′ is ordered, for any s′, and SJG2Ks′ is or-

dered, for any s′. Therefore, SJG2KSJG1Ks is ordered.

• If G ∈ S, is G1||sG2, then by semantics, SJG1||sG2K = λs . SJ f Ks ⊕ SJgKs.

By induction hypothesis, SJG1Ks′ is ordered, for any s′, and SJG2Ks′ is or-

dered, for any s′. From Lemma 5, SJG1Ks⊕SJG2Ks is ordered.

2. Next we prove the second part of the lemma by induction.

• If G∈O is a sense operator, then by the semantics, OJGK= s= [xru·pu, . . . ,x1]

and for any xi, x j ∈ s, if i > j, then τ(xi)≥ τ(x j). Thus OJGK is ordered.
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• If G ∈ O is G1 ∗o G2, then by the semantics, OJG1 ∗o G2K = SJG2KOJG1K.

By induction hypothesis, OJG1K is ordered and SJG2Ks′ is ordered, for any

s′. Therefore, SJG2KOJG1K is ordered.

• If G∈O is G1||oG2, then by the semantics, OJG1||oG2K= OJG1K⊕ OJG2K.

By induction hypothesis, OJG1K and OJG2K are ordered and from Lemma 5,

OJG1K⊕OJG2K is ordered.

The semantics defined in this section explain the execution of a query using stream

and source composites. The regular semantics in Figure 5.4 are later used to compute

delays with an abstract interpretation technique, where we focus only on the time infor-

mation associated with an event.

5.3 Algorithm

The algorithm computes the delay, which is the timespan between causally dependent

tokens at the source and the sink operators. The causality is a non-constructive defini-

tion because an infinite number of tokens arise at the sources and the sink, and hence

the time delay cannot be computed by enumerating input and output tokens. To over-

come this issue, we introduce the notion of a time steady state. The time steady state

is an interval on the timeline with a number of events that re-occur ad infinitum. The

existence of a time steady state is due to the periodicity of sense operators, and to the

number of firings for each operator (which results in no net change in tokens). After

determining the time steady state, we simulate its execution to deduce the delays of all

infinite tokens. The algorithm has two parts: the first part computes the time steady state

in several steps; the second part simulates the execution via an abstract interpretation

framework.

5.3.1 Finding Time Steady State

In Figure 5.1 (a), each token xs1
i generated at source Sense-1 has a time-stamp, such

that τ(xs1
i ) = i ·~t(s1), where~t is a periodicity of the sense operator. If multiple sense

operators generate stream of tokens, there is a point in time when all of them generate

tokens simultaneously. We determine a time interval T such that for all sense operators
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v ∈ Vse, there exists i and T = i ·~t(v). The homogeneous stream graph is a special in-

stance, where all the edges (u,v)∈E have equal consumption and production rates, such

that c(u,v) = p(u,v) = 1. In a homogeneous stream graph, all operators are periodic

and tokens re-occur with a periodicity of the least common multiplier of periodicities of

the sense operators. The firing of an operator and generation of output tokens depend

on the time when all the input tokens are available at the input channel; therefore filters

are aperiodic. For example, in Figure 5.1, Threshold requires two tokens in its input

channel before its execution, and generates a single token at output. On the timeline, the

threshold generates the first token after t = 3 followed by next two tokens after t = 6;

this shows the aperiodic nature of a filter operator.

To determine the periodicity and therefore the time interval for re-occurrence of to-

kens in non-homogeneous stream graphs, we observe a point in time when each operator

repeatedly executes a certain number of times leaving no net change of tokens on all

the connecting channels. Such a point in time re-occurs when the periodicity~t(v) of a

sense operator v is multiplied by the number of firings~r(v), such that T =~r(v) ·~t(v), for

any v ∈Vse; and is referred as time steady state. The number of firings for all operators

in the stream graph is represented as a repetition vector~r. In the following sections, we

explain in detail two sub-steps to determine time steady state: computation of repetition

vector~r and of periodicity vector~t.

5.3.1.1 Computation of Repetition Vector

A repetition vector~r is a concept adopted from a periodic schedule in a synchronous

data flow [110]. The vector denotes the number of firings for each operator in a stream

graph during a periodic schedule. Note that a periodic schedule exists for G if and only

if there is a repetition vector~r that satisfies following balance equations [71].

p((u,v)) ·~r(u) = c((u,v)) ·~r(v) ∀(u,v) ∈ E (5.2)

~r(u)> 0 ∀u ∈V (5.3)

Since every operator needs to be invoked at least once in a schedule, the elements of

~r(u) for all operators u ∈ V are greater than or equal to one. We define balanced com-

positional stream graph followed by the lemma that proves the existence of a repetition

vector.
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Definition 7. A stream graph in which each composite satisfies balance equations is

referred to as a balanced compositional stream graph.

Lemma 6. There is a repetition vector~r in every balanced compositional stream graph

G.

Proof. We prove this lemma by induction, considering one base case when G = Gu ∈ S
and u ∈Vf i, and two inductive cases for G = G1∗sG2 and G = G1||sG2.

For the base case, G = Gu ∈ S and u ∈Vf i, then E = /0 and necessarily~r = r(u) = k,

where k is a constant. We prove this lemma for following two inductive cases:

When G=G1∗s G2 =(V,E,s(G), t(G)), we consider that G1 =(V1,E1,s(G1), t(G1)),

G2 = (V2,E2,s(G2), t(G2)), and G = (V1∪V2,E1∪E2∪{(t(G1),s(G2))},s(G1), t(G2)).

We assume inductively that there exists~r1,~r2 such that they satisfy the set of balance

equations Γ1 and Γ2 for graphs G1 and G2 respectively.

The graph G = G1 ∗s G2 is represented as:

G1 G2
e

where two composites G1 and G2 are connected with an edge e = (t(G1),s(G2)). When

the stream begins execution with n tokens on channel e, for it to return to the state

with the same number of tokens on e, the number of “firings” of G1 and G2 denoted by

~r′(G1) and~r′(G2) respectively,~r′(G1) and~r′(G2) have to satisfy the following balance

equation:

~r′(G1) · p(e) =~r′(G2) · c(e).

We construct~r such that Γ~r = 0 in the following way:

~r =

(
~r′(G1)~r1

~r′(G2)~r2

)

When G=G1||sG2 =(V,E,s(G), t(G)), we consider that G1 =(V1,E1,s(G1), t(G1)),

G2 = (V2,E2,s(G2), t(G2)), and G = (V1∪V2∪{s, j}, E1∪E2∪ {(s,s(G1)),(s,s(G2)),

(t(G1) j),( j,s(G2))}, s, j). We assume inductively that there exists~r1,~r2 such that they

satisfy the set of balance equations Γ1 and Γ2 for graphs G1 and G2 respectively.

The graph G = G1||sG2 is represented with following figure:
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s

G1 G2

j

e1 e2

e3 e4

where two composites G1 and G2 are connected with splitter s and joiner j using four

edges: e1 = (s,s(G1)),e2 = (s,s(G2)),e3 = (t(G1), j), and e4 = (t(G2), j). If there

exists a repetition vector~r′ such that it satisfies following balance equations

~r′(s) · p(e1) =~r′(G1) · c(e1)

~r′(s) · p(e2) =~r′(G2) · c(e2)

~r′(G1) · p(e3) =~r′( j) · c(e3)

~r′(G2) · p(e4) =~r′( j) · c(e4)

then we construct~r such that Γ~r = 0 in following way:

~r =


~r′(G1)~r1

~r′(G2)~r2

~r′(s)

~r′( j)


Other inductive cases can be proven similarly.

In the example stream graph in Figure 5.1 (a), a small box next to each operator

represents the number of firings in a repetition vector~r. The numbers are also given in

the second column of Table 5.1.

5.3.1.2 Computation of Periodicity Vector

The sense operators in a stream query generate data token at regular interval on a phys-

ical timeline. As explained in our system model, each edge in a synchronous stream

graph is associated with a consumption and production rate, presented as functions c

and p, respectively. Except for the join operator, each operator in the stream graph has

a regular pattern at which output data tokens are generated. The output data produc-

tion rate solely depends on the periodicity at which sense operators generate raw data
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Figure 5.6: Event causality with the unsynchronised sensors from Figure 5.1(a)

tokens, and on the rate at which the operator consumes input tokens. The regularity

of generating data tokens at every operator results in repetition of events in query pro-

cessing (known as periodicity). The following lemma shows how to find a periodicity

vector for the stream graph by propagating the periodicity of the sense operators.

Lemma 7. There is a periodicity vector~t in every compositional stream graph G.

Proof. We prove this theorem by induction.

For the base case, G = Gu ∈ S and u ∈ Vse and u generates data with known fre-

quency f ; thus G has a periodicity~t(u) = 1/ f .

We inductively assume that a graph G with k operators has a periodicity ~tk, and

prove that there is a periodicity in a graph with k+1 operators.

If the added operator u is a filter, the periodicity~tk+1(u) = d c(k,k+1)
p(k,k+1)e~tk.

If the added operator is a splitter s, the periodicity

~tk+1(s) =

{
~tk if duplicate splitter
~tk/m if round-robin splitter with m outgoing channel

If the added operator is a joiner j , the periodicity~tk+1 = lcm(~t0
k , . . . ,~t

m
k ), where joiner

has m incoming channels, and we assume periodicity~t0
k , . . . ,~t

m
k for each incoming chan-

nel e1, . . . ,em ∈ E, respectively.

This proves that periodicity exists for every stream graph G.
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We now demonstrate the propagation of periodicity in the example stream graph for

two different cases: with synchronised sensors (sensors having same periodicity), and

unsynchronised sensors (different sensor periodicity). We first consider all sensors with

the same periodicity, of 1 s,~t(Sense-1) =~t(Sense-2) = 1. We propagate periodicity

over the stream graph as shown in Lemma 7, where a filter u’s periodicity is computed

as d c(v,u)
p(v,u)e ·~t(v) and (v,u) ∈ E. As mentioned above, all operators except join have a

predefined production and consumption rate, and thus patterns of events repeated at

regular interval. Our model allows join to forward incoming data events based on their

arrival time, so it is not straightforward to find the periodicity. We consider that events

at join re-occur when both of its input streams have events generated at the same time;

therefore, a join operator has periodicity that is lcm of the periodicity of two incoming

streams. Table 5.1 shows the periodicity vector as~t for the example stream graph (for

both synchronised~tsync and unsynchronised~tunsync).

A periodicity of join may change the number of firings required for its neigh-

bour operators. In the example, the periodicity of Average-1 is half the periodicity

of Average-2, and Average-1 operator needs to be repeated twice. The adjusted

repetition vector for the operators are ~r′sync(Average-1) = 2×~rsync(Average-1) and

~r′sync(Sense-1) = 2×~rsync(Sense-1). Table 5.1 shows an entire new repetition vector

~r′.

For the unsynchronised sensors (Figure 5.6), both sensors have different periodic-

ity: ~tunsync(Sense-1) = 2 and~tunsync(Sense-2) = 3. Table 5.1 shows the periodicity

for the remaining operators as~tunsync. For the periodicity of the join, the adjusted rep-

etition vector for the operators is ~r′unsync(Average-1) = 3×~runsync(Average-1) and

~r′unsync(Sense-1) = 3×~runsync(Sense-1).~r′unsync.

We next prove the existence of time steady state in any stream graph.

Theorem 5. For every balanced compositional stream graph G = (V,E), there exists a

time steady state T =~r(u) ·~t(u), for any u ∈Vse.

Proof. Lemma 6 shows that each balanced compositional stream graph has a repetition

vector~r and Lemma 7 ensures that there is a periodicity vector~t in a stream graph. This

proves that there is a time steady state

T =~r(u) ·~t(u), for any u ∈Vse (5.4)
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Operator Repetition vector Periodicity Vector Adjusted Repetition Vector
(~r) (~tsync) (~tunsync) (~r′sync) (~r′unsync)

Sense-1 3 1 2 6 9
Sense-2 6 1 3 6 6
Average-1 1 3 6 2 3
Average-2 1 6 18 1 1

Join 2 6 18 2 2
Threshold 1 6 18 1 1

Sink 1 6 18 1 1

Table 5.1: Repetition and periodicity vectors for the example stream graph in Fig-
ure 5.1 (a). Here, sync is the case when all sensors are synchronised, whereas unsync
represents unsynchronised sensors.

in a stream graph. Time steady state computation uses an adjusted repletion vector~r′,

if the periodicity vector changes the original repetition vector~r.

For both cases, with synchronised and unsynchronised sensors in the example, the

lengths of time steady state are Tsync =~r′sync(Sense-1)·~tsync(Sense-1)=~r′sync(Sense-2)·
~tsync(Sense-2)= 6; and Tunsync =~r′unsync(Sense-1)·~tunsync(Sense-1)=~r′unsync(Sense-2)·
~tunsync(Sense-2) = 18, respectively. We use the time steady state information to mea-

sure the delays during that interval, simulating the first time steady state to determine

delays – the next step in the algorithm.

5.3.2 Simulation of Time Steady State

The second step of the algorithm simulates the first time steady state and computes

delay for each event occurring at the sink. To compute delays, we focus only on the

time information associated with each event and disregard actual data values. This

provides an abstraction of the regular semantics of Figure 5.4, the elements of which

are presented in Figure 5.7. We first define abstract stream inductively as follows.

Definition 8. An abstract stream is either:

1. [ ], or

2. [(ε, t) : ŝ] with ŝ an abstract stream, here ε = miny∈Ψ(x) τ(y) and t = τ(x) for some

event x.
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Ŝ : S→ AStream→ AStream

ŜJGK = λŝ .
{

ŝ′ if |ŝ|= r f · c f
[ ] otherwise

where G = ({ f}, /0, f , f ) with f a filter, ŝ′ = [(ε′r f ·p f
, t ′r f ·p f

), . . . ,(ε′1, t
′
1)],

and for any i s.t. (ε′i, t
′
i) ∈ ŝ′, there is (ε(bi/p f c+1)·c f , t(bi/p f c+1)·c f ) ∈ ŝ and

the following holds.

1. t ′i = t(bi/p f c+1)·c f +∆ f

2. ε′i = min{ε j | (ε j, t j) ∈ ŝ,bi/p f c · c f +1≤ j ≤ (bi/p f c+1) · c f }

ŜJG1 ∗s G2K = λŝ . ŜJG2KŜJG1Kŝ

ŜJG1||sG2K = λŝ . ŜJG1Kŝ⊕ ŜJG2Kŝ

Ô : O→ AStream

ÔJGK = [(τ(xru·pu),τ(xru·pu)), . . . ,(τ(x1),τ(x1))]

where G = ({u}, /0,u,u) is a sense operator, x1, . . . ,xru·pu are periodic sen-
sor reading events such that τ(xi+1)− τ(xi) is constant for any i such that
1≤ i≤ r f · p f −1.

ÔJG1 ∗o G2K = ŜJG2KÔJG1K

ÔJG1||oG2K = ÔJG1K⊕ ÔJG2K

Figure 5.7: Abstract semantics of stream composites
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An ordered stream s is abstracted into an ordered abstract stream via the abstraction

function β : Stream→ AStream, defined inductively as

β(s) =

{
[(miny∈Ψ(x) τ(y),τ(x)) : β(s′)] if s = [x : s′]

[ ] otherwise

We assume that all abstract streams belong to the set AStream. AStream abstracts event

information by disregarding actual data value and focusing on two separate pieces of

time information, represented as a tuple. The first value in AStream tuple indicates the

earliest time when an event y, which caused the current event x, was generated. The

second value in the tuple indicates the time when current event x was generated. We

use this abstracted time information and compute delay by subtracting the first from the

second time information at any point in the stream graph.

For the abstraction, we extend⊕ operation in the obvious way to operate on abstract

streams. The following properties hold trivially.

Lemma 8. For any s ∈ Stream, if s is ordered, then β(s) is ordered, for any s1,s2 ∈
Stream, β(s1)⊕β(s2) = β(s1⊕ s2), and |s|= |β(s)|.

We define the abstract semantics of stream programs in Figure 5.7 and establish a

property on the abstract streams produced by the abstract semantics.

Theorem 6. For any G ∈O, ÔJGK = β(OJGK), when we assumed that sensor readings

correspond, that is, for any sensor u, with Gu = (u, /0,u,u),β(OJGuK) = ÔJGuK.

As stream graphs in O are composed from stream graphs in S, we first prove a

related lemma on S.

Lemma 9. For any G ∈ S and stream s, β(SJGKs) = ŜJGKβ(s).

Proof. We employ structural induction.

• We assume that G = ({ f}, /0, f , f ). In case |s| 6= r f ·c f , then SJGKs = ŜJGKβ(s) =

[ ], and therefore β(SJGKs) = ŜJGKβ(s). In case |s| = r f · c f , from the semantics

definition of filter in Figure 5.4 and 5.7, |SJGKs| = |ŜJGKβ(s)| = r f · p f . We can

therefore assume the following.

– s = [xr f ·c f , . . . ,x1],
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– β(s) = [(εr f ·c f , tr f ·c f ), . . . ,(ε1, t1)],

– [x′r f ·p f
, . . . ,x′1] = SJGKs, and

– [(ε′r f ·p f
, t ′r f ·p f

), . . . ,(ε′1, t
′
1)] = ŜJGKβ(s).

The causality relation δ satisfies {(x j, x′i) | 1 ≤ i ≤ r f ,bi/p f c · c f + 1 ≤ j ≤
(bi/p f c+1) · c f } ⊆ δ.

By the definition of the function β, for 1≤ i≤ r f · c f , εi = miny∈Ψ(xi) τ(y). Since

Ψ(x′i) = {y ∈Ω|δ(y,x′i)}
= {y ∈Ω|δ(y,x j),

bi/p f c · c f +1≤ j ≤ (bi/p f +1) · c f }
∪{x′i}

from the semantics of Figure 5.7, for any 1≤ i≤ r f · p f ,

ε′i = min{miny∈Ψ(x j) τ(y) | (ε j, t j) ∈ ŝ,

bi/p f c · c f +1≤ j ≤ (bi/p f c+1) · c f }
= min{τ(y) | y ∈Ψ(x j),

bi/p f c · c f +1≤ j ≤ (bi/p f +1) · c f }
∪{τ(x′i)}

= miny∈Ψ(x′i)
τ(y)

Since δ(x j, x′i) holds when bi/p f c ·c f +1≤ j ≤ (bi/p f c+1) ·c f , ε′i = miny∈Ψ(xi)

τ(y).

• We assume that G = G1 ∗s G2 and that the property holds inductively, that is, for

any s ∈ Stream,

1. β(SJG1Ks) = ŜJG1Kβ(s), and

2. β(SJG2Ks) = ŜJG2Kβ(s).

Therefore, ŜJG1 ∗s G2Kβ(s) = ŜJG2KŜJG1Kβ(s) =

ŜJG2Kβ(SJG1Ks) = β(SJG2K(SJG1Ks)) = β(SJG1 ∗s G2Ks).

• We assume that G = G1||sG2 and that the property holds inductively, that is, for

any s ∈ Stream,

1. β(SJG1Ks) = ŜJG1Kβ(s), and

2. β(SJG2Ks) = ŜJG2Kβ(s).
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ŜJG1||sG2Kβ(s) = ŜJG1Kβ(s)⊕ ŜJG2Kβ(s) = β(SJG1Ks)⊕β(SJG2Ks). From Lemma

8, this equals β(SJG1Ks⊕SJG2Ks) = β(SJG1||sG2Ks).

We now prove Theorem 6.

Proof. We prove inductively.

• We assume that G = ({u}, /0,u,u). β(OJGK = ÔJGK holds by assumption.

• We assume that G = G1 ∗o G2, and that the property holds inductively, that is,

β(OJG1K) = ÔJG1K. From Lemma 9, we obtain β(SJG2Ks) = ŜJG2Kβ(s) for

any s ∈ Stream. Now, β(SJG1 ∗o G2K) = β(SJG2KOJG1K) = ŜJG2Kβ(OJG1K) =
ŜJG2KÔJG1K = ÔJG1 ∗o G2K.

• We assume that G = G1||oG2, and that the property holds inductively, that is,

1. β(OJG1K) = ÔJG1K, and

2. β(OJG2K) = ÔJG2K.

Now, β(OJG1||oG2K) = β(OJG1K⊕OJG2K). From Lemma 8, this equals β(OJG1K)⊕
β(OJG2K). From the induction hypothesis, this again equals ÔJG1K⊕ ÔJG2K =

ÔJG1||oG2K by the semantics definition of Figure 5.4.

We compute the delays in Equation [5.1] using the above abstract semantics such

that we compute the difference ti− εi for an event xi ∈ Ω, represented as (εi, ti) with

abstraction. For the example shown in Figure 5.1, we assume that all the filters take

equal computation time of 0.25 s and we add them while measuring delays. Each event x

in the stream graph is represented as a pair (ε, t), where ε = miny∈ψ(x) τ(y) and t = τ(x).

Since we simulate delay measurement in the stream graph for the first time steady state,

Figure 5.1 (b) has 6 events generated at both operators Sense-1 and Sense-2. Sensor

data is then forwarded to the other operators until they reach Sink and our semantics

treat each data generation as an atomic event and propagate time information associated

with each event as shown in Table 5.2. For unsynchronised sensors shown in Figure 5.6,

the length of time steady state is 18 s and during the first time steady state, delays are

as given in Table 5.3.
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Operator Events (ε, t) in AStream Delays
Sense-1 (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) 0,0,0,0,0,0
Sense-2 (1,1) (2,2) (3,3) (4,4) (5,5) (6,6) 0,0,0,0,0,0
Average-1 (1,3) (4,6) 2.25,2.25
Average-2 (1,6) 5.25
Threshold (1,3) (4,6) (1,6) 2.5,2.5,5.5

Sink (1,3) (4,6) (1,6) 2.5,2.5,5.5

Table 5.2: Delays with synchronised sensors (cf. Figure 5.1(b))

Operator Events Delays
Sense-1 (2,2) (4,4) (6,6) (8,8) (10,10) (12,12) (14,14) (16,16) (18,18) 0,0,0,0,0,0,0,0,0
Sense-2 (3,3) (6,6) (9,9) (12,12) (15,15) (18,18) 0,0,0,0,0,0
Average-1 (2,6) (8,12) (14,18) 4.25,4.25,4.25
Average-2 (3,18) 15.25
Threshold (2,6) (8,12) (3,18) (14,18) 4.5,4.5,15.5,4.5

Sink (2,6) (8,12) (3,18) (14,18) 4.5,4.5,15.5,4.5

Table 5.3: Delays with unsynchronised sensors (cf. Figure 5.6)

5.4 Experiments

We evaluate our approach for delays to answer the following questions:

• Does our approach efficiently measure delays?

• How does the stream graph parameters such as sensor periodicity and filter data

rate affect the delay?

• How does periodicity scaling affect the efficiency and precision of delays?

We employed simulation to answer these questions. The simulator in Python was im-

plemented, to generate stream queries, assign sensor periodicity, compute time steady

state, and measure time delay for each token at the sink for one time steady state itera-

tion.

To stress test the system, the queries in our experiments were generated by proba-

bilistic scheme: We assign a composite (cf. Fig. 5.2) a probability (i.e. 35% for sense

and filter, and 10% for other composites). The composition tree of a query was re-

cursively constructed. The composite of a node in the composition tree was chosen

randomly according to its probability and the construction ended as soon as all leaves
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in the composition tree were sense operators. We ran our experiments on a Core2 Duo

2.99 GHz Intel machine with 4 GB RAM.

5.4.1 Computing Time Steady State

The efficiency of our approach depends on the length of the time steady state. Longer

time steady state indicates that a larger stream is to be observed while computing delays

in a stream graph. To compute the time steady state, we randomly generate stream graph

queries as described above. The stream graph may or may not have a repetition vector;

therefore, we check if every pair of operators in the stream graph satisfies the balance

equation and have periodic schedule. The repetition vector ensures the existence of time

steady state in the graph. As shown in Equation 5.4, the time steady state depends on

two parameters: the repetition vector and the periodicity in the graph; and there exists a

periodicity in any compositional stream graph as shown in Lemma 7. We simulate the

periodicity of each sensor in the stream graph and propagate them over each composite

of the graph.

Operators Sensors Tss-uniform Tss-random Tss-prime
5 2 15 30 15
7 3 10 30 700

10 3 120 120 1320
12 4 120 480 1230
15 6 30 900 23100
17 5 1800 36000 25200
19 6 2160 21600 498960
20 7 80 2400 30800
25 8 320 1920 24640
27 8 3600 14400 277200
56 18 1.1E+08 5.53E+08 8.52E+09
79 23 3.32E+08 1.99E+09 3.83E+11
97 30 7.17E+11 2.87E+12 5.52E+13

Table 5.4: Comparison of time steady state for the stream graphs with sensors hav-
ing same periodicity (Tss-uniform), random periodicity (Tss-random), and periodicity
prime (Tss-prime).

To measure the efficiency of the approach, we compute time steady state for three

cases. In the first, we assign the same periodicity to each sensor and compute the time

steady state. For the stream graph having the same repetition vector for each operator,
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Application Operators Sensors Tss-uniform Tss-random Tss-prime
Twitter real-time 10 5 1 24 210

analytics [31]
Biometric data 16 10 1 546480 6.47E+09

sampling [111, 112]
Radio astronomy 42 32 5 1.75E+09 6.47E+09

imaging [113]
Volcanic activity 67 16 60 8038800 1.70E+08
detection [1, 45]

Table 5.5: Time steady state for the real-world stream processing examples

time steady state coincides with steady state in synchronous data flow. In the second

case, we assign periodicity randomly between 1 and 10 s to each sensor; in the third

case, we assign periodicity to the sensors so that they are prime to each other. Table 5.4

compares the time steady state computed for the three cases. In the table, Operators
gives the size of the stream graph, Sensors gives the number of sense operators, Tss-
uniform is the time steady state, computed with same sensor periodicity, Tss-random
is the time steady state with randomly assigned sensor periodicity, and Tss-prime is the

time steady state with periodicity of sensors that are prime. We perform this experiment

by varying the size of the stream graph.

As Table 5.4 shows, the time steady state computed with sensors of the same peri-

odicity is the smallest among the three for all stream graphs; however, the time steady

state is largest with sensors of prime periodicity. While propagating the periodicity in

the stream graph, join has the periodicity that is the LCM of the periodicities for two

incoming data streams. Thus, the value of Tss-uniform is minimised, Tss-prime is max-

imised, and Tss-random lies between the two. These facts are supported by another set

of experiment, where we use real-time applications to measure time steady state; the

results are in Table 5.5. We further check the effect of the size of the stream graph on

the time steady state. As shown in Table 5.4, time steady state with 20 operators and 7

sensors is very small compared with other smaller graphs; this is due to the fact that the

sample graph had smaller repetition vector and/or lower sensor periodicities. However,

for very large stream graphs and larger number of sensors, the value of time steady state

is noticeably higher, which has least impact on the scalability of our approach. Time

steady state and delay are computed at server side, and WSN nodes are not involved in
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the process. Hence, the computation of the delay can be performed off-line on power-

ful server machines. To improve the speed of time steady state computation for larger

queries and network, parallelisation techniques can easily be applied during simulation

phase, but the detail of these techniques is beyond the scope of this work.

5.4.2 Periodicity vs. Time Steady Sate

This section shows the impact of sensor periodicity on time steady state. We assign

the same periodicity to each sensor in the stream graph and compare the time steady

state by increasing periodicity from 1 s to 13 s. We perform this experiment by varying

the size of the stream graph from 5 operators to 24 operators. Figure 5.8 depicts the

periodicity vs. time steady state graph for five different stream graphs. As shown, the

time steady state increases with sensor periodicity. From the results in Table 5.4 and

Figure 5.8, our approach is most efficient with smaller and uniform sensor periodicity;

however, it is least efficient with very large sensor periodicities that are prime to each

other.

Figure 5.8: Sensor periodicity vs. time steady state

5.4.3 Filter Data Rate vs. Time Steady State

In this section, we observe the changes in time steady state with the change in filter

data rates in the given stream graph. The filter data rate has a high impact on the

repetition vector, and therefore on time steady state. Figure 5.9 illustrates the result

of the experiment, where we keep the sensor periodicity the same for each sensor and

vary the filter data rate. We collect the results for four different data rate settings,
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including: a uniform data rate for each filter, where it consumes and produces one data

token for one iteration of its operation; highest-cons, where each filter is set to consume

a maximum number of data tokens, such as 5, and produces one data token; highest-

prod, where each filter is set to consume one data token and produces maximum data

tokens, such as 5; and random, which randomly assigns production and consumption

rates for each filter in the stream graph. We performed these experiments by varying

the size of the stream graph from 7 operators to 32 operators. Figure 5.9 gives the result

for 10 different stream graphs. The time steady state with uniform filter data rate is

the shortest, whereas highest-cons gives the longer time steady state due to the higher-

repetition vector. Highest-prod data rate has no major impact, whereas the random

data rate gives randomly distributed length of time steady state. From the results, our

approach is most efficient when the stream graph has filter data rate as 1, and least

efficient when filters have high data consumption rate.

Figure 5.9: Filter data-rate vs. time steady state

5.4.4 Measuring Delay in the Stream Graph

We simulate the first time steady state, generate all the data tokens as events, propagate

the time information associated with each token, and compute the delay at the sink. For

stream graphs with more than one sensor, we compute the average of all delay computed

for each sensor. We assume that each sensor in the stream graph starts producing data

tokens at the same time.

Like time steady state, sensor periodicity has a large impact on the delay in stream
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Figure 5.10: Sensor periodicity vs. time delay

Figure 5.11: Filter data-rate vs. time delays

graph. Figure 5.10 shows the effect of sensor periodicity on the average delay by vary-

ing the size of the stream graph. We assign the same periodicity to each sensor in the

stream graph, and increase the periodicity from 1 s to 13 s to observe the change in the

average delay. We perform this experiment by varying the size of the stream graph from

5 to 31 operators. Figure 5.10 shows the results for six stream graphs. The observations

show increased delay with increased sensor periodicity.

In addition to sensor periodicity, the data rate of filter operators dramatically in-

creases token delay. Figure 5.11 illustrates the graph of delays for different filter data

rate settings (cf. 5.4.3). We performed this experiment for the same set of input stream
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graphs varying the size from 7 to 32 operators. As shown in the figure, highest-cons

setting gives highest delays in the stream graph because each filter waits longer for the

availability of incoming data tokens. In contrast, stream graphs with filters giving the

same data rate or lower consumption rate (highest-prod) have the smallest delays.

5.4.5 Effect of Periodicity Scaling

As Table 5.4 shows, the length of the time steady state increases noticeably when the

periodicity of sensors in the stream graph are prime to each other. Moreover, as shown

in Figure 5.8, with higher sensor periodicity the time steady state increases. As men-

tioned before, the larger the time steady state, the more iterations it takes to compute

the delay for the data tokens generated in a particular time steady state. To mitigate

this issue, shortened the time steady state, thus generating fewer data tokens for delay

measurement. We found that time steady state depends on two parameters in the stream

graph: repetition vector and periodicity. It is difficult to alter the stream graph, and

therefore the repetition vector for the given query; however, periodicity in the graph can

easily be changed by scaling the periodicity of sensors. To evaluate the effect of this

scaling, we first compute the time steady state by assigning random periodicity to the

sensors; this is compared against the time steady state computed from scaled period-

icity. We perform this experiment by varying the size of the stream graph and scaling

down the periodicity of each sensor from 10% to 90%.

Figure 5.12: Percentage periodicity scaling vs. time steady state

Figure 5.12 shows the effect of periodicity scaling on the time steady state. The data

were collected by varying the size of stream graph from 7 operators to 36 operators.
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Figure 5.13: Percentage periodicity scaling vs. time delay

The figure represents the results of 8 stream graphs. The periodicity scaling for sensors

reduces the time steady state; however, the decline in length of time steady state is

not monotonic, because periodicity scaling sometimes results in more prime numbers,

thus yielding longer time steady states. Our data show that 60% or more scaling in

periodicity results in 80% shorter time steady state on average.

In addition to time steady state, the scaling in periodicity affects the precision of the

delay measured for each data token during time steady state. The delay measured with-

out applying periodicity scaling has the greatest precision. Applying periodicity scaling

changes the delay measures and therefore reduces the precision. Figure 5.13 demon-

strates the effect of periodicity scaling on measured delay precision. For any stream

graph, scaling down sensor periodicity decreases the precision of delay measurement

monotonically. For example, a 10% scaledown produces nearly optimal precision in

delay measurement; a 90% scaledown results in the least precise delay. Figure 5.12

and 5.13 show that our approach of measuring delay in the stream graph using time

steady state is more efficient with periodicity scaling but with a cost of precision in de-

lay. It is a separate problem to find another efficient scheme that will to scale periodicity

to produce a good trade-off between time steady state and delay precision; but this is

beyond the scope of this thesis.
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5.5 Chapter Summary

We have presented a new approach to computing delays in stream query processing.

The approach represents stream-based query as a compositional stream graph and es-

tablishes causality relationships between each event generated during query run-time.

Our model represents an event as a production of data tokens that yields time informa-

tion along with actual data. We defined an interval over timeline as time steady state,

and simulated the first time steady state. The experimental evaluation confirms the ef-

ficiency of the approach by varying various parameters, including sensor periodicity

and operator data rates. The results of the simulations demonstrate the delay measure-

ment by varying periodicity and operator data rate. 60% or more scaling in periodicity

has an average of 80% shorter time steady state. The periodicity scaling improves the

efficiency of our approach, although at the cost of a certain loss of precision in delay

information.



Chapter 6

Related Work

Detailed surveys of stream data processing have been published by Stephens in [15],

and by Golab and Ozsu in [94]. This chapter summarises the related work. It is struc-

tured as follows: Section 6.1 is a broad historical summary of programming models,

languages, and stream processing engines. Sections 6.2 and 6.3 set out details about

data processing in WSNs and the cloud, respectively. Section 6.4 lists previous work

related to timeliness in stream data processing.

6.1 Stream Processing

The idea of stream processing originated from data flow and synchronous data flow

approaches [16, 114, 110], and has become increasingly important for two main rea-

sons. First, general-purpose uni-core processors have reached their limit of performance

growth, and multi-core processors are becoming the industry standard. Second, appli-

cations integrated into the notion of a “stream” are becoming popular and widespread.

Traditional von Neumann architecture [115] was built on a global program counter and

a shared memory between program and data. However, both had become bottlenecks

for highly parallel programs and restricted throughput by increasing latency. Several

mechanisms were proposed to alleviate this problem; one of them was data flow ar-

chitectures [114], which do not have a program counter, and where the execution of

instructions is solely determined based on the availability of their operands. The asyn-

chronous nature of the data flow model can lead to non-determinism, and the cyclic

network can suffer from deadlocks. To avoid these problems, SDF was developed; the

116
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model was first explained in Kahn’s process networks (KPN) [16] and Dennis’ data

flow [108].

KPN assumes a network of concurrent processes that communicate over unbounded

FIFO channels. A process in KPN is specified as a sequential program that executes

concurrently with other processes. The KPN model is deterministic; this allows the

exploitation of significant amounts of scheduling freedom while mapping processes to

hardware. Processes in KPN run autonomously and provide synchronisation via the

blocking read. Since control is completely distributed to the individual processes, there

is no global scheduler present; thus, partitioning KPN over processors is simpler. In

addition, since the communication between processes occurs over the FIFO channels,

there is no notion of global memory, and therefore resource contention never occurs.

Both models – KPN and Dennis’ data flow model – are compared in [116], which

shows how the formal semantic methods of Kahn can be adapted to Dennis’ data flow.

Kahn’s data flow is based on a denotational notion of processes as continuous functions

on infinite streams, while Dennis’s data flow is based on operational notion of atomic

firings of actors.

Synchronous data flow is a restricted form of KPN, where processes execute atom-

ically. Unlike KPN, in SDF the number of data items read and produced by a network

process is known at compile time. Because of deterministic processing it is possible

to statically check the network processing for deadlocks. The amount of buffering re-

quired in an application can also be determined statically, which helps in determining

potential scheduling and optimisation for computation. In data flow, a program is di-

vided into pieces, known as nodes or blocks, which can execute (fire) whenever input

data are available. An application in SDF is described as SDF graph – a directed graph

with nodes indicating computational block and edges representing communicating data

paths between nodes. SDF graphs are closely related to computation graphs [18], where

each input to a block is associated with two numbers: a threshold, and the number of

data tokens consumed. The threshold indicates the number of data tokens required to

invoke the block, and can be different from the number of tokens consumed. In con-

trast with the standard SDF model, Curracurrong graphs are restricted to compositional

stream graphs.

With advances in architectures and programming models, researchers found prob-

lems in using conventional imperative programming languages to implement applica-

tions on data flow hardware, in particular associated with locality. The problem was due
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to certain aspects of imperative languages, such as assignments. By restricting assign-

ments, researchers could create languages that more naturally worked well with data

flow architecture and could also run more efficiently on it. These languages, which can

be compiled into data flow graphs, are called data flow programming languages.

6.1.1 Stream Processing Languages

We now list the programming languages that are based on the data flow, SDF, and stream

programming models. Languages such as Lucid [19], VAL [117], and SISAL [20] are

based on the data flow programming model. The popularity of these languages was

followed by the development of synchronous data flow languages, including LUS-

TRE [21], Signal [23], and ESTEREL [22], which were developed using the SDF

model. Languages such as Brook [118], OpenCL [119], and CUDA [120] are paral-

lel programming languages that were invented for heterogeneous processors, including

GPGPUs. Beneath these languages is a lightweight programming model that can be

easily integrated with C/C++ compilers; these languages have a single actor, known as

a kernel, that runs in parallel threads over multiple processors. Due to this data par-

allelism, the model used in Brook, OpenCL, and CUDA is also referred to as a single

program multiple data (SPMD) model. Languages subsequently developed, such as

StreamIt [71] and IBM Stream processing language (SPL) [121] introduced task and

data parallelism using a stream processing model. The model is based on the concept

of monad from functional programming. Monad is a structure, where computations are

defined as sequences of steps; this allows the programmer to build pipelines that pro-

cess data in steps. We give briefs on these programming languages with examples as

follows.

• Lucid – Lucid [19] was a popular language among all of the data flow languages

developed during the 80’s. Lucid was described as a functional language that

was designed to enable formal proofs. Recursion was regarded as too restric-

tive for loop constructs, with the realisation that iteration introduced two non-

mathematical features into programming: transfer and assignment. It was later

apparent that Lucid’s functional and single-assignment semantics were similar to

those required for data flow machines; therefore, it was claimed to be a data flow

language. In Lucid, the output of each computation unit is a function of its in-

puts, each variable is an infinite stream of values, and every function is a filter or



CHAPTER 6. RELATED WORK 119

a transformer. The language is based on an algebra of history, where the history

of changing values and history operations like first and next is recorded. The first

interpreter for Lucid was pLucid.

Example – The example in Figure 6.1 generates the stream of all primes [19].

It generates the stream of natural numbers greater than 1 and passes it through a

filter, which discards non-prime numbers. The operator whenever accomplishes

the task of filtering, and the definition of isprime tests if a number is prime by

running through all numbers greater than 2 whose squares are less than the current

n.

prime
where

n whenever isprime(n)
where
n = 2 fby n + 1;
isprime(n) = not(div(i,N)) asa div(i,N) or i * i > N;
where

N is current n;
i = 2 fby i + 1;
div(x,a) = a mod x eq 0;

end
end

end
end

Figure 6.1: A Lucid example – prime

• VAL – VAL (Value-oriented Arithmetic Language) [117] is a synchronous func-

tional language with single-assignment rule and implicit concurrency. In VAL,

new values can be derived but cannot be modified; this principal enables values

to be assigned to identifiers, but identifiers cannot be used as variables. This

feature allows language to address certain issues arising from the automatic gen-

eration of concurrent implementation. A program in VAL consists of a series of

functions, each of which could return multiple values. Loops in the language are

formed similar to Lucid, and a parallel assignment construct. Some of the disad-

vantages of VAL are its lack of recursion, lack of general I/O, and the fact that

nondeterministic programs cannot be expressed.
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Example - An example in Figure 6.2 [122] computes the mean and standard de-

viation for parameters X, Y, and Z. VAL has the usual scalar types (integer, real,

Boolean, and character) as well as arrays, records, and user-defined types. VAL

is a strongly typed language and therefore each identifier like Mean and SD is

specified with the data type. The function in VAL returns a tuple of values Mean

and SD.

function stats(X, Y, Z: real) : real, real;
let
Mean : real := (X+Y+Z)/3;
SD : real := sqrt((X ? Mean)**2 +

(Y ? Mean)**2 + (Z ? Mean)**2)/3;
in
Mean, SD

end
end

Figure 6.2: A VAL example – stats

• SISAL – The name SISAL is derived from Streams and Iteration in a Single As-

signment Language [20]; it was originally written for data flow machines. SISAL

is a structured functional language, providing conditional evaluation and itera-

tion consistent with the single-assignment rule. It is a typed functional language

designed for data flow computing machines, and allows recursive constructs and

looping. The language, derived from VAL, offers strict semantics, implicit paral-

lelism, and efficient array handling. SISAL is implemented for various data flow

machines, including Manchester Machine, CRAY X-MP, DEC VAX, and HP.

Example - Figure 6.3 is an example of a SISAL program; it computes the area

under the curve y = x2 between x = 0.0 and x = 1.0 [123]. Identifiers int, x, and y

are initialised under the for block and modified in the while-repeat block. SISAL

provides a way to assign a new value to a variable, using old keyword to access

the previous value.

• Lustre – Lustre [21] is a formally defined and declarative synchronous language

for reactive systems. Like Lucid, it is based on the description of stream process-

ing as a system of equations. However, Lustre requires that the output at time t,
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function Integrate {returns real)
for initial
int := 0.01
y := 0.0;
x := 0.02

while
x < 1.0

repeat
int := 0.01 * (old y + y);
y := old x * old x;
x := old x + 0.02

returns
value of sum int

end for
end function

Figure 6.3: A SISAL example – Integrate

defined by such set of equations, depends only on inputs received either before or

at time t. Those who developed Lustre refer to this property as causality. Lustre

manages various clocks over which the filters execute within the program, ensur-

ing synchronous behaviour of the language. Programs in Lustre are implemented

via compilation into finite automata, providing strict analysis to detect potential

deadlocks. SCADE is the later version of Lustre developed for industrial use

in commercial products as a core language; SCADE is used for critical control

software development.

Example - An example is the piece of code in Figure 6.4, which emits the output

O as soon as both inputs A and B have been received and resets the behaviour

whenever the input R is received. Lustre programs are a list of modules called

nodes; all nodes work synchronously and communicate via inputs and outputs.

• Signal – SIGNAL [23] is an applicative language designed to program synchronous

real-time systems. Here, a process is a set of equations on elementary flows

describing both data and control. The formal model provides the capability to

describe systems with several clocks. Signal allows systems to be specified as

block diagrams, where blocks represent components or subsystems and can be

connected hierarchically to form larger blocks. In the language, reactions are
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node EDGE(X:bool) returns (Y:bool);
let
Y = false -> X and not pre(X);

tel

node ABRO (A,B,R:bool) returns (O: bool);
var seenA, seenB : bool;
let
O = EDGE(seenA and seenB);
seenA = false -> not R and (A or pre(seenA));
seenB = false -> not R and (B or pre(seenB));

tel

Figure 6.4: A Lustre example – ABRO

transition relations in general; executing a reaction involves solving the corre-

sponding fixpoint equation.

Example - An example in Figure 6.5 shows the addition of two integer numbers

using Signal [124]. A function is referred as process, with inputs and outputs

preceded by ‘?’ and ‘!’, respectively. The return statement in the example is

enclosed between ‘|’s.

process ADD =
( ? integer A, B;

! integer S; )
(| S := A + B |)

Figure 6.5: A Signal example – ADD

• ESTEREL – ESTEREL [22] was specifically designed to program reactive sys-

tems, where systems maintain permanent interaction with real-time process con-

trollers, communication protocols, and human–machine interface drivers. While

Lustre and Signal are declarative and focus primarily on specifying data flow,

ESTEREL is imperative and suitable for describing control. It is a deterministic

concurrent programming language where outputs of the system are in synchrony

with the inputs. The notion of physical time is replaced with the notion of or-

der: at each instant, an arbitrary number of events occur; events that occur at the

same point in time are considered simultaneous. One of the ESTEREL’s novel
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features is preemption statements, which allow a clean, hierarchical description

of state-machine-like behaviour.

Example - The following is an ESTEREL program. A program in ESTEREL is

collection of modules with inputs and outputs. Here, the program waits for input

A and B and emits output O when both inputs are available; it resets the behaviour

whenever input R is available.

module ABRO:

input A, B, R;

output O;

loop

[ await A || await B ];

emit O

each R

end module

• Brook – Brook [118] was developed as a language for streaming processors. It

is an ANSI C-like general-purpose stream programming language, designed to

incorporate the ideas of data parallel computing and arithmetic intensity into a

familiar, efficient language. Brook has different backends, including OpenMP

CPU, OpenGL, DirectX 9 and AMD CTM. The language specification provides

a collection of high-level stream operators that are useful for manipulating and

reorganising stream data, such as grouping elements to a new stream.

Example - Figure 6.6 shows a sample Brook code for adding two matrices over a

GPU. A program in Brook has two parts: kernel definition that runs on the GPU,

and host code that runs on CPU and manages kernel execution. In the example,

add is the kernel definition that takes two 2D arrays as input and returns an output

2D array as addition of the two. The host program creates and initialises 2D

arrays, copies arrays to GPU, calls the kernel, and gets the result from the GPU.

• OpenCL – Open Computing Language (OpenCL) [119] is an industry standard

for task- and data-parallel heterogeneous computing on a variety of modern CPUs,

GPUs, DSPs, and other microprocessor designs. It was proposed as a solution to
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// kernel definition, runs on the GPU
kernel void add (float a<>, float b<>, out float c<>) {
c = a + b;

}

// host code, runs on the CPU
int main( int argc, char** argv) {
int i, j;
// 2D stream declarations of 10 x 10
float a<10,10>;
float b<10,10>;
float c<10,10>;

// 2D arrays declarations of 10 x 10
float input_a [10] [10];
float input_b [10] [10];
float output_c [10] [10];

// initialise the 2D arrays
for (i = 0; i < 10; i++) {
for (j = 0; j < 10; j++) {
input_a [i] [j] = (float) i;
input_b [i] [j] = (float) j;

}
}

// copy the 2D arrays to the GPU
streamRead(a, input_a);
streamRead(b, input_b);
// call the kernel
add (a, b, c);

// get the result from the GPU
streamWrite(c, output_c);

}

Figure 6.6: A Brook example – add
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tackle many-core diversity in a unified way. OpenCL provides easy-to-use ab-

stractions and a broad set of programming APIs. The language defines the core

functionality that all devices support, as well as optional functionality for high-

function devices. The key programming functions of OpenCL include manag-

ing the target devices’ context, managing memory allocations, performing host–

device memory transfers, and querying execution progress. An OpenCL program

has two parts: compute kernels (executed on one or more OpenCL devices), and

a host program that manages kernels execution. An instance of a kernel is called

a work-item, and is executed for each point in the problem space; this feature

guarantees very fine-grained parallelism.

Example - Figure 6.8 is the matrix addition example written in OpenCL. Like

Brook, there are two parts of the program: kernel – here VectorAdd – which runs

on GPU; and a host program that runs on CPU. The host program in OpenCL

creates context on a GPU device, generates the list of GPU devices associated

with context, allocates memory objects, creates the kernel, sets the work-item,

and executes the kernel. At the end of kernel execution, the host program is

responsible for releasing the kernel, CPU program memory, and kernel context.

• CUDA – Compute unified device architecture (CUDA) [120] was defined to ease

the task of programming GPGPUs. The fundamental strength of the GPU is its

extremely parallel nature. The CUDA programming model allows developers to

exploit that parallelism by writing straightforward C code that will then run in

thousands of parallel threads. A user writes a C function, called a kernel, and in-

vokes as many threads as required to run that function. A grid of threads executes

a CUDA kernel; due to GPU architecture, the threads are grouped into blocks that

execute simultaneously on streaming multiprocessors. Threads within the block

have access to the same shared memory and are scheduled in single instruction

multiple data (SIMD) groups called warps. The language makes three key re-

finements to the core concepts of running kernel functions across many parallel

threads: hierarchical thread blocks, shared memory, and barrier synchronisation.

CUDA and OpenCL are active languages due to the development of new hard-

ware accelerators.

Example - A code in Figure 6.9 is an example of vector addition over GPU us-

ing CUDA. The host program initialises local parameters and allocates memory
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__kernel void VectorAdd(__global const float* A,
__global const float* B,
__global float* C)
{
// get index into global data array
int iGID = get_global_id(0);
// add the vector elements
c[iGID] = a[iGID] + b[iGID];
}

// create the OpenCL context on a GPU device
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU,
NULL, NULL, NULL);
// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);
devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY

| CL_MEM_COPY_HOST_PTR,
sizeof(cl_float4) * n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY
| CL_MEM_COPY_HOST_PTR,
sizeof(cl_float4) * n, srcB, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_READ_WRITE,
sizeof(cl_float) * n, NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1,
(const char**)&program_source,
NULL, NULL);
// build the program
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// create the kernel
kernel = clCreateKernel(program, "dot_product", NULL);

Figure 6.7: A OpenCL example – VectorAdd
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// set the args values
clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);
clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);
clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]);

// set work-item dimensions
global_work_size[0] = n;
local_work_size[0]= 1;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL,

global_work_size, 0, NULL, NULL);
// read output image
err = clEnqueueReadBuffer(cmd_queue, memobjs[2], CL_TRUE,

0, n * sizeof(cl_float), dst,
0, NULL, NULL);

// clean up
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(cmd_queue);
clReleaseContext(context);

Figure 6.8: A OpenCL example – VectorAdd continued
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on the GPU; it configures threads using dimBlock and dimGrid functions, and

runs the kernel along with thread configurations. After kernel execution, the host

program releases memory on GPU.

• StreamIt – StreamIt [71] is an architecture-independent programming language

specifically designed for modern high-performance streaming applications. The

StreamIt language has two goals: first, to provide high-level stream abstractions

that improve programmer productivity and program robustness; and second, to

serve as a common machine language for grid-based processors. The language

uses a set of programming constructs comprising source, sink, filter, pipeline,

split-join, and feedback loop. The StreamIt language employs a synchronised

model of streaming and allows a mechanism of delivering asynchronous mes-

sages (events) to the actors in a pipelined fashion. The language is an efficient

combination of restricted form of SDF with events; it introduces a concept called

teleport messaging for sending sporadic messages along the information wave-

front. Upstream actors can send event messages to downstream actors with re-

quired iterations. In this case, compiler and scheduler can automatically take care

of the required synchronisation. The SteamIt compiler performs stream-specific

optimisations to achieve performance, and targets the shared-memory multicore

architectures and clusters of workstations.

Example - Using StreamIt language constructs, we can define addition of two

matrices as in Figure 6.11. The program is a pipeline with a split-join along

with filter Adder; Figure 6.10 [125] shows a corresponding stream graph. The

program consists of three phases. In the first, the two vectors are distributed to

each of the threads. The actual work is done in the second phase, where each

thread computes the sum of each pair of elements it has received. In the final

phase, the resulting vector is assembled from the partial results of each thread.

The program starts by splitting each input between the N adder “threads”. Each

adder is given k elements at a time from each input, where the optimal value of

k depends on the hardware. The results are combined by taking k values from

each Adder so that the output vector is in the correct order. The adder takes two

data items from its input queue referred as pop and pushes the addition value to

its output queue.

• IBM SPL – IBM Stream processing language (SPL) [121] is the programming
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__global__
void gpuVecAdd(float *A, float *B, float *C) {
int tid = blockIdx.x * blockDim.x + threadIdx.x
C[tid] = A[tid] + B[tid];
}

int main() {
int N = 4096;
float *A = (float *)malloc(sizeof(float)*N);
float *B = (float *)malloc(sizeof(float)*N);
float *C = (float *)malloc(sizeof(float)*N)
init(A); init(B);

// Allocate memory on GPU
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, sizeof(float)*N);
cudaMalloc(&d_B, sizeof(float)*N);
cudaMalloc(&d_C, sizeof(float)*N);
// Initialise memory on GPU
cudaMemcpy(d_A, A, sizeof(float)*N, HtoD);
cudaMemcpy(d_B, B, sizeof(float)*N, HtoD);
// Configure threads
dim3 dimBlock(32,1);
dim3 dimGrid(N/32,1);

// Run kernel on GPU
gpuVecAdd <<< dimBlock,dimGrid >>> (d_A, d_B, d_C);
// Copy results back to CPU
cudaMemcpy(C, d_C, sizeof(float)*N, DtoH);

// Deallocate memory on GPU
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

free(A);
free(B);
free(C);
}

Figure 6.9: A CUDA example – gpuVecAdd
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Figure 6.10: Stream graph for VectorAdd StreamIt program

language for IBM InfoSphere Streams, a platform for analysing continuous data

streams with high data-transfer rates. To achieve high throughput and low la-

tency, the platform deploys each application on a cluster of commodity servers.

SPL provides an abstraction over the complexity of the distributed system by

exposing a simple graph-of-operators view to the user. To facilitate the writing

of well-structured and concise applications, SPL provides higher-order compos-

ite operators that modularise stream sub-graphs; it also provides a strong type

system and user-defined operator models. An operator is a reusable stream trans-

former: each operator invocation transforms input streams into output streams. A

stream connects to an operator at a port. Many operators have one input port and

one output port, but operators can also have zero input ports, zero output ports, or

multiple input or output ports.

Example - Figure 6.13 is a sample code written in IBM SPL [126]; this code

reads a file, counts the number of lines, and writes the result in a text file. Fig-

ure 6.12 shows the stream graph for NumberedCat example, where Lines and

Numbered are streams. The invocation of FileSource reads one line at a time

from a file specified at submission-time. The invocation of Functor maintains a
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(int,int)->int parallel VectorAdd(int N, int k) {
parallel {

split roundrobin(k);
split roundrobin(k);

}
parallel {

for (int i = 0; i < N; i++) {
add Adder;
}

}
join roundrobin(k);

}
(int,int)->int filter Adder() {

work push 1 pop 2 {
push(pop(0) + pop(1));
}

}

Figure 6.11: A StreamIt example – VectorAdd

state-variable mutable, which it increments each time a tuple arrives. SPL vari-

ables are immutable by default, so the mutable modifier is required for postscript

operator ++. The output clause assigns the contents attribute of the output stream

by casting the line number to a string, and concatenating it with the contents at-

tribute of the input stream. Finally, the invocation of FileSink writes the results

to a file named result.txt.

Figure 6.12: Stream graph for NumberedCat SPL program

The query language in Curracurrong is based on the notion of declarative languages.

It allows the user to construct queries with compositional stream constructs; however,

there is no loop construct. Like Lucid, VAL, and SISAL, Curracurrong is a functional
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composite NumberedCat {
graph
stream<rstring contents> Lines = FileSource() {

param format : line;
file : getSubmissionTimeValue("file");

}
stream<rstring contents> Numbered = Functor(Lines) {

logic state : mutable int32 i = 0;
onTuple Lines : i++;

output Numbered : contents = (rstring)i + " " + contents;
}
() as Sink = FileSink(Numbered) {

param file : "result.txt";
format : line;

}
}

Figure 6.13: A SPL example – NumberedCat

data flow language, where each actor/operator represents a function, and a composi-

tional query represents a chain of functions. Unlike VAL and SISAL, our language

does not have single-assignment restrictions and supports loops within an operator, not

between operators. The language has all of the primitive data types along with arrays

and records. Curracurrong does not employ the standard SDF model, unlike SDF lan-

guages like Lustre, Signal, and ESTEREL. Stream graphs in Curracurrong are restricted

to structured/compositional graphs, with fixed numbers of tokens to be consumed and

produced by each operator aside from join. Join semantics produces a token as soon

as one is available at an input channel. However, we have defined a way to compute

periodic schedule using the concept of time steady state (Chapter 5).

Like Brook, OpenCL, and CUDA Curracurrong supports task-parallelism by defin-

ing a query with parallel pipelines; but the current version of Curracurrong runtime does

not support heterogeneous processors. Another difference between these parallel lan-

guages and Curracurrong is the number of actors/kernels defined per program or query

– in OpenCL and CUDA, only one kernel is defined that runs on GPGPUs with multiple

threads; in contrast, Curracurrong allows multiple operators deployed on WSN motes

or cloud nodes.
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Curracurrong has stream processing constructs, similar to StreamIt: source, sink, fil-

ter, and split-join. In addition to these constructs, Curracurrong’s join construct merges

pipeline streams from two different sources. There are two major differences between

StreamIt and Curracurrong: (i) StreamIt follows SDF programming model, whereas

Curracurrong does not, due to join semantics; and (ii) a programmer needs to write

lengthy StreamIt code to define pipelines, in contrast to Curracurrong’s easier user in-

terface for defining query pipelines. The difference between IBM’s SPL and Curracur-

rong includes the size of the code to define programs and constructs. SPL has ‘functor’

similar to ‘filter’ in Curracurrong.

6.1.2 Stream Processing Engines

Since 2000, several stream processing engines (SPEs) have been developed [15, 94].

Among the existing SPEs, a few are of particular interest because of their innovations.

These SPEs include Cougar [69], NiagaraCQ [127], TelegraphCQ [61], STREAM [128],

Borealis [28]. We give an overview of them as follows.

• Cougar – The Cornell Cougar research project [69] proposes an SPE that relies

on a database engine. The focus is on sensor database systems used to main-

tain long-running queries over the data from the sensors. Such systems usually

maintain stored and sensor data. The traditional centralised approach to process

sensors data is in two steps: data is initially collected from all sensors into a cen-

tralised database, and queried to extract the desired information. Such a system

does not scale for two reasons: a huge amount of data has to be collected, and

part of these data might be not included in any query. The Cougar proposes a

distributed processing of sensor data. Sensors are queried only to extract infor-

mation required by queries. Depending on each query, results are evaluated at the

front-end server or at the sensor network.

Cougar distributed processing introduces a key aspect of distributed SPEs: when

running distributed queries, data that has moved across nodes should be min-

imised by transferring only the useful information and removing the unnecessary

data. This concept turns out to be important for attaining a higher throughput

and more energy efficiency in distributed SPEs. Like Cougar, Curracurrong pro-

vides distributed processing, with queries evaluated in the sensor network. Unlike
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Cougar, Curracurrong is not limited to the SQL aggregation type of queries. An-

other difference between the two systems is the way they deploy the query in

the network: the Curracurrong system has an energy-efficient way of deciding

operator placement.

• NiagaraCQ – NiagaraCQ [127] is one of the earliest research projects to attempt

to overcome the limitation of database-based technology with respect to data

streaming applications. The Niagara project at the University of Winsconsin,

Madison, developed the eponymous data management system. NiagaraCQ uses

an XML-based query language, proposing several heuristics for combining selec-

tion and join predicates that could be useful for mapping algorithms. The system

proposes a novel approach to attain a scalable system for managing a large num-

ber of continuous queries simultaneously. The idea is to group queries so that

overlapping computation is shared among them and redundant computation over-

head is reduced.

NiagaraCQ exploits existing querying languages to ease the programming of con-

tinuous queries. The authors introduce a command language that is an extension

of ordinary XML-QL language. The command language allows the user to add

queries at runtime and to specify the frequency with which data is emitted. The

two main differences between NiagaraCQ and Curracurrong are: (i) language

to define queries – Curracurrong has its own way to define query pipeline and

does not require knowledge of XML; and (ii) NiagaraCQ groups queries to over-

lap computation and therefore reduces overhead, whereas Curracurrong decides

energy-efficient operator placement by solving multiway cut problem with heuris-

tics and dynamic programming.

• TelegraphCQ – Like NiagaraCQ, TelegraphCQ [61] has been designed and de-

veloped to address the limitation of database-supported solutions. TelegraphCQ

is a continuous query processing system from UC Berkeley. The core goal of the

project is to make the system highly adaptable to a changing environment. Tele-

graphCQ architecture is based on individual modules – units that produce and

consume data – which communicate using the Fjord API [129]. Different types

of modules include: Query processing modules, which transform incoming data

tuples to output data tuples; adaptive routing modules, which distribute tuples to

other modules based on some route criteria and measure system output quality
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to adapt routing policies accordingly; and Ingress and Caching modules, which

provide tuples to the system from external applications.

Unlike TelegraphCQ, Curracurrong decides routing policies by minimising com-

putation and communication cost at the server; it does not have caching modules.

Curracurrong modules communicate over UDP different from Fjord. Curracur-

rong, however, provides delay information, a feature that is unavailable in Cougar,

NiagaraCQ, and TelegraphCQ.

• STREAM – Another stream processing system, called STREAM (the STanford

stREam datA Manager) [128] has been developed at Stanford. One of the re-

quirements of data streaming applications is to create a bridge from database so-

lutions to data streaming solutions, providing an easy way to define queries. For

this requirement, STREAM introduces a declarative language to specify queries –

Continuous Query Language (CQL). CQL’s relational query language is derived

from that of SQL. Some of the constructs of CQL extract windows of data tuples

from a stream and manage them as relations. The scheduling protocol defined in

STREAM considers main memory consumptions as the primary criteria to decide

which operator and how many tuples a node should process.

CQL’s query execution plans are built by defining chains of consecutive opera-

tors that effectively reduce the runtime memory; this is different from Curracur-

rong, which decides operator placement on the basis of minimising energy costs.

Two other important differences between the two systems are: (i) language –

STREAM introduces declarative CQL based on SQL, whereas Curracurrong in-

troduces more flexible command language; and (ii) delay measurement scheme

– STREAM uses wall clocks and Curracurrong employs concepts of events and

causality. The STREAM project is not active since 2006.

• Borealis – The Borealis project [28] defines one of the first distributed SPEs. It

was developed by Brandeis University, Brown University, and MIT. Borealis was

built on two existing SPEs: Aurora [27] and Medusa [26]. The Aurora project was

one of the first centralised SPEs, where queries are deployed on a single instance

in charge of processing all of the input tuples and producing all of the output

results. The project focused on the weakness of the existing database-related so-

lutions with respect to emerging data streaming applications. Aurora introduced
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a boxes-and-arrows model to define queries, providing a set of around 10 oper-

ators. A scheduler decides which operator should run and how many tuples it

should process at any point in time. The scheduler cooperates with QoS Monitor

and Load Shedder. The Qos Monitor tries to maximise the quality of the outputs

produced by each query and considers aspects such as response time, tuple drops,

and values produced. Load shedding is applied at any time the resource of the

instance cannot cope with the incoming load.

Using Aurora, two more distributed SPEs were developed, Aurora* and Med-

usa [130]. Aurora* allows the creation of distributed networks of Aurora in-

stances in the same administrative domain. As nodes belong to the same domain,

there are no operational restrictions on how query operators can be distributed.

Medusa was developed to connect autonomous participants. Each participant

represents a set of computing devices of an entity that can contribute to running

queries in several ways, such as providing data sources, providing computational

resources that can be used to deploy query operators, and consuming query re-

sults.

The Borealis project came out of Aurora* and Medusa. It addresses new aspects

such as dynamic revision of query results and dynamic query modification. Dy-

namic revision of query results provides the possibility of corrections to results

produced by the query. Dynamic query modification gives the user the possibil-

ity of changing, at execution time, the parameters that define how data should be

processed and which data should be forwarded to the application. The Borealis

project has been inactive since 2008.

In the Borealis system, a user writes XML files to define a query. This con-

trasts with Curracurrong, which specifies much shorter queries. Some of the other

complexity issues in writing a Borealis query are: choice of the predefined box

type, definition of input-output streams, manual type inference over I/O streams,

manual definition of connection points between boxes, and the requirement of

a separate XML file for query deployment. The latest version of the Borealis

system (2008) supports a graphical editor to define queries. However, the lit-

erature reports that frequent users of a programming system prefer a traditional

textual interface over the graphical [73]. Curracurrong offers adequate flexibility
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in defining domain-specific queries, using built-in and user-defined query opera-

tors. Unlike Borealis, Curracurrong provides an automatic type inference feature

that reduces the burden of the application developer. The query deployment in

Borealis requires the user to write a separate XML file, while Curracurrong de-

cides deployment automatically.

6.2 Stream Data Processing in WSN

Several sensor programming models have been developed with varying capabilities for

use in sensor networking applications. One of the key challenges in designing a pro-

gramming environment for WSNs is finding a trade-off between ease of use, efficiency,

and providing adequate flexibility for expressing powerful distributed computations.

Each WSN programming model addresses these problems differently.

6.2.1 Productivity

Node-centric abstraction provides programming model at the level of individual nodes.

The approach is typically supported by a system-level programming language, for ex-

ample, nesC [55]. nesC is the most widely used programming language for developing

WSNs. Both nesC and its extension galsC [66] provide the flexibility to write complex

applications; but they suffer from the common problem of system-level programming

in which the programmer has to deal with low-level aspects of WSN such as messag-

ing, data caches and routing protocols. This requires application developers to have

embedded system programming skills.

Some of the network-centric models are query processing systems, such as Tiny-

DB [47], Cougar [69], and MaD-WiSe [30], which are database-inspired declarative

query languages and provide an abstraction in terms of SQL-like queries. The other

network-centric models include Regiment [56] and Kairos [67]. Regiment uses the

concept of functional reactive programming (FRP) for high-level abstraction. Users

write their program in Haskell-like functional programming manner, whereas Kairos’

programming model specifies the global behaviour of a WSN computation using a cen-

tralised approach. In contrast, Curracurrong has a high-level programming model that

uses stream graph to represent queries offering development productivity to the end
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user. Curracurrong queries are expressed succinctly through the textual and visual con-

cepts in the stream graph.

6.2.2 Flexibility

TinyDB [47] and Cougar [69] are pioneering approaches in WSN query languages.

They are designed for the union of query results processed in parallel by the sensor

nodes. All nodes locally execute the same query, and the results of each query are

merged as they flow from the sensor node to the sink. However, TinyDB lacks flexi-

bility: it cannot relate and compare the in-network data acquired by different sensors

– for example, checking if the temperature reading from one sensor node is lower than

from some other sensor node reading. To implement a new query operator or feature in

TinyDB requires substantial changes in the language parser and query engine. Curracur-

rong proposes a query language by using abstraction provided in terms of stream opera-

tors. The stream operators define only the application logic along with input and output

data types. The stream-based programming model allows the user to use built-in oper-

ators and extend functionality by writing customised operators for complex queries. To

extend the functionality and expressiveness of the applications, the user needs to focus

only on defining operators. Curracurrong query processing system and runtime envi-

ronment take care of all system-related non-functional requirements like query parsing,

the use of the placement algorithm, scheduling, and energy optimisation – this offers

significant flexibility to the user.

The Curracurrong query processing system uses the concept of stream for data com-

munication between query operators. [15] reports the results of a stream processing

data model survey. Aurora [27] is a centralised stream processor that models a stream

as an append-only sequence of data tuples. There is no direct control on the ordering

and regularity of data arrival from multiple sources. This model was extended in Au-

rora* [26] and Medusa [26] with distributed stream processing features. Borealis [28]

is a generalised second-generation stream processing engine that leverages and extends

the Aurora and Medusa designs. The Borealis engine, with the extended and complex

stream model supports features like revision of data tuple and dynamic query modifica-

tion. Another distributed stream management for WSN, MaD-WiSe [30], was recently

introduced. However, it uses SQL-based querying, which limits stream management

to aggregation and does not support flexible application design. Approaches discussed
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in Aurora* and Borealis address issues for generic data stream management, whereas

Curracurrong considers particular aspects of WSN, such as flexibility in writing com-

plex application and resource-efficiency. For resource-constrained WSN applications,

Curracurrong offers a simpler programming system that achieves the level of flexibility

of the complex streams in Borealis.

6.2.3 Efficiency

Other related work in macro-programming and query processing includes the in-network

data processing for achieving energy efficiency. Instead of directly pushing the raw

sensor data to the sink node (forwarding), aggregation is performed at the sensor nodes

before sending the results back to the sink. The idea of in-network aggregation in a

sensor network to minimise the communication was first proposed in Tiny AGgrega-

tion (TAG) [77]. Later approaches include Regiment [56], Kairos [67], [131], MaD-

WiSe [30], and [50]. The in-network processing approach requires a good trade-off be-

tween data quality and energy consumption for long-running query. The task mapping

problem in Regiment is solved during compilation by performing code normalisation,

analysis, and optimisation, in many stages. In Kairos (later known as Pleiades [24]),

the authors address the problem of how actions are distributed onto nodes, by parti-

tioning the program’s control flow graph (CFG) into nodecuts before placing them on

individual nodes. They apply a reaching definition-based compilation technique to par-

tition the CFG and heuristic to minimise the total number of edges in a program’s CFG

that cross from one nodecut to another. Other task allocation approaches include [131],

which has an objective to find a task allocation with a balanced energy consumption

for WSN applications. They model the communication over channels as constraints of

integer linear programming (ILP) and use heuristic algorithm to solve it. The optimi-

sations in Regiment, Kairos, and [131] concern the running time and do not consider

energy efficiency. Different from these three systems, Curracurrong proposes an oper-

ator placement approach that aims to minimise the energy spent on each sensor, based

on local computation and communication costs. This non-trivial placement supports

energy-efficient long-running queries. Curracurrong’s language abstraction as a stream

operator allows us to develop the placement approach as a uniform optimisation strategy

that remains unaffected with the extension of operator library.

MaD-WiSe uses an algebraic optimisation approach based on transformation rules
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applied to a query execution plan to produce a semantically equivalent plan with lower

cost. Their optimiser applies a greedy approach to choose the operator ordering, based

on various criteria that give optimal performance. Another task mapping approach is

[50], where the authors provide mathematical formulations for the task-mapping prob-

lem for both energy balance and total energy spent. They suggest mixed integer pro-

gramming (MIP) formulations, which give optimal results with long run-time. They

provide a task-mapping approach with greedy heuristics that has shorter run-time than

MIP. In contrast with MaD-WiSe and [50], we formalise the operator placement prob-

lem as a multiway cut and solve it with an isolating cut heuristic [82], which gives

nearly optimal solutions with better worst-case time complexity than the MIP approach

proposed in [50].

6.3 Stream Data Processing in Cloud

Application data, particularly application or web-server logs are generated at very high

rates and volumes. The typical approach to dealing with these large amounts of data is

to collect them into files in a BLOB store like Amazon Simple Storage Service (S3) or in

a large distributed file system like Hadoop HDFS for future processing. Some solutions

may choose to store files in a more structured format such as a column store like HBase,

Accumulo, or Cassandra. Once these data are stored in the file system, they are then

processed using a batch-oriented processing mechanism like Hadoop MapReduce.

The problem with this approach is that log and application data are most often un-

structured or semi-structured, and further processing and cleansing is needed to extract

useful statistics. Transporting and storing data logs into a data store or file system adds

significant latency to the data processing and further delays downstream processing.

Nevertheless, the batch-oriented, collect-store-and-process approach is the predominant

processing pattern in use across most organisations large and small. Some popular and

commercially used cloud/distributed stream processing systems are explained below.

• Twitter’s Storm – The Storm [31] project focuses on the distribution, paralleli-

sation, and fault tolerance guarantees while leaving the specification of how to

process tuples to the final user. In Storm, queries can be expressed using the

boxes-and-arrows model; the system will take care of distributing such operators

among the available instances, but will leave the task of defining how to process



CHAPTER 6. RELATED WORK 141

data to the final user. With Storm, queries are expressed via two kind of objects,

Spouts and Bolts. Spout nodes are responsible for generating the system input

streams, while Bolts are in charge of processing those streams and generate out-

put results. The Storm project can be seen as the data streaming alternative to

the map-reduce [92] paradigm. As for the map-reduce paradigm, the user task is

to define the functions that are used to read and generate data, and to process it

in parallel while the system is in charge of managing the several multi-threaded

instances. Storm relies on Zookeeper servers to maintain the state of distributed

setups. Storm was later acquired by Twitter in 2013.

• IBM Infosphere – Infosphere SPE [132] represents another alternative parallel-

distributed SPE. Two interesting aspects of Infosphere are its capability for pro-

cessing several input formats such as XML, text, voice, and video; and its query

language SPADE [133]. SPADE is a declarative language that allows the user to

define queries along with how to distribute or parallelise the query operators. The

language allows user-defined operators for complex functions. Infosphere pro-

vides an enterprise-class foundation for information-intensive projects, providing

the performance, scalability, reliability and acceleration needed to simplify diffi-

cult challenges and deliver trusted information to your business faster.

• Yahoo S4 – The S4 [33] SPE represents a comprehensive free data streaming so-

lution that provides distributed processing and fault tolerance capabilities. It is

a Java-based solution that, similarly to STORM, relies on the user for the defi-

nition of classes for processing and producing streams tuples. As well, S4 relies

on Zookeeper to maintain the state of a distributed setup. S4 allows the parallel

execution of data streaming operators referred as symmetrical deployment. S4

provides a fault tolerance protocol based on state check-pointing and leads to

minimal state loss.

• LinkedIn Samza – Apache Samza [32] is a stream processing framework devel-

oped by LinkedIn. Samza relies on Apache Yarn for distributed resource allo-

cation and scheduling. Samza uses Apache Kafka for distributed message bro-

kering, and provides an API for creating and running stream tasks on a cluster

managed by Yarn. The system is optimised for handling large messages, and
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provides file system persistence for messages. Samza provides message deliv-

ery guarantees using upstream backup techniques for handling message failures.

When a node fails and new node takes over, the new node starts reading from

the upstream broker stream from the maker that the failed node set. Because

of this, Samza achieves repeating recovery for deterministic networks and diver-

gent recovery for non-deterministic networks. Samza tasks are written with Java

programming language. The code specifies how to process the messages.

6.4 Real-time Stream processing

The problems of timeliness and QoS guarantee in WSN applications have drawn the at-

tention of researchers for many years. The recent survey of real-time data management

in WSN is presented in [134]. The article identifies main specifications of real-time

data management in WSN and presents the available solutions for the same. Another

article [135] outlines eight requirements that a system should meet for real-time stream

data processing applications. In database, the term real-time means that the transaction

must run in a fixed time interval [136]. To satisfy time constraints, the data structure

should include: timestamp, the time when data was generated or observed; and an ab-

solute validity interval (AVI – the time interval during which the data are considered

valid) [137]. In distributed environments, the challenge is to measure the time interval

as end-to-end delay.

Existing approaches to determine end-to-end delay include probabilistic distribu-

tion [104, 105]. In [104], the authors propose a comprehensive analytical model that

characterises end-to-end delay distribution in WSN for both deterministic and random

network topologies. They highlight relationships between network parameters and de-

lay distribution in multi-hop WSNs. [105] introduces a probabilistic analysis of de-

lay for broadcast networks considering medium access control protocol. Other related

work in timeliness includes probabilistic delay bounds presented in [138, 139]. In these

approaches, the worst-case performance bounds are analysed, which have limited ap-

plicability in WSN due to randomness in communication. Work on real-time queuing

theory [107] has introduced a stochastic model for unreliable networks that combines

real-time theory and queuing theory. This approach uses scheduling policy and dead-

lines associated with each packet, in relation to two scheduling policies: EDF and FIFO.
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Technique/ Stream proce- Delay meas- Method Ahead of
System ssing system urement time

Wang 2012 [104] No Yes Comprehensive Yes
analytical model

Netus 2005 [105] No Yes Probabilistic analysis Yes
Burchard 2006 [138] No Yes Probabilistic Yes

delay bounds
Yeung 2001 [107] No Yes Real-time Yes

queuing theory
Cougar Yes No – –

NiagaraCQ Yes No – –
TelegraphCQ Yes No – –

STREAM Yes Yes Uses wall clock No
and skew bound

Borealis Yes Yes Uses wall clock No
and timestamps

Storm Yes Yes Complete and No
Processing Latency

Curracurrong Yes Yes Event Causality Yes

Table 6.1: Comparison of Curracurrong with related systems

Unlike existing approaches to measuring end-to-end delays, our approach uses the

concept of event causality. The concept of events, causality, event hierarchies, and

event patterns and rules are explained in in [140]. The event causality in actor network

was also explained in the article [109], which provides a unique formal modelling of

communicating actors. The model concerns causality – that is, the propagation of events

across the system. An actor has a semantics called its causality interface, which relates

events (a pair of time and data values) of the input with events of the output. The

system semantics are algebraically defined in terms of the semantics of each component,

connected appropriately by edges of the graph. The graph’s semantics are defined by

a smallest set of time-stamped events that can occur in the system. Since the approach

measures delay for each individual data token that reaches the sink operator, it provides

precise time information; whereas other existing approaches in [104, 105, 138] provide

probabilistic delay distribution or delay bounds. Hence, our approach can be used to

determine point-in-time data freshness/staleness during processing.

Some related stream processing systems like Cougar [69], NiagaraCQ [127], and

TelegraphCQ [61] do not provide the notion of delay measurements. STREAM [29] and
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the latest version of Borealis [28] use the wall clock time at source and sink to measure

data packet latencies, and requires skew bounds for all network nodes. Another recent

stream processing concept, Storm [31], provides a user interface that tabulates complete

latency and processing latency when a data packet reaches the sink. Unlike these stream

processing systems, our approach uses timestamps and the novel concept of causality

to provide delay measures, not only at the sink but at any operator in a stream graph.

Table 6.1 compares the Curracurrong system with related systems.



Chapter 7

Conclusion and Future Work

The thesis has presented Curracurrong, a stream processing system for distributed en-

vironments, with easy-to-use query language, energy-efficient operator placement, and

timeliness. Previous research into stream data processing over the past decade has at-

tempted to design a programming model that achieves combination of productivity,

flexibility, and energy-efficiency. We have responded to the challenge of finding a good

trade-off between these three by developing Curracurrong – a stream processing sys-

tem, for distributed environments. The system is easy to use because of high-level query

language and automatic operator placement scheme. An extendable stream operator li-

brary provides flexibility by supporting a wide range of application systems. Efficient

operator placement algorithms offer reductions in energy consumption and support the

dynamic nature of queries in WSN and cloud. For time-critical stream processing appli-

cations, the system provides timeliness by measuring end-to-end delays. We conclude

the work by explaining the lessons learnt by addressing the challenges and achieving

our goals.

(L1): Designing a query language for a wide range of distributed systems is very
challenging

To offer a user-friendly language and thus increasing user productivity, we de-

fined a high-level query language for a wide range of stream processing appli-

cations. During the language design, we faced software engineering and com-

puter science challenges. To address these, we employed the SDF programming

model with restrictions. Curracurrong query language is represented by compo-

sitional/structured stream graphs, with vertices as stream operators and edges as
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unidirectional communication FIFO channels. Each stream graph is a composite

of five types of stream operators: sense, sink, filter, split, and join. The query

language uses the notion of declarative languages and has no loops. To provide

flexibility to users in developing wide range of applications, we built a stream

operator library comprising various aggregator and data mining operators; the

library is easily extendible when required by customised applications. We com-

pared our query language with that of existing systems and confirmed that users

of Curracurrong query language write queries more efficiently than when writing

lines of code or XML files.

(L2): Energy-efficient operator placement is an NP-hard problem and requires
sophisticated algorithms to solve in polynomial time

For WSN applications, it is important that the system provide enough energy effi-

ciency for network longevity. Similarly, in cloud applications, users pay for their

use of resources like communication bandwidth; therefore, the challenge was to

develop a system that offers the efficient use of such resources. We introduced a

novel algorithm that minimises computation and communication costs with opti-

mal query operator placement in the network. We modelled the placement prob-

lem as multiway cut, and proved that the placement problem is NP-hard. We used

Dahlhaus’ algorithm, which provides a simple combinatorial isolation heuristic

with a 2-approximate solution. Existing systems like Borealis and Apache Storm

require the user to define deployment while writing a query; in contrast, we have

provided an automated operator placement with energy efficiency. To confirm

the efficiency of our algorithm, we used SunSPOT sensors and an external power

supply, and compared the energy consumption readings with those of standard

data-forwarding placement. We compared the running time of our heuristic algo-

rithm with the running time of ILP solver; the results showed that ILP solver is

much slower than the heuristic.

The dynamic nature of the distributed environment was another challenge while

designing our approach to operator placement. The system required uninterrupted

query execution when a network node is unavailable or one of the queries has

stopped its execution. To find an energy-efficient placement for migrating op-

erators is again a NP-hard problem. We explained the graph composites and

defined what we called the migrating operator placement problem (MOPP). To
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solve MOPP, we developed a sophisticated algorithm that builds compositional

trees for the running queries and finds the optimal operator placement (at regu-

lar intervals) using dynamic programming. We wrote a simulator to evaluate the

algorithm, and our findings show that our approach is more efficient than the de-

fault operator placement scheme, data forwarding. To improve the running time

of our algorithm, we developed and applied a locality heuristic that resulted in

nearly optimal placement with shorter running time.

(L3): Measuring end-to-end delays in continuous query processing is complex and
requires detailed analysis of the system model

Real-time data processing is essential in many time-critical stream-based applica-

tions, including disaster area monitoring, health monitoring, and intrusion detec-

tion. Some existing approaches use probability distribution and first-order statis-

tics to measure end-to-end delays in stream data processing. In contrast, our

aim was to find a comprehensive way that statically determines precise delays

for each data token. The challenging part was that delays are not the same for

each data token that reaches the sink; this was due to the design of system model,

where sense operators may have different periodicity and filter operators have

non-uniform data rates. We employed the concept of event causality to devise

an algorithm that statically measures delays in the stream graph. The algorithm

finds an interval over timeline – time steady state – and simulates the first such

interval to measure delays. We defined denotational semantics for stream pro-

cessing, and used abstract interpretation technique during the simulation phase

in algorithm. We evaluated our approach with a set of experiments in which we

computed time steady state with strategically varied filter data rates and sense

periodicities. The results showed an association between (i) longer time steady

state; (ii) non-uniform filter data rates; and (iii) sense periodicities that are prime

to each other. We measured the effect of periodicity scaling over time steady state,

confirming the association between shorter time steady state and less precision in

delays.

(L4): The system requires minimal changes to run under different technologies

To confirm the adaptability of the Curracurrong system, we made changes in sys-

tem design and communication technology so that it would run on a cloud-based
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cluster of nodes. We developed a simple cluster monitoring application to demon-

strate the technology and used parts to evaluate the performance characteristics

of the system. This confirms that the system requires minimal adaptation for use

with different technologies.

7.1 Opportunities for Future Work

Curracurrong is now open-source under the Apache 2.0 licence, available in the GitHub

repository. It is ready to run lightweight applications on a cloud cluster. Although

the system presented here is capable of running lightweight applications in WSN and

cloud, a limitation of the current version is the messaging system, which uses UDP; the

centralised mechanism of the system therefore suffers from unreliable communication

with large networks (see Integration with other systems and technologies, below). The

system could be further extended in the following research directions.

• Improved language expressiveness – At the moment Curracurrong queries are

static; for example, if there is a requirement to change the threshold value in dis-

aster monitoring applications, the user stops the running query and changes the

threshold parameter. This requires redundant placement computation and rede-

ployment of the operators. There is significant research potential for improving

the language so that a user writes a query that modifies itself dynamically. The

system would modify the specific query parameters while the previous version of

the query was still running. The changes would require new query commands,

the extension of query parser, and a set of new administrative commands.

• Failure tolerance – Another future direction would be to exploit the failure tol-

erance and estimate the data stream during the failure of node or unavailability of

a communication channel. The unavailability of node or network interrupts the

stream of data required for computation. In another case, the nodes may generate

erroneous data; such missing or incorrect data will end up in inaccurate results.

Using the concept of probability distribution and machine learning would enable

us to deal with these uncertain data, producing results with possible minimum

deviation. This would be achieved by extending the type system, where newly in-

troduced uncertain data type would enable a model to be built using probabilistic
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distributions. When expected data are missing in the stream, the model would in-

sert the new data so that the computations would generate results with guaranteed

minimal deviation.

• Robustness – Another possibility would be to make the system robust in two

steps. The first step would be to create a multi-server system. In the current ver-

sion, a single server is used to manage query deployment, send out administrative

commands, and collect results. In case of server failure, entire system will fail

as well. To tackle this issue, the system could introduce multiple servers that

run independently and take the query operators’ workload from the nearest failed

server. In the second step, backup and recovery techniques could be developed

for each participating node. In case of node failure, a backup node would replace

the failed node.

• Integration with other systems and technologies – The current version of the

system uses the Java serialisation format; this could be extended to support seri-

alisation formats like Apache Avro, Google Protocol Buffers, and Apache Thrift.

This extension would enable users to define custom serialisation formats so that

Curracurrong would seamlessly interact with large web-scale systems like Apache

Hadoop. In future versions we intend to support not just UDP, but configuration-

driven messaging systems like ZeroMQ; this would enable easier integration

with legacy and heterogeneous system deployments. Messaging systems like

ZeroMQ-, AMQP- and JMS-compliant systems are easy to deploy, maintain, and

administer. In addition, they support store and forward mechanisms and guaran-

teed message delivery modes. Another research direction could be to develop the

system so that it can be used for mobile, internet of things, and wearable tech-

nologies – made possible by the flexibility and adaptability of Curracurrong’s

programming model.
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