9,448 research outputs found

    Packing ellipsoids with overlap

    Full text link
    The problem of packing ellipsoids of different sizes and shapes into an ellipsoidal container so as to minimize a measure of overlap between ellipsoids is considered. A bilevel optimization formulation is given, together with an algorithm for the general case and a simpler algorithm for the special case in which all ellipsoids are in fact spheres. Convergence results are proved and computational experience is described and illustrated. The motivating application - chromosome organization in the human cell nucleus - is discussed briefly, and some illustrative results are presented

    Social choice on complex objects: A geometric approach

    Get PDF
    Marengo and Pasquali (2008) present a model of object construction in majority voting and show that, in general, by appropriate changes of such bundles, different social outcomes may be obtained. In this paper we extend and generalize this approach by providing a geometric model of individual preferences and social aggregation based on hyperplanes and their arrangements. As an application of this model we give a necessary condition for existence of a local social optimum. Moreover we address the question if a social decision rule depends also upon the number of voting agents. More precisely: are there social decision rules that can be obtained by an odd (even) number of voting agent which cannot be obtained by only three (two) voting agent? The answer is negative. Indeed three (or two) voting agent can produce all possible social decision rules.Social choice; object construction power; agenda power; intransitive cycles; arrangements; graph theory.

    Coalition Formation Games for Collaborative Spectrum Sensing

    Full text link
    Collaborative Spectrum Sensing (CSS) between secondary users (SUs) in cognitive networks exhibits an inherent tradeoff between minimizing the probability of missing the detection of the primary user (PU) and maintaining a reasonable false alarm probability (e.g., for maintaining a good spectrum utilization). In this paper, we study the impact of this tradeoff on the network structure and the cooperative incentives of the SUs that seek to cooperate for improving their detection performance. We model the CSS problem as a non-transferable coalitional game, and we propose distributed algorithms for coalition formation. First, we construct a distributed coalition formation (CF) algorithm that allows the SUs to self-organize into disjoint coalitions while accounting for the CSS tradeoff. Then, the CF algorithm is complemented with a coalitional voting game for enabling distributed coalition formation with detection probability guarantees (CF-PD) when required by the PU. The CF-PD algorithm allows the SUs to form minimal winning coalitions (MWCs), i.e., coalitions that achieve the target detection probability with minimal costs. For both algorithms, we study and prove various properties pertaining to network structure, adaptation to mobility and stability. Simulation results show that CF reduces the average probability of miss per SU up to 88.45% relative to the non-cooperative case, while maintaining a desired false alarm. For CF-PD, the results show that up to 87.25% of the SUs achieve the required detection probability through MWCComment: IEEE Transactions on Vehicular Technology, to appea

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Topology and invertible maps

    Get PDF
    I study connected manifolds and prove that a proper map f: M -> M is globally invertible when it has a nonvanishing Jacobian and the fundamental group pi (M) is finite. This includes finite and infinite dimensional manifolds. Reciprocally, if pi (M) is infinite, there exist locally invertible maps that are not globally invertible. The results provide simple conditions for unique solutions to systems of simultaneous equations and for unique market equilibrium. Under standard desirability conditions, it is shown that a competitive market has a unique equilibrium if its reduced excess demand has a nonvanishing Jacobian. The applications are sharpest in markets with limited arbitrage and strictly convex preferences: a nonvanishing Jacobian ensures the existence of a unique equilibrium in finite or infinite dimensions, even when the excess demand is not defined for some prices, and with or without short sales.manifolds; mathematical economics; Jacobian; supply and demand; equilibrium

    Credibility and Strategic Learning in Networks

    Get PDF
    This paper studies a model of diffusion in a fixed, finite connected network. There is an interested party that knows the quality of the product or idea being propagated and chooses an implant in the network to influence other agents to buy or adopt. Agents are either “innovators”, who adopt immediately, or rational. Rational consumers buy if buying rather than waiting maximizes expected utility. We consider the conditions on the network under which efficient diffusion of the good product with probability one is a perfect Bayes equilibrium. Centrality measures and the structure of the entire network are both important. We also discuss various inefficient equilibria.

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335
    corecore