
MPRA
Munich Personal RePEc Archive

Topology and invertible maps

Chichilnisky, Graciela

Columbia University

15. September 1997

Online at http://mpra.ub.uni-muenchen.de/8811/

MPRA Paper No. 8811, posted 21. May 2008 / 21:53

http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/8811/


ADVANCES IN APPLIED MATHEMATICS 21, 113-123 (1998)
ARTICLE NO . AM980584

Topology and Invertible Maps*

Graciela Chichilniskyt

Program on Information and Resources, Columbia University, New York,
New York 10027

Received September 15, 1997 ; accepted January 3, 1998

I study connected manifolds and prove that a proper map f : M - M is globally
invertible when it has a nonvanishing Jacobian and the fundamental group TT,(M)
is finite . This includes finite and infinite dimensional manifolds . Reciprocally, if
7r,(M) is infinite, there exist locally invertible maps that are not globally invertible .
The results provide simple conditions for unique solutions to systems of simultane-
ous equations and for unique market equilibrium . Under standard desirability
conditions, it is shown that a competitive market has a unique equilibrium if its
reduced excess demand has a nonvanishing Jacobian . The applications are sharpest
in markets with limited arbitrage and strictly convex preferences : a nonvanishing
Jacobian ensures the existence of a unique equilibrium in finite or infinite
dimensions, even when the excess demand is not defined for some prices, and with
or without short sales .

	

© 1998 Academic Press

1 . INTRODUCTION

This paper gives a global invertibility theorem, obtained by using alge-
braic topology . The inverse function theorem gives a simple condition for
the local invertibility of a smooth map f : M --* M. If f has a nonvanishing
Jacobian at a point, then it is locally invertible . The moral is that a linear
approximation to the map predicts its local behavior . What about global
behavior?
A finite fundamental group is the crucial link between local and global

invertibility. The results are as follows. Let M be a connected compact
manifold with a finite fundamental group 7T I(M). Then a smooth map
f : M --)- M with a nonvanishing Jacobian is globally invertible . Recipro-
cally, when w l(M) is not finite, there are locally invertible maps f : N -* M
that are not globally invertible . These results also hold when M is not
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compact, provided that f is proper,' and includes infinite dimensional
Banach manifolds . Manifolds with finite fundamental groups are not
difficult to find : examples are Euclidean space, open convex sets, the
sphere S", n >_ 2, all Grassmanian manifolds G" , '` with n > 2, and all
Banach spaces .
A simple example illustrates the role of topology in obtaining global

invertibility. Any rotation from the circle S' to itself is a locally invertible
map with a nonvanishing Jacobian . Yet most rotations are not globally
invertible . What fails is the topology : the fundamental group of the circle
7r t(S') is the integers Z, which is not a finite group.

Finite fundamental groups are the crucial link between local and global
invertibility. The example of the circle provided above is typical. I show
below that the condition on the fundamental group is necessary as well as
sufficient to go from local to global invertibility in the following sense : if
the group 7r,(M) of a manifold M is not finite, then there exist locally
invertible maps f : N ---> M that are not globally invertible .
The results of this paper are simple but have useful applications . These

include conditions for unique solutions to systems of simultaneous nonlin-
ear equations. The results imply a simple condition for unique market
equilibrium . Under standard desirability conditions, a competitive market
has a unique equilibrium if its reduced excess demand has a nonvanishing
Jacobian . When markets have limited arbitrage the results are sharper.
Limited arbitrage is a condition on endowments and preferences that was
introduced and shown to be necessary and sufficient for the existence of
equilibrium, the core and social choice in finite or infinite economies.3
With strictly convex preferences, a nonvanishing Jacobian defined on part
of the price space-the intersection of "market cones"-ensures the
existence and uniqueness of an equilibrium . This covers economies that
were neglected in the literature on unique equilibrium, holding equally
with finite or infinitely many markets and with or without short sales.

2. DEFINITIONS AND BACKGROUND

Unless otherwise specified, all manifolds are smooth4 connected and
without boundary and maps are smooth. The manifolds considered here
may be compact or not, and they may be finite or infinite dimensional. In
the latter case they are Banach manifolds [2]. A map f : M -3- N is locally

' These results were discussed in Chichilnisky [3] . A special case of this result, when M is
simply connected and finite dimensional, was known to Hadamard (1906).

2 1 consider fundamental groups that are finitely generated but not finite .
3 See Chichilnisky [4-9] .
4Le., Ck , with k z 2 .
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invertible when for each x E M there exists neighborhoods UX and Uy of x
and of y = f(x), respectively, such that f maps UX one to one and onto Uy .
A map f : M --* N is globally invertible when it is one to one and f(M) = N.
Given two topological spaces, X and Y, a continuous map f : X -4 Y is
proper when the inverse image of every compact set C, f`'(C), is compact .

EXAMPLE 1 .

	

If X and Y are open convex open sets, then f : X --)' Y is
proper if x" -3- x E dX => f(x") -+ y E d Y.5 If X is an open convex set
and Y = R ^', then the map f : X --* R ' is proper when x" -> x E dX
implies 11 f(x)11 -~ oo .

DEFINITION 1 .

	

Let 12(Z, A) be the space of all square integrable
sequences of real numbers, i.e ., of all square integrable functions from the
integers to the reals f : Z --+ R such that E,=If(t)2N,(t) < oo .

Remark 1 . 1 2 is a Banach space, indeed it is a Hilbert space with the
inner product defined by (f, g) = Ef(t) -g(t)g(t) [2] . When A is a finite
measure on Z, i .e ., E, g(t) < oo, then 12 (Z, ,u,) contains unbounded se-
quences .

The following presents concepts and results of algebraic topology that
can be found in any standard textbook, e .g . Spanier [12] or Greenberg [11 ] .
All topological spaces are assumed to be connected and locally path
connected .

. DEFINITION 2.

	

Given two topological spaces, X and Y, X is a covering
space of Y if there exists a continuous onto map 0 : X --* Y such that each
y E Y has a neighborhood Uy whose inverse image 0 - '(Uy ) is the disjoint
union of sets in X, each of which is homeomorphic to Uy . The map 0 is
called a covering map. When the inverse image 0 - '(y) of each point y E Y
contains exactly k >_ 1 points, then the covering is called a k-fold covering .

EXAMPLE 2.

	

The map 9(r) = e"r` from the line R to the circle S 1 is a
covering map that makes the line a covering space of the circle . The map
9(e"r') = e'27rr makes the circle a two-fold covering of itself.

DEFINITION 3 .

	

The first homotopy group of X, also called its funda-
mental group, is denoted 7r IM.

EXAMPLE 3. This group is zero, and therefore finite, whenever X is
convex or contractible, for example, X = Rk or R+ , any k. The fundamen-
tal group of the circle S' is Z, the group of integers, and is not a finite
group. All other spheres S", n > 1, have zero (and therefore finite)
fundamental groups, i .e . -rr l(S") = 0. All Grassmanian manifolds (other
than the circle S') have fundamental groups equal to Z2, the group of

5dM denotes the boundary of the set M.
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integers modulo 2. This group has two elements Z2 = (0, 1), and therefore
the fundamental groups of all of the Grassmanian manifolds other than S'
are finite .

Intuitively, 7r,(X) is the space of all loops in X, where a loop is a
continuous map 0 : S' --+ X, under the following natural equivalence rela-
tion : two loops 0, and Y'2 are equivalent if and only if one is a continuous
deformation of the other; i.e ., there exists a continuous map F : S' x [0,1]
-~ X such that `dx E X, F(x, 0) = 0,(x), and F(x, l) = 02(x). The group
operation in 7r,(X) is defined by running one loop after the other
sequentially, thus obtaining another loop ; for formal definitions see [11] .

DEFINITION 4.

	

Amap between topological spaces f : X

	

Y defines a
homeomorphism of the corresponding fundamental groups f* : 7r,(X )
7T 1(y).6 The map f,, is called a monomorphism when it is one to one.

THEOREM 1 .

	

Let p : X -4 Y be a covering map. Then p,, : 7r,(X )
7r,(Y) is a monomorphism. See [11], p. 19 .

DEFINITION 5 .

	

Two covering spaces p : X -+ Y and p' : X' --+ Y are
equivalent when there is a unique homeomorphism 0 : X ---> X' such that
p-0 = p' .
THEOREM 2 .

	

Any manifold M has a covering space p : X --), M with
-rr I(X) = 0, called its universal covering space. See [11], p. 23, (6.7).

THEOREM 3.

	

Let p : X --+ Y be a covering space . For any subgroup H of
7r,(Y) there exists a covering space p : X ---) Y unique up to an equivalence,
such that H = p,, 7r

I(X). See [I 1], p. 24, (6.9).

THEOREM 4.

	

Inverse Function Theorem [2] . Let M and N be two mani-
folds of the same dimension, f : M -4 N a smooth map, and y = f(x) . If the
Jacobian of f is nonvanishing at x, there exist neighborhoods Ux and Uy of x
and y, respectively, such that flUx : Ux	U y is a diffeomorphism .7

3. RESULTS

This section establishes the global invertibility of maps with nonvanish-
ing Jacobian on compact manifolds, and then extends this to proper maps
on noncompact manifolds .
THEOREM 5. Let M be a compact, connected manifold with a finite

fundamental group 7r,(W), and let f : M ---> M be a smooth map. If the
Jacobian off is nonvanishing, then f is globally invertible .

6 Le ., tla, 13 E -rr,(X ), f,, (a* 0) = f(a) * f(P ), where* denotes the group operation in
7r t( X) .
A diffeomorphism is a one-to-one onto map that is smooth and has a smooth inverse .
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Proof.

	

By the implicit function theorem, the image f(M) is an open set
in M. I will show that under the assumptions f(M) is closed as well .
Consider two sequences {x"} cM and {y"} cM such that y" = f(x"),
x" ---> x and y" -> y. Since M is compact and the Jacobian of f does not
vanish, this Jacobian is bounded away from zero . Therefore there exists S,
e > 0 such that M can be covered by a family of 5-neighborhoods' (Ux) on
each of which f is a diffeomorphism, and the image under f of each U,.
covers an --neighborhood in M. Since y" -), y, for n large enough y is
contained in such an e neighborhood of y", so that by construction
y E f(M ). Therefore the image f(M) is closed . Since f(M) is both open
and closed and M is connected, f(M) = M, i.e ., the map f is onto.
The next step is to show that f is a covering map. By the inverse

function theorem, if f(x) = y, there exist neighborhoods Ux and Uy of x
and y, respectively, such that the restriction of the map f on Ux, flUx : Ux
--* Uy , is one to one and onto . By the continuity of the map f, for any
y E M, the set f'(y) is closed ; since M is compact, the set f'(y) is also
compact, and by the inverse function theorem it is 0-dimensional . There-
fore for any y E M, the set f-'(y) consists of finitely many points {x;}
i = 1, . . . , k . We may then choose a neighborhood Uy, of y such that
f'(Uy ) consists of a union of disjoint neighborhoods of each diffeomor-
phic to Uy ; compactness of M implies that f- '(Uy ) = U x, E f-,(y){Ux} . This
implies that f is a covering map from M onto M.'
The last step is to show that f is globally invertible . We know by

Theorem 3 that for each subgroup H of 7r,(M) there exists a covering
0 : X --* M, which is unique up to equivalence, such that 0 * (7r,(X )) = H.
Now let H = 7r,(M) . The identity map i : M --+ M defines a covering such
that i * (7r,(M)) = 7T (M). We already saw that f : M~M is a covering
map, so that f* :7r,(M) -4 7r,(M) is a monomorphism by Theorem l .
Since the first homotopy group 7r,(M) is finite, and f* : 7r,(M) -4 7r,(M)
is one to one, then f* must be an onto, so that f* (7r,(M)) = 7r,(M).
Therefore both maps f and i satisfy f*(7r,(M)) = i * (7r,(M )) = u I(M); it
follows from Theorem 3 that f and i define equivalent coverings. Since i is
the identity map, f must be a onefold covering of M, i.e ., f is a globally
invertible map, as we wished to prove.

The following provides an extension of Theorem 5 to paracompact
manifolds, such as, for example, R '̂.

8We can choose the coordinate patches that define the manifold M so that a 5-neighbor-
hood in M is the image of a ball of radius S in the linear space that is the model for M.

9Ehresman (1947) proved that for compact manifolds a differential submersion is a locally
trivial fibration ; in connected finite dimensional manifolds this implies it is a covering map .
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COROLLARY 1 . Let M be a paracompact connected manifold"' with
7r,(M) finite, and f : M --), M a proper map. When the Jacobian of f is
nonvanishing, f is globally invertible .

Proof. First we check that since f is proper and its Jacobian is
nonvanishing, then f(M) = M. We know that f(M) is an open set by the
inverse function theorem . Next we show that f(M) is closed . Let y" E
f(M), yn --,, y . I will show that y E f(M). Since y" --* y, the set (yn) U y is
compact, and since f is proper, the set f'((yn) U y) is compact as well .
Let (x") satisfy f(x") = y" ; then the set (x") is contained in the compact
set f'((y") U y). Therefore we may apply the proof of Theorem 5,
implying that y E f(M), so that f(M) is closed . Since f(M) is open and
closed and M is connected, f(M) = M.

Since f is a proper map, f'(y) is a compact set, and therefore, by the
inverse function theorem, f' (y) consists of finitely many points . The
same argument as in Theorem 5 establishes, therefore, that f : M --+ M is
a covering map, and that f is globally invertible .

COROLLARY 2.

	

Let C be a convex open region of R and assume that
f : C -* R ^' satisfies x" --* x E dC =* Il f(x")ll --+ oo . Then if the Jacobian off
is nonvanishing, the map f is globally invertible .

The results extend also to infinite dimensional manifolds, provided they
are Banach manifolds, so the inverse function theorem holds [2] :

COROLLARY 3 . Let M be a connected Banach manifold with 7r,(M)
finite . Let f : M -), M be a proper map. If its Frechet derivative is invertible,
then f is globally invertible .

Proof. The argument is similar to those in Theorem 5: since f is
proper, the condition on its Frechet derivative ensures that the image
f(M) is open and closed in M, so that f(M) = M. The rest of the proof
follows that of Theorem 5 without modification .

A partial converse of the above results can be given . A finite fundamen-
tal group 7r,(M) is necessary for ensuring that a locally invertible map is
globally invertible :

COROLLARY 4. Let 7r,(M) be a finitely generated Abelian group. If
7r,(M) is infinite, then there exists a locally invertible map f : N -* M that is
not globally invertible .

Proof. If 7r,(M) is infinite, it contains a strict subgroup H that is
isomorphic to 7r,(M) . By Theorem 3 we know that there exists a covering
space p : N --), M such that p,, OT M) = H, and the covering map p is
not globally invertible . Yet the covering map p is a locally invertible map,
by definition of a covering .

1°A manifold is paracompact if it can be covered by a countable set of precompact charts .
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4. APPLICATIONS

4.1 . Grassmanians and Simultaneous Equations

This section describes two simple applications of the global invertibility
results : one to compact manifolds, and the other to open regions in R ^'.

COROLLARY 5 .

	

If Gk," denotes the classical Grassmanian manifold of k
planes in R" and n > 2, n > k. Then any smooth map f : Gk." ---> Gk .'r with
nonvanishing Jacobian is globally invertible .

Proof.

	

When n > 2, the fundamental group 7r,(Gk, ") is finite . Indeed,
-rr l(Gk, ") = Z2 for all n, k except G' 2 = S' .

COROLLARY 6. Consider a system of equations that define a smooth
nonlinear mapf : X -* R', where X c R' is open and convex . If the mapf is
proper and has a nonvanishing Jacobian, there is a unique solution to the
problem f(x) = 0.

4.2 . Market Equilibrium

Consider the positive vectors in the unit sphere: A = {p (=- RN : p >> 0
and y^' , P? = 1} . This represents the set of relative prices of a market that
contains N commodities . An excess demand function for a market econ-
omy is a smooth map Z : 0 -4 R ^' satisfying `dp E 0, (p, Z(p)) = 0. The
condition is derived from the requirement that all traders have balanced
budgets, and is described by saying that the value of demand equals the
value of supply. A standard desirability condition of the excess demand
function Z is :

DEFINITION 6.

	

Desirability condition: if p" --* p E d0 then

	

JjZ(pj)11

Similar conditions are in, e .g ., [10] .

Remark 2.

	

The desirability condition implies that the map Z : 0 --* RN
is proper . However, Z does not generally have a nonvanishing Jacobian.

A market is said to be at an equilibrium when supply equals demand in
all markets. Formally :

DEFINITION 7.

	

A market equilibrium p* is a zero of the excess demand
function Z : 0 ---> R ^', i.e ., p* E Z - '(0).

Observe that when the vector Z(p) has all but one coordinate equal to
zero, then Z(p) is the zero vector, because dp E A, ( p, Z(p)) = 0.
Therefore, to identify a market equilibrium it suffices to find a zero of
another map, the composition map Z; = 7r; o Z : 0 ~ R ^'- ', where i E
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{1, . . . , N) and

	

7r; : RN --* RN- '

	

is the projection map on the

	

N- 1
coordinates other than i . Observe that the composition map Z; =
7; 0 Z : 0 -* RN- ' maps an open convex set of RN- ' into R N- ', and that
under the desirability condition, Z; is a proper map. Z; is called a reduced
excess demand .
The definitions provided here extend to markets in which the trading

space rather than RN is the infinite dimensional Hilbert space 12 (see
Chichilnisky and Heal [9]) . 1 2 has an inner product and a countable basis
of coordinates, properties that all Hilbert spaces share, and is the closest
to Euclidean space R N to infinite dimensions . These properties allow one
to treat the trading space the same as Euclidean space, and all of the
definitions given above apply without modification . In particular, since the
Hilbert space is self-dual, it is possible to find invertible operators from
the price space to the commodity space : both are the same space H. This
makes Hilbert spaces the preferred space for infinite dimensional markets :

THEOREM 6.

	

Under the desirability condition, if the reduced excess de
mand Z; : 0 --), R N- '

	

has a nonvanishing Jacobian, then Zi is globally
invertible . In this case the market has a unique equilibrium . This is also true in
infinite dimensional markets when the Frechet derivative of Z; is an invertible
operator .

Proof.

	

Observe that the image of A under the map Z, Z(0), is con-
tractible "because 0 is contractible . The image Z;(0) is also contractible,
because Z; is Z composed with a projection . It follows that 7r,(Z;(0)) = 0.
Next observe that the image Z;(0) is open under the hypothesis, by the

inverse function theorem . In particular, Z;(0) is a manifold . The desirabil-
ity condition of Definition 5 implies that the map Z; is proper. The result
now follows from Corollary 1 for the finite dimensional case, and from
Corollary 3 for infinite dimensions .

The following result applies to economies in which the excess demand
function is not well defined at all prices, but only on a subset of prices:

COROLLARY 7.

	

If the demand function Z : C ---) RN is defined on a
convex subset of prices C C A, and the desirability condition is satisfied in C,
i.e ., p' -) p E dC => JJZ(p')11 -* oo, then there exists a unique market equi-
librium price in C when the Jacobian of the reduced excess demand Zj is
nonvanishing on C. When the market is infinite dimensional, X = 12 , the
result obtains when the Frechet derivative ofZi is invertible .

11A topological space X is contractible when there exists a continuous map F : X x [0, 1]
-> X and x ° E X such that Hx E X, F(x, 0) = x, and F(x, 1) = x° . A contractible space has
a zero fundamental group, vr,(X) = 0 .
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4 .3 . Limited Arbitrage and Uniqueness with Short Sales

This subsection explicitly includes economies with short sales and with
finite or infinitely many markets. These cases have been neglected in the
literature on uniqueness of equilibrium .
The following uses a condition of limited arbitrage, which is defined on

the preferences and endowments of a market . It was introduced and shown
to be necessary and sufficient for the existence of a competitive equilib-
rium, the core and social choice in markets with or without short sales, in
Chichilnisky [4-8], and in infinite dimensions in Chichilnisky and Heal [9] .

Consider a market with trading space X = R '̂ or X = 12 , where traders
have property rights represented by vectors f ; E X and preferences
represented by strictly concave increasing utility functions u ; : X --* R. '2

For trader i define the global cone G; as the set of directions along which
utility never ceases to increase :

G; = {x E X : - 3argmax A , o u;(f ; + Ax))

and the market cone as

D;= {yeX :VxeG;,~y,x)>0) .

DEFINITION 8.

	

The market has limited arbitrage when D = n H ,D;
00.

Remark 3.

	

The intersection D = n H ID; denotes the set of prices at
which the excess demand of the economy is well defined . It has been
shown that limited arbitrage, i.e ., D 0 QS, is equivalent to the existence of
an equilibrium, the core and social choice [4-8] .

The result below proves the uniqueness of an equilibrium in an economy
with limited arbitrage, with finite or infinitely many commodities and
without short sales :

COROLLARY 8.

	

Consider an economy with limited arbitrage and strictly
convex preferences . If the reduced excess demand function Z; has a nonvan-
ishing Jacobian on D = n H I D; c D,t3 then there exists a unique competitive
equilibrium . This is also true in infinite dimensional markets (X = 12 ) when
the Frechet derivative ofZ; is invertible .

Proof.

	

By Corollary 7 it suffices to show that under limited arbitrage
the reduced excess demand is a proper map on a convex subset of 0 on
which its Jacobian is nonvanishing .
By the definition of limited arbitrage, the set D = (1 H I D; c 0 is not

empty . D is a convex set since, under the assumptions on preferences,

12 Or, more generally, by utilities whose indifferences have no half lines .
13 In the infinite dimensional case, when the Frechet derivative is an invertible operator .
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each set D; is convex . If y E R^' is in the boundary of D = (1 H I D;, then
it is in the boundary of D;, dD;, for some trader i . Since preferences are
strictly convex, this implies that for trader i the norm of the excess
demand increases without ever reaching a maximum along the direction
defined by y from fl ; ; see [7]. By Example 1, this implies that for all j, the
reduced excess demand function Zj is proper on D. Therefore under the
assumptions, by Corollary 7 there exists a unique competitive equilibrium .
1

4.4 . Related Literature on Unique Equilibrium

It seems worth comparing these results with other approaches to the
uniqueness of equilibrium . A main difference is that the results presented
here apply equally to finite or infinite dimensional markets and applies
with or without short sales, while the existing literature concentrates
instead on finite dimensional markets without short sales. For ease of
comparison, the following discussion concentrates on economies with finite
dimensions and without short sales.
The closest to Theorem 6 above in finite economies without short sales

is Theorem 15 on p. 236 of Arrow and Hahn [1], whose proof is connected
to the convergence to equilibrium of the global Newton method. However,
the proof of Theorem 15, on p. 304 of [1], uses a "numeraire assumption"
A.11 .2 given on page 268.'4 No such condition is required in this paper, so
that Theorem 6 above is strictly stronger than the results in [1]. Further-
more, Corollaries 7 and 8 above include markets in which the excess
demand function is not defined on the whole price space, as assumed in
Theorem 15 of Arrow and Hahn, and Corollary 8 above covers markets
with short sales and which are finite or infinite dimensional.
Working also on finite economies without short sales, Dierker [10]

assumes a desirability condition that is similar to that required here, and
uses an index argument to show the uniqueness of equilibrium . His
conditions and results are different : I assume that the Jacobian never
vanishes in the interior of 0, or on a convex subset C C 0, while [10]
assumes that there is a price adjustment system that is stable at each
equilibrium, or more generally that the Jacobian of the system has the
same sign at each equilibrium . The result obtained here is stronger than
those in [10] : I prove the global invertibility of the map Z; and hence
uniqueness of equilibrium, while [10] proves only that the equilibrium is
unique .
The results presented here are also different from other global invert-

ibility results for finite dimensional economies, such as the Gale-Nikaido
theorem, which apply to maps defined on closed cubes, and require a

"Assumption A.11 .2 is used to show that as relative prices I p(t)1 --> x, the excess demand
for a specific good, the "numeraire," goes to plus infinity ; see p . 304 of [1] .
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nonvanishing Jacobian on the interior of the cube, as well as similar
conditions on the boundary of the cube . The difference is that I only
require conditions on the interior of the price space 0 or on a convex
subset C C 0, and I allow infinite dimensions ; the other results do not.
The desirability condition eliminates boundary equilibrium, so there is no
need to study the boundary of the price space.
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