19,081 research outputs found

    Epistemic Integrity Constraints for Ontology-Based Data Management

    Get PDF
    Ontology-based data management (OBDM) is a powerful knowledge-oriented paradigm for managing data spread over multiple heterogeneous sources. In OBDM, the data sources of an information system are handled through the reconciled view provided by an ontology, i.e., the conceptualization of the underlying domain of interest expressed in some formal language. In any information systems where the basic knowledge resides in data sources, it is of paramount importance to specify the acceptable states of such information. Usually, this is done via integrity constraints, i.e., requirements that the data must satisfy formally expressed in some specific language. However, while the semantics of integrity constraints are clear in the context of databases, the presence of inferred information, typical of OBDM systems, considerably complicates the matter. In this paper, we establish a novel framework for integrity constraints in the OBDM scenarios, based on the notion of knowledge state of the information system. For integrity constraints in this framework, we define a language based on epistemic logic, and study decidability and complexity of both checking satisfaction and performing different forms of static analysis on them

    The i* framework for goal-oriented modeling

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39417-6i* is a widespread framework in the software engineering field that supports goal-oriented modeling of socio-technical systems and organizations. At its heart lies a language offering concepts such as actor, dependency, goal and decomposition. i* models resemble a network of interconnected, autonomous, collaborative and dependable strategic actors. Around this language, several analysis techniques have emerged, e.g. goal satisfaction analysis and metrics computation. In this work, we present a consolidated version of the i* language based on the most adopted versions of the language. We define the main constructs of the language and we articulate them in the form of a metamodel. Then, we implement this version and a concrete technique, goal satisfaction analys is based on goal propagation, using ADOxx. Throughout the chapter, we used an example based on open source software adoption to illustrate the concepts and test the implementation.Peer ReviewedPostprint (author's final draft

    Verification of Evolving Graph-structured Data under Expressive Path Constraints

    Get PDF
    Integrity constraints play a central role in databases and, among other applications, are fundamental for preserving data integrity when databases evolve as a result of operations manipulating the data. In this context, an important task is that of static verification, which consists in deciding whether a given set of constraints is preserved after the execution of a given sequence of operations, for every possible database satisfying the initial constraints. In this paper, we consider constraints over graph-structured data formulated in an expressive Description Logic (DL) that allows for regular expressions over binary relations and their inverses, generalizing many of the well-known path constraint languages proposed for semi-structured data in the last two decades. In this setting, we study the problem of static verification, for operations expressed in a simple yet flexible language built from additions and deletions of complex DL expressions. We establish undecidability of the general setting, and identify suitable restricted fragments for which we obtain tight complexity results, building on techniques developed in our previous work for simpler DLs. As a by-product, we obtain new (un)decidability results for the implication problem of path constraints, and improve previous upper bounds on the complexity of the problem

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Knowledge-based support in Non-Destructive Testing for health monitoring of aircraft structures

    Get PDF
    Maintenance manuals include general methods and procedures for industrial maintenance and they contain information about principles of maintenance methods. Particularly, Non-Destructive Testing (NDT) methods are important for the detection of aeronautical defects and they can be used for various kinds of material and in different environments. Conventional non-destructive evaluation inspections are done at periodic maintenance checks. Usually, the list of tools used in a maintenance program is simply located in the introduction of manuals, without any precision as regards to their characteristics, except for a short description of the manufacturer and tasks in which they are employed. Improving the identification concepts of the maintenance tools is needed to manage the set of equipments and establish a system of equivalence: it is necessary to have a consistent maintenance conceptualization, flexible enough to fit all current equipment, but also all those likely to be added/used in the future. Our contribution is related to the formal specification of the system of functional equivalences that can facilitate the maintenance activities with means to determine whether a tool can be substituted for another by observing their key parameters in the identified characteristics. Reasoning mechanisms of conceptual graphs constitute the baseline elements to measure the fit or unfit between an equipment model and a maintenance activity model. Graph operations are used for processing answers to a query and this graph-based approach to the search method is in-line with the logical view of information retrieval. The methodology described supports knowledge formalization and capitalization of experienced NDT practitioners. As a result, it enables the selection of a NDT technique and outlines its capabilities with acceptable alternatives

    Maintaining Integrity Constraints in Semantic Web

    Get PDF
    As an expressive knowledge representation language for Semantic Web, Web Ontology Language (OWL) plays an important role in areas like science and commerce. The problem of maintaining integrity constraints arises because OWL employs the Open World Assumption (OWA) as well as the Non-Unique Name Assumption (NUNA). These assumptions are typically suitable for representing knowledge distributed across the Web, where the complete knowledge about a domain cannot be assumed, but make it challenging to use OWL itself for closed world integrity constraint validation. Integrity constraints (ICs) on ontologies have to be enforced; otherwise conflicting results would be derivable from the same knowledge base (KB). The current trends of incorporating ICs into OWL are based on its query language SPARQL, alternative semantics, or logic programming. These methods usually suffer from limited types of constraints they can handle, and/or inherited computational expensiveness. This dissertation presents a comprehensive and efficient approach to maintaining integrity constraints. The design enforces data consistency throughout the OWL life cycle, including the processes of OWL generation, maintenance, and interactions with other ontologies. For OWL generation, the Paraconsistent model is used to maintain integrity constraints during the relational database to OWL translation process. Then a new rule-based language with set extension is introduced as a platform to allow users to specify constraints, along with a demonstration of 18 commonly used constraints written in this language. In addition, a new constraint maintenance system, called Jena2Drools, is proposed and implemented, to show its effectiveness and efficiency. To further handle inconsistencies among multiple distributed ontologies, this work constructs a framework to break down global constraints into several sub-constraints for efficient parallel validation

    Theory of Regulatory Compliance for Requirements Engineering

    Full text link
    Regulatory compliance is increasingly being addressed in the practice of requirements engineering as a main stream concern. This paper points out a gap in the theoretical foundations of regulatory compliance, and presents a theory that states (i) what it means for requirements to be compliant, (ii) the compliance problem, i.e., the problem that the engineer should resolve in order to verify whether requirements are compliant, and (iii) testable hypotheses (predictions) about how compliance of requirements is verified. The theory is instantiated by presenting a requirements engineering framework that implements its principles, and is exemplified on a real-world case study.Comment: 16 page

    Semantic validation of the use of SNOMED CT in HL7 clinical documents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HL7 Clinical Document Architecture (CDA) constrains the HL7 Reference Information model (RIM) to specify the format of HL7-compliant clinical documents, dubbed <it>CDA documents</it>. The use of clinical terminologies such as SNOMED CT<sup>® </sup>further improves interoperability as they provide a shared understanding of concepts used in clinical documents. However, despite the use of the RIM and of shared terminologies such as SNOMED CT<sup>®</sup>, gaps remain as to how to use both the RIM and SNOMED CT<sup>® </sup>in HL7 clinical documents. The HL7 implementation guide on <it>Using SNOMED CT in HL7 Version 3 </it>is an effort to close this gap. It is, however, a human-readable document that is not suited for automatic processing. As such, health care professionals designing clinical documents need to ensure validity of documents manually.</p> <p>Results</p> <p>We represent the CDA using the Ontology Web Language OWL and further use the OWL version of SNOMED CT<sup>® </sup>to enable the translation of CDA documents to so-called OWL <it>ontologies</it>. We formalize a subset of the constraints in the implementation guide on <it>Using SNOMED CT in HL7 Version 3 </it>as OWL <it>Integrity Constraints </it>and show that we can automatically validate CDA documents using OWL reasoners such as Pellet. Finally, we evaluate our approach via a prototype implementation that plugs in the Open Health Workbench.</p> <p>Conclusions</p> <p>We present a methodology to automatically check the validity of CDA documents which make reference to SNOMED CT<sup>® </sup>terminology. The methodology relies on semantic technologies such as OWL. As such it removes the burden from IT health care professionals of having to manually implement such guidelines in systems that use HL7 Version 3 documents.</p
    corecore