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ABSTRACT 

As an expressive knowledge representation language for Semantic Web, Web Ontology 

Language (OWL) plays an important role in areas like science and commerce. The problem of 

maintaining integrity constraints arises because OWL employs the Open World Assumption 

(OWA) as well as the Non-Unique Name Assumption (NUNA). These assumptions are typically 

suitable for representing knowledge distributed across the Web, where the complete knowledge 

about a domain cannot be assumed, but make it challenging to use OWL itself for closed world 

integrity constraint validation. Integrity constraints (ICs) on ontologies have to be enforced; oth-

erwise conflicting results would be derivable from the same knowledge base (KB). The current 

trends of incorporating ICs into OWL are based on its query language SPARQL, alternative se-



mantics, or logic programming. These methods usually suffer from limited types of constraints 

they can handle, and/or inherited computational expensiveness.  

This dissertation presents a comprehensive and efficient approach to maintaining integri-

ty constraints. The design enforces data consistency throughout the OWL life cycle, including 

the processes of OWL generation, maintenance, and interactions with other ontologies. For OWL 

generation, the Paraconsistent model is used to maintain integrity constraints during the relation-

al database to OWL translation process. Then a new rule-based language with set extension is 

introduced as a platform to allow users to specify constraints, along with a demonstration of 18 

commonly used constraints written in this language. In addition, a new constraint maintenance 

system, called Jena2Drools, is proposed and implemented, to show its effectiveness and efficien-

cy. To further handle inconsistencies among multiple distributed ontologies, this work constructs 

a framework to break down global constraints into several sub-constraints for efficient parallel 

validation.  
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CHAPTER 1 INTRODUCTION 

1.1 Background  

The term Semantic Web ([BHL01]), coined by the inventor of the World Wide Web Tim 

Berners-Lee in 2001, refers to the web of linked data whose semantics can be understood by ma-

chines for further automatic process. In 2004, the World Wide Web Consortium (W3C) stand-

ardized OWL as the recommended language for modeling the Semantic Web. One of the chal-

lenges that associate with this new technology is maintaining integrity constraints and data con-

sistency in Semantic Web. Complexity arises in detecting cases where instance data fail to meet 

the restrictions imposed by the integrity constraints, due to OWA and UNA. In OWA ([Ng05]), 

statements cannot be evaluated to be false if they are not explicitly stated in or inferred from the 

knowledge base. In NUNA ([RN03]), it is possible that two different identifiers refer to the same 

entity in the knowledge base. 

Example 1.1 The following example in OWL Description Logic (DL) exemplify the integrity 

constraints issues in Semantic Web: 

TBox: 

A ⊑ B 

ABox: 

A(a) 

Note that even by explicitly denoting class A is subsumed by class B (i.e. all instances in class A 

are also in class B), a missing value of a in class B (i.e. B(a) ) would not flag an inconsistency 

problem as expected in Closed World Assumption. Instead, new knowledge B(a) is derived from 

the given information.  
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Several lines of approaches have been proposed to address this issue. They either inte-

grate OWL with a different formalism such as rules or epistemic queries, or provide an alterna-

tive semantics in OWL. The rule-based approach ([EIL+04], [Mot07]) builds a hybrid 

knowledge base in which rules are responsible for imposing ICs on the OWL data. If the KB en-

tails a certain rule predicate, then a violation to ICs exists. However, it is not intuitive to make 

two formalisms work together smoothly, and this approach may be computationally expensive 

when the data set gets huge, depending on rule constructs and its implementation. In addition, 

important aggregate types of constraints are hard, if possible, to express in this formalism. The 

epistemic query-based method ([CGL+07]) checks the satisfaction of ICs by asking queries 

against the KB. The results of these queries determine whether there is a violation or not. Unfor-

tunately, the data complexity that inherits from this approach in expressive DLs still remains un-

known. Most recently, an alternative semantics-based approach ([Tao10]) emerged as a different 

line of solution. In this approach, the semantics of OWL has been extended. Now OWL not only 

serves as an ontology modeling language, but also works as a native language to specify integrity 

constraints. Although the effort to provide a unified ontology and IC language has been very 

much appreciated, confusions in distinguishing these two may arise as well. In addition, non-

traditional semantics can have interoperability issues when an application based on this approach 

interacts with other conventional applications. Also, the types of constraints this unified language 

is capable of expressing are bounded by the OWL formalism. Besides, none of these approaches 

consider constraints spanning multiple ontologies that are distributed and interdependent in na-

ture. 
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1.2 Problem Statement 

This dissertation focuses on maintaining the integrity constraints through the OWL life 

cycle, including the processes of OWL generation, maintenance, and interactions with other on-

tologies.  

 

	  

Figure 1.1 An OWL evolution process. (1) RDB to OWL translation; (2) Update on a single 
OWL ontology; (3) Update on multiple distributed but interdependent OWL ontologies. Integrity 
constraints have to be maintained during these processes. 

 

As shown in figure 1.1, the goal of this dissertation consists of a series of sub-problems. 

The solution to each of the sub-problem itself requires careful consideration.   
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• Maintaining integrity constraints in relational to OWL translation: relational data-

bases are expected to be an important source of OWL generation. However, most, if 

not all, of the vital integrity constraints on relational databases are lost in the current 

approaches to translating from RDB to OWL. 

• Maintaining integrity constraints in a single OWL ontology: updates happen frequent-

ly in ontologies. Although current proposals can check if there is a violation to the en-

forced constraints whenever there is an update, they are limited by the number of 

types of constraints they can handle as well as the efficiency of running an incon-

sistency check. 

• Maintaining global constraints that span multiple OWL ontologies: ontologies are dis-

tributed and interdependent in nature. One change that satisfies local constraints 

might trigger the violation of a global constraint. To the best our knowledge, current-

ly there is no integrity constraint enforcement method available at the global level.  

The dissertation is intended to present practical and efficient solutions to above problems 

separately but under a uniform constraint-modeling framework. In this way, it is possible for an 

integral system to enforce the constraints throughout the OWL life cycle. 

1.3 Organization 

The dissertation is organized as follows. In chapter 2, we introduce the basics of Seman-

tic Web and Ontology, OWL and Description Logics, Logic Programming and logic-based data-

language, and finally the paraconsistent model. These backgrounds are essential for understand-

ing the progress and its significance in this branch of Semantic Web research. Chapter 3 presents 

our approach to preserving critical integrity constraints during relational database to OWL trans-

lation, by using paraconsistent model as the underlying logic. Four common constraints, namely 
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foreign key constraints, total participation constraint, redundant individual type constraint, and 

specific individual type constraint, are explicitly encoded by our approach, to show the validity 

and effectiveness of the paraconsistent approach to constraint maintenance.  Chapter 4 introduces 

Rule-based DL language with set extension, including its syntax, semantics, along with a demon-

stration of 18 commonly used constraints in this form. This language functions as the constraint 

language to allow specification of more types of constraints whose satisfaction is efficient to 

check. Chapter 5 examines characteristics of commonly used bio-ontologies. Then this chapter 

proposes a design of a hybrid architecture that integrates semantic knowledge base technologies 

and forward rule reasoning, called Jena2Drools, to better serve the purpose of maintaining integ-

rity constraints in bio-ontologies. In chapter 6, an improved version of this hybrid system, Je-

na2Drools 2.0, can now take arbitrary legal Semantic Web data for general-purpose constraint 

checking. An evaluation as well as comparisons with the state-of-the-art system are also in this 

chapter. Chapter 7 takes the constraint checking to the global level. It provides the user with a 

framework that is capable of efficiently checking IC violation in parallel, by breaking down the 

global constraint into several sub-constraints that target at a specific site. In the last chapter, a 

general conclusion and a plan for future work are provided. 
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CHAPTER 2 BACKGROUND 

2.1 Semantic Web and Ontology 

2.1.1 Semantic Web 

The term Semantic Web ([BHL01]), coined by the inventor of the World Wide Web Tim 

Berners-Lee in 2001, refers to the web of linked data whose semantics can be understood by ma-

chines for further automatic process. The Semantic Web inherits the expressive knowledge rep-

resentation power from its predecessor Semantic Network ([Joh91]), and extends its syntactic 

and semantic interoperability and inference ability. Since then, numerous applications like FOAF 

([BM06]), TrueKnowledge etc. have sprung rapidly in the domain of science and commerce.  

According to Swoogle ([DFJ+04]), a Google type of search engine for Semantic Web document, 

it has indexed 1.5 million Semantic Web documents of various forms including RDF, RDFS, and 

OWL, by the year 2006. Not only science communities like biomedical science and geoscience 

actively participate in Semantic Web development, but also industry leaders like Oracle, Voda-

fone, Amazon.com, Adobe, Yahoo and Google invest heavily in the smarter web technology. For 

example, Oracle developed the first RDF management system to support application integrations 

in areas of life sciences, enterprise applications and supply chain management. Oracle also ex-

tended the OWL support in this platform. As a leading telecommunication company in Europe, 

Vodafone took the initiatives to introduce RDF in describing ringtones, games, and pictures on 

their website, resulting a better user browsing experience and an increase in revenue. 

The Semantic Web holds the mission to address the information-processing problem in 

the era of web information explosion. As of this writing, the WWW contains some 48 billions of 

web pages ([Kun2011]) whose contents are primarily in nature language. This enormous amount 

of human-readable data increases the difficulty for users to seek, access, utilize, and maintain 
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information by themselves. Users need help from machines to access the web content more intel-

ligently and perform tasks as users demand. The Semantic Web emerged as an idea to enrich da-

ta, documents, applications, and other types of web resources with machine-understandable 

metadata about resources and how they are related to each other. In the Sematic Web, online re-

sources are labeled and linked together in a meaningful way. By building a hierarchical semantic 

structure, the Semantic Web allows automated services to navigate through the machine-readable 

data for accurate search and filtering. Because the Semantic Web “understands” the content, one 

can also take the advantage of its reasoning capability to infer new knowledge from what has 

been explicitly expressed. Therefore, the Semantic Web dramatically enhances extensibility, vis-

ibility and inference ability during the knowledge sharing process, when compared with previous 

approaches.  

	  

Figure 2.1 The Semantic Web Stack (Adapted from Tim Berners-Lee’s slides at 
http://www.w3.org/2002/Talks/04-sweb/slide12-0.html) 

 

The Semantic Web is trying to achieve its goal by employing various layers of technolo-

gies, as shown in figure 2.1. Universal Resource Identifiers (URIs) are used to describe resources 
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and relationships, and thus comprise the vocabulary in the Semantic Web. The extensible 

markup language (XML) is a meta-language to define application-specific markup tags. It serves 

as a grammar to ensure that knowledge conforms to the XML syntax. RDF, RDFS, and OWL 

represent the evolution of the Semantic Web Ontology Languages.         

• RDF: Resource Description Framework ([GJ04]), by its name, is a modeling lan-

guage as well as a framework. RDF provides a reference model that is based on 

graphs. RDF quickly gained popularity since its release because of its simplicity. In 

the RDF model, a set of resources, denoted by URIs, constitute the universe of this 

model. A set of properties, which is essentially a group of binary predicates, is used to 

describe the relationships between resources. Hence, descriptions are usually in the 

triple-element form (i.e. subject-predicate-object).  One important feature is that sub-

ject and object can be anonymous resources without names. This design assumes the 

knowledge about a certain domain is incomplete, in order to address the fact that the 

amount of information on the web is incredibly enormous.  In RDF, it is possible to 

“allow anyone to make statements about any resource”, as part of its design goals. 

RDF is also equipped with its own standard query language called SPARQL, to satis-

fy the basic needs of retrieving information from RDF. 

Example 2.1 The following code snippet from W3C describes a person named Eric Miller in 

RDF language that corresponds to the RDF graph in figure 2.2: 

<?xml version="1.0"?>  

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"               

 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">   

 <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me"> 
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  <contact:fullName>Eric Miller</contact:fullName>      

  <contact:mailbox rdf:resource="mailto:em@w3.org"/>    

  <contact:personalTitle>Dr.</contact:personalTitle>     

 contact:Person>   

</rdf:RDF> 

 

	  

Figure 2.2 A RDF graph describing Eric Miller (from RDF Primer at 
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#figure1) 

 

• RDFS: RDF Schema ([Dan04]) is an augmentation to RDF to provide more expres-

sive power for definition and classification. Some of the major additions include: (1) 

the ability to formally define class and property; (2) the ability to define class hierar-

chies and property hierarchies by making subClassOf and subPropertyOf statements 

about classes and properties; (3) the ability to specify the domain and range of a 
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property to restrict the types of resources that can participate in this property; (4) the 

ability to make Datatype statement to explicitly declare a resources as an instance of a 

class.  RDF and RDFS together provide a light-weighted formalism to represent web 

resources, but they lack powerful inference ability compared to other knowledge rep-

resentation languages. 

• OWL: Web Ontology Language ([MG04]) further enriches RDF and RDFS with em-

phasis on the logical inference. OWL has been evolved from two independent con-

temporary researches, namely DARPA Agent Markup Language (DAML) and Ontol-

ogy Inference Layer (OIL) ([FHH+01]), to become DAML+OIL ([HSH02]). W3C 

standardized OWL in 2004 as a recommendation, and later standardized OWL 2 in 

2009. As a matter of fact, OWL is a family of languages whose members vary in ex-

pressive power and decidability. OWL will be discussed in great details in the next 

section. 

Although the Semantic Web bears promising solutions to intelligently process large web 

data, it also faces many challenges. The vastness of the web content is unprecedented; any auto-

mated reasoning system will have to face such incredibly huge inputs. Impreciseness of defining 

concepts and properties like “popular” and “beautiful” is due to human subjectivity and lack of 

consensus.  Security issues also arise from the openness and high accessibility inherited from the 

Semantic Web. And finally, the issue this dissertation is trying to address is inconsistency. In-

consistencies and violations to integrity constraints are unavoidable during the development of 

large ontologies, either by crafting from scratch or reusing ontologies from heterogeneous 

sources. The result is disastrous.  By the Principle of Explosion, any conclusion is derivable from 

contradiction in logic! As such, conflicting and untrustworthy findings become useless to the us-
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ers. The consistency of ontologies has to be enforced; otherwise the entire effort of building a 

machine-readable system is wasted in vain. Therefore, effective and efficient constraint mainte-

nance mechanism is necessary whenever there is a change to ontologies. 

2.1.2 Ontology 

The relationship between the Semantic Web and ontologies are so close that ontologies 

themselves deserve a closer look at this section. As a matter of fact, ontologies are the backbone 

technology that facilitates the interconnections between resources in the Semantic Web. Recall 

from figure 2.1, W3C has standardized the OWL layer as the ontology language in the Semantic 

Web. Ontology originated from Greek words “onto” and “logia” that refer to the studies of being 

and existence in philosophy. According to [Gru93], ontology is a formal, explicit specification of 

a shared conceptualization. It possesses the ability to model “things” of the world in an abstract 

way, and the ability to define concepts and constraints in an explicit, formal, and machine-

understandable way. In the field of computer science, ontologies are heavily used in artificial in-

telligence to promote knowledge sharing and reuse.  It became popular in application areas such 

as natural language processing, knowledge representation and management, intelligent infor-

mation integration, information retrieval, and electronic commerce. WordNet, as a well-known 

example, contains a thesaurus of over 100,000 terms. Ontologies enable a shared and common 

understanding in a specific domain between users and machines. This property of ontologies sat-

isfies the exact need of a commonly agreed and explicitly specified infrastructure to support se-

mantic interoperability in knowledge sharing activities between human and computers. However, 

ontology development has to emphasize on extensibility, visibility, and inference ability for the 

purpose of the Semantic Web ([DPD+05]).  In short, ontology is the core of the Semantic Web. 
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2.2 OWL and Description Logics 

2.2.1 OWL 

According to a survey ([Car07]) done three years after the formal introduction of OWL, 

OWL topped the user adoption in semantic document development for the Semantic Web, 

among other 15 languages such as RDF, RDFS, Flogic, and SHOE, etc. Out of 627 respondents, 

more than 75% of ontologists have selected OWL to develop their ontologies. A quick search in 

Swoogle displayed roughly 100 thousand OWL files as of this writing. One reason for its popu-

larity is its ability to formally describe complex concepts and relationships among concepts. 

More importantly, OWL provides a way to facilitate automated reasoning at both conceptual lev-

el and instance level. Although numerous ontologies, such as Infectious Disease Ontology, 

Chemical Information Ontology, are available in OWL form, there is still a huge demand for de-

veloping more OWL ontologies for various purposes. 

Example 2.2 The following code snippet from W3C describes the domain of the property has-

BankAccount can be either a Person or Corporation. Please note it is also a mixture of RDFS 

vocabulary and OWL vocabulary, as RDFS is not capable of describing disjunctions. 

<owl:ObjectProperty rdf:ID="hasBankAccount">    

 <rdfs:domain>      

  <owl:Class>            

   <owl:unionOf rdf:parseType="Collection">      

    <owl:Class rdf:about="#Person"/>      

     <owl:Class rdf:about="#Corporation"/>  

   </owl:unionOf>  

  </owl:Class>  
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 </rdfs:domain>  

</owl:ObjectProperty> 

W3C further categorized OWL into three variants, namely OWL Lite, OWL DL, and 

OWL Full, with OWL Lite being the least expressive one, and OWL Full being the most expres-

sive one. Since each variant strictly extends its simpler predecessor, the following statements 

hold: 

• Every legal ontology in OWL Lite is also legal in OWL DL, and thus legal in OWL 

Full. 

• Every legal ontology in OWL DL is also legal in OWL Full. 

These three variants provide trade-offs between computational complexity and the ex-

pressive power of ontology constructs. Next, we will examine these three variants in great de-

tails. 

• OWL Lite: As its name indicates, OWL Lite is the simplest variant in OWL family. 

OWL Lite disallows the usage of owl:oneOf, owl:unionOf, owl:complementOf, 

owl:hasValue, owl:disjointWith, and owl:DataRange. It also put restrictions on 

owl:equivalentClass, owl:intersectionOf, and owl:allValuesFrom, and much more. 

For a full list of OWL vocabulary and limitations of OWL Lite, please refer to 

([MG04]). The reduction in expressivity results in a gain in efficiency of complete 

reasoners for OWL Lite. In a nutshell, OWL Lite is capable of modeling class and 

property hierarchies, but short of inference features. The design goal of such variant 

is to provide the OWL family with the interoperability with non-reasoning systems 

like RDFS systems and databases. 
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• OWL DL: OWL DL relaxes some of the OWL Lite restrictions by allowing conjunc-

tion, disjunction and negation in OWL DL constructs. As a matter of fact, OWL DL 

permits the entire OWL vocabulary but with some restrictions. An important infer-

ence mechanism, namely subsumption, is available as well. These features are care-

fully designed, as OWL DL is rooted in Description Logics ([BN02]) who themselves 

are a family of languages. Description Logics, which we shall see in details very 

shortly, focus on providing formal semantics within decidable inference ability. It has 

been shown ([HS02]) that, with the complexity between polynomial and exponential 

time, basic inference in most variants of Description Logics is decidable. OWL DL 

builds around Description Logics in such a way that OWL DL can maximize its ex-

pressivity but still stay within the range, so that decidable reasoning procedures are 

available for Description Logics reasoners. In other words, OWL DL represents a 

balance point between expressive power and computational complexity. This is exact-

ly the reason why OWL DL draws so much attention in Semantic Web research.   

• OWL Full: OWL Full is the most expressive variant. However, its decidability can-

not be guaranteed. One major flexibility in OWL Full but missing in OWL DL and 

OWL Lite is that the set of classes and the set of instances can overlap. In other 

words, an identifier can both be a class and an instance at the same time. For exam-

ple, “professor” as a class refers to the collection of individuals who hold tenure track 

in universities and colleges; in the meanwhile it can be an instance of the class “occu-

pation”. In addition, the datatType properties are a subclass of objectType properties.  

All the OWL vocabulary can be used unrestrictedly in OWL Full. However, these 

features come at the price of sacrificing decidability. 
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2.2.2 Description Logics 

Now the focus changes to Description Logics ([BN02]), as they are the underlying foun-

dation of the most popular language OWL DL. 

Description Logics were firstly introduced in the 1980s to overcome the ambiguities of 

early semantic networks. They represent a class of knowledge representation formalisms that de-

scribe the knowledge of a specific domain (a.k.a “world”) by defining classes of the domain, and 

then utilizing these concepts to specify properties of objects and individuals in this domain. On 

top of knowledge representation, Description Logics offer a featured reasoning service that al-

lows one to infer implicit new knowledge from the explicitly described knowledge base.  They 

possess more expressive power than propositional logic, in the meanwhile, more efficient deci-

sion procedures than first-order logic.  

A knowledge base can be divided into two components: the TBox and the ABox. The 

TBox introduces the terminology, i.e. the vocabulary of an application domain, while the ABox 

specifies assertions about named individuals in terms of this vocabulary. The vocabulary consists 

of concepts (or classes in OWL) and roles (or properties in OWL). Concepts are collections of 

individuals, and roles denote binary relationships between individuals. Atomic concepts refer to 

concepts that are directly defined by their members. They serve as the building blocks for com-

plex concepts. Atomic roles and complex roles can be defined similarly. Different flavors in the 

Description Logics are differed by the constructs they can use in building complex concepts and 

roles. Besides storing terminologies and assertions, reasoning services are also common to the 

Description Logics family. 
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By convention, letters A and B denote atomic concepts; letter R denotes atomic roles; and 

letter C and D denote concept descriptions. Next, we formally introduce the syntactical grammar 

and semantics for a basic description language ALC. 

TBox syntax: 

C    →   A|        (atomic concept) 

  |	   	   (universal concept)	  

  |	   	   (bottom concept)	  

  ¬A|  (atomic negation) 

  C D|  (intersection) 

  ∀R.C |  (value restriction) 

  ∃R. |  (limited existential quantification) 

  ¬D  (arbitrary negation) 

TBox semantics: 

Let I be a set of interpretations that consist of a non-empty set ΔI (the domain of the in-

terpretation) and an interpretation function, which assigns to every atomic concept A a set AI ⊆ 

ΔI and to every atomic role R a binary relation RI ⊆ ΔI × ΔI. The interpretation function is ex-

tended to concept descriptions by the following inductive definitions: 

I = ΔI 

 I = ∅ 

(¬A) I  = ΔI \  AI 

(C  D) I = CI ∩ DI 

(∀R.C )I = { a ∈ ΔI | ∀b.(a,b) ∈  RI →  b ∈ CI } 

(∃R. )I = { a ∈ ΔI | ∃ b.(a,b) ∈ RI } 
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(¬D) I  = ΔI \  DI 

Example 2.3 To give an example of what can be expressed in ALC, consider two atomic con-

cepts Person and Female, and an atomic role hasChild, then both Person ∃ hasChild.  and 

Person  ∀ hasChild.Female are valid ALC concepts, denoting those people that have at least 

one child, and those people whose children are all female, respectively. 

 Other members of Description Logics family, like FL-, can be obtained from ALC by dis-

allowing arbitrary negation and atomic negation. If we further disallow limited existential quanti-

fications, we can have FL0.     

Definition 2.1 (Terminological Axioms) Terminological axioms are statements about how con-

cepts or roles are related to each other. In general, they have the form 

C ⊑ D  (R ⊑ S) or 

C ≡D  (R ≡ S), 

where C, D are concepts and R, S are roles. Axioms of the first kind are called inclusions, while 

axioms of the second kind are called equalities.  

Definition 2.2 (Definitions) Definitions are specific axioms that identify terminologies as sets of 

definitions by which we can introduce atomic concepts as abbreviations or names for complex 

concepts. An equality whose left-hand side is an atomic concept is a definition. We call a finite 

set of definitions T a terminology or TBox if no symbolic name is defined more than once.     

Definition 2.3 (Specializations) Specializations are inclusions whose left-hand side is atomic. 

They are introduced for certain concepts that cannot be defined completely, but we can still state 

necessary conditions for concept membership using an inclusion. 

Definition 2.4 (Model of Axioms) Given T a set of axioms, then interpretation I satisfies T iff I 

satisfies each element of T. If I satisfies an axiom (resp. a set of axioms), then we say that it is a 
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model of this axiom (resp. set of axioms). Two axioms or two sets of axioms are equivalent if 

they have the same models. 

As the other component of a knowledge base, ABox describes a specific state of affairs of 

an application domain in terms of concepts and roles. 

ABox syntax: 

C(a), 

R(b, c). 

where C is a concept and R is a role, a, b, c are names for individuals. 

ABox semantics: 

We now give the semantics to ABox by extending interpretations to individual names. 

From now on, an interpretation I = (ΔI, • I ) not only maps atomic concepts and roles to a set of 

relations, but in addition maps each individual name a to an element aI ∈ ΔI.  

C(a) I  = aI ∈ CI  

R(b, c) I = (aI, bI) ∈ RI 

An interpretation satisfies the ABox A if it satisfies each assertion in A. In this case we say 

that I is a model of the assertion or of the ABox. I satisfies an assertion α or an ABox A with re-

spect to a TBox T if in addition to being a model of α or of A, it is a model of T. Thus, a model of 

A and T is an abstraction of a concrete world where the concepts are interpreted as subsets of the 

domain as required by the TBox and where the membership of the individuals to concepts and 

their relationships with one another in terms of roles respect the assertions in the ABox. 

Often, an analogy is established between databases on the one hand and DL knowledge 

bases on the other hand. The schema of a database is compared to the TBox and the instance 

with the actual data is compared to the ABox. However, the TBox imposes semantic relation-
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ships between the concepts and roles that do not have counterparts in database semantics. In ad-

dition, the semantics of ABox differs from the usual semantics of database instances. While a 

database instance represents exactly one interpretation, namely the one where classes and rela-

tions in the schema are interpreted by the objects and tuples in the instance, an ABox represents 

many different interpretations, namely all its models. As a consequence, absence of information 

in a database instance is interpreted as negative information, while absence of information in an 

ABox only indicates lack of knowledge.  

Example 2.4: If the only assertion about Peter is hasChild(PETER, HARRY), then in a database 

this is understood as a representation of the fact that Peter has only one child, Harry. In an 

ABox, the assertion only expresses that, in fact, Harry is a child of Peter. However, the ABox 

has several models, some in which Harry is the only child and others in which he has brothers or 

sisters. Consequently, even if one also knows (by an assertion) that Harry is male, one cannot 

deduce that all of Peter’s children are male.  

The semantics of ABox is therefore sometimes characterized as an “open-world” seman-

tics, while the traditional semantics of databases is characterized as a “closed-world” semantics. 

Since ABox represents possibly infinitely many interpretations, namely its models, query an-

swering and reasoning are more complex. 

Finally, now we will briefly discuss the reasoning tasks in Description Logics. 

TBox reasoning: 

• Satisfiability: A concept C is satisfiable with respect to T if there exists a model I of 

T such that CI is nonempty. In this case we say also that I is a model of C. 

• Subsumption: A concept C is subsumed by a concept D with respect to T if CI ⊆ DI 

for every model I of T. In this case we write C ⊑T D or T C ⊑D. 
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• Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI for 

every model I of T. In this case we write C ≡ T D or T  C ≡D. 

• Disjointness: Two concepts C and D are disjoint with respect to T if CI \ DI = ∅ for 

every model I of T. 

Checking (un)satisfiability of concepts is a key inference. It has been shown that all other 

three reasoning tasks can be reduced to unsatisfiability check. 

Proposition 2.1 (Reduction to Unsatisfiability): for concepts C and D, the following statements 

hold with respect to a TBox: 

1) C is subsumed by D ⇔ C  ¬D is unsatisfiable; 

2) C and D are equivalent ⇔ both (C  ¬D) and (¬C  D) are unsatisfiable; 

3) C and D are disjoint ⇔ C  D is unsatisfiable. 

ABox reasoning: 

• Consistency: An ABox A is consistent with respect to a TBox T, if there is an inter-

pretation that is a model for both A and T. We simply say that A is consistent if it is 

consistent with respect to the empty TBox. 

• Instance: It checks whether an ABox entails an assertion. We say that an assertion α  

is entailed by A and we write A   α , if every interpretation that satisfies A, that is, 

every model of A, also satisfies α . 

• Retrieval: given an ABox A and a concept C, to find all individuals a such that A   

C(a). 

• Realization: given an individual a and a set of concepts, find the most specific con-

cepts C from the set such that A   C(a). It is the dual inference problem to retrieval. 
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2.3 Logic Programming and Logic-based Data-Language 

2.3.1 Logic Programming 

Logic programs have emerged as a very expressive formalism for knowledge representa-

tion. Deductive databases combine logic programming with relational databases to construct da-

tabase systems with formulas that can also efficiently deal with large datasets. Deductive data-

bases are more expressive than relational databases but less expressive than logic programming 

systems. One of differences between logic programs and deductive databases is that building up 

complex symbols by function symbols is allowed in logic programs, while this is not allowed in 

deductive databases. 

We give a brief overview of general logic programs. We first look at the logic formulas, 

called clauses.  

Definition 2.5 (Clause) A clause is a formula with universal quantification over the whole for-

mula, that is, in the form of: 

∀(𝐿!⋁ … ⋁ 𝐿!) 

where for 0 ≤ i ≤ n each 𝐿! is an atomic formula (a positive literal) or the negation of an atomic 

formula (a negative literal). 

Definition 2.6 (General Logic Program) A general logic program is a set of clauses that are 

usually expressed in the form: 

A ← B!, B! … B!.  

where A, 𝐵!, 𝐵!,…, 𝐵! are atomic formulas and n ≥ 0. An atomic formula is of the form P(𝑡!, 

𝑡!,..., 𝑡!) or negation of P(𝑡!, 𝑡!,..., 𝑡!) (noted as ¬P(𝑡!, 𝑡!,...,𝑡!)) where P is the predicate sym-

bol with finite arity n ≥0 and 𝑡!, 𝑡!,..., 𝑡! are terms. Here A is called the head or conclusion of the 
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rule and conjunction of 𝐵!  ʌ 𝐵! ʌ …ʌ 𝐵! is called the body or premise of the rule. Rules are di-

vided into two classes: 

1) EDB (extensional database) rules are known as facts. In this situation the body is 

empty (i.e. n=0) and the implication arrow ← is omitted. The head A is implied to be 

always true and EDB rules normally are written at the beginning of the program. 

EDB is stored as relations in the database. If p is an EDB, there will be a correspond-

ing relation, say P, in the database; and p(𝑎!,…, 𝑎!) is true if and only if there is a tu-

ple (𝑎!,…, 𝑎!) in the relation P.  

2) IDB (intensional database) rules are evaluated using the EDB and IDB predicates in 

the body can be in a recursive manner to give the meaning of the program.  

A deductive database system is a database system, which can make deductions based on 

rules and facts stored in the deductive database. A deductive database is commonly viewed as a 

general logic program and can have negation and express recursive views. DATALOG is the 

language typically used to specify facts, rules and queries in deductive databases. We now intro-

duce the syntax of deductive databases in the DATALOG form. 

Definition 2.7 (Alphabet) An alphabet is a finite set of symbols. 

1) Constant symbol 

The constants can be atoms, or numbers. 

2) Variable symbol 

The variables are letters or words written in capital letters. 

3) Predicate symbol 

The predicate symbols are letters or words. 

4) Special symbol 
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Special symbols include (, ), _, ，, <, ≤, >, ≥, <>, =, ., :-.  

Definition 2.8 (Term) The set T of terms over a given alphabet A is the smallest set such that 

1) any constant in A is in T ; 

2) any variable in A is in T . 

Definition 2.9 (Atomic Formula) If p is an n-ary predicate symbol and  𝑡!, 𝑡!,..., 𝑡!  are terms 

and at least one of terms must be a constant or a variable, p(𝑡!, 𝑡!,..., 𝑡!) is a formula called an 

atomic formula. 

Definition 2.10 (Literal) A literal is either a positive literal A or a negative literal ¬A, where A 

is an atomic formula. 

Definition 2.11 (Rule) Deductive rules are expressed in the following form: 

p :- q!,  q! ,..., q!. 

where n ≥1 and p is an atomic formula and 𝑞!,  𝑞! ,..., 𝑞! are literals. If n=0, the body of the rule 

is empty, and implication symbol :- will be omitted. This rule is in the EDB in the form of:  

p. 

Definition 2.12 (Deductive Database) A deductive database is a finite set of deductive rules. 

Example 2.5 The following example is a deductive database consists of three EDB rules and two 

IDB rules with recursive negation. 

t0(1). 

g(1, 2, 3). 

g(3 ,2, 5). 

t(Z) :- t0(Z). 

t(Z) :- g(X, Y, Z), t(X), ¬t(Y). 
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Now we will briefly present the semantics of logic programming. To determine the set of 

models of a logic program, we can use the work of Herbrand model. To determine the Herbrand 

model, we first look at the concept of ground. A term, atom, literal, or clause is called ground if 

it contains no variables. A ground instance of a term, atom, literal, or clause Q is the term, atom, 

literal, or clause, respectively, obtained by replacing each variable in Q by a constant. Now we 

focus on Herbrand models illustrated by definitions and an example.  

Definition 2.13 (Herbrand universe and Herbrand base) For a general deductive database DB 

the Herbrand universe 𝑈!" is the set of all ground terms that can be created using constant. Note 

that 𝑈! for logic programs P is the set of all ground terms that can be created using constant and 

function symbols. The Herbrand base 𝐵!" is the set of all ground atoms created using predicate 

symbols and object forms. 

Definition 2.14 (Herbrand interpretation) A Herbrand interpretation of a general deductive 

database DB is an interpretation 𝐼!" such that: 

• the domain of 𝐼!" is 𝑈!"; 

• a predicate mapping defines a mapping function F such that: 

• for every constant c or variable v, mapping is defined to be itself: 

𝐹! : c → 𝑈! , 𝐹! : v → 𝑈!; 

• for every n-ary predicate symbol p  

𝐹! : p → the set of all relations on 𝑈!!, that is, the set of all n-tuples of ground 

terms;  

• for every n-ary functor f, the mapping is defined as follows: 

𝐹! : f → the set of all functions on 𝑈!!, that is, all ground terms are composed 

into f; 
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• The properties of Herbrand interpretations are as follows: 

• any subset of 𝐵!" is termed 𝐼!"; 

• Atoms in the interpretation are assumed to be true and those outside the inter-

pretation are assumed to be false. 

Definition 2.15 (Herbrand model) A Herbrand interpretation is a Herbrand model (abbr. mod-

el) of a set of formulas if and only if each formula in the set is true in the Herbrand interpreta-

tion.  

2.3.2 Logic-based Data-Language 

The logic-based Data-Language (LDL) ([TZ86]) is a language introduced in 1980s. Its 

design goal is to combine the flexibility of logic programming with the high performance of the 

relational database technology. The query languages of relational databases are logic-based. Re-

lational systems are considered superior to logic programming with respect to ease of use, data 

independence, suitability for parallel processing, and secondary storage access. On the other 

hand, the expressive power and functionality offered by database query language is limited com-

pared to the logic programming languages. LDL is an effort that combines these two approaches 

by designing and supporting a logic-based query language that combines the power of logic pro-

gramming with the advantages in relational systems.  

The language LDL is equipped with the following features: 

• LDL is based on pure Horn clause logic (i.e., the sequential order of execution of 

rules in a procedure or sub-goals within a given rule has been removed). 

• Sets have been introduced as primitive data objects that can be used directly in the 

language rather than their simulation through lists as in logic programming. 

• A form of negation is based on set-difference. 
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• Schema-definition and update facilities were included. 

Among the above features, the introduction of set is the most interesting one to our re-

search. The model of computation employed by LDL is that of one set at a time. Consequently, 

the response to a query would be to compute all of the possible answers that can be deduced 

from the base relations. LDL provides an explicit form of set manipulation; it enables the user to 

use sets as data objects in the specification of rules and facts.  The advantages of having sets as a 

primitive in LDL include convenience, expressive power, and efficiency. Three set constructs 

become handy in set manipulation. 

• Set-enumeration: LDL allows the specification of complex terms in facts and rules; 

these complex terms may include sets. One of the ways to specify a set is to explicitly 

list every set element whose order does not matter. 

Example 2.6: This example specifies the relationship between a manager and his em-

ployees. Each member of the employee set is represented by a tuple, which in itself 

contains a set of hobbies of the employee. 

employees_of (bill, brown, 

{(red, russell, {working, jogging, bicycling}), 

(mac, fat, {cooking, eating}), 

(graham, greene,{spy-novels}), 

… }). 

• Set-generation: Set-generation is the process of generating all of the elements of a 

set that meet some specifications. In standard mathematical notation this would be 

denoted as s = {x | p(x)} where p(x) is a predicate on x. In LDL, set generation is 

specified in rule form, as follows: 
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s (<x>) ← p(x). 

Example 2.7: This example generates a set of items supplied by a supplier when the 

base relation is suppl(Sup#, Item#). 

item_set(Sup#, <Item#>) ← suppl(Sup#, Item#). 

• Partition: The partition primitive partitions a set S into two disjoint subsets s1 and s2 

having at least one element; the exact form of partitioning is transparent to the user. 

The partition primitive is essential for counting in set. It enables the specification of 

cardinality in a recursive manner, and the operation on each of the partitioned subsets 

can proceed in parallel.  

Example 2.8: This example generates the number of items supplied by each supplier. 

The constructs cardinality and partition are required to do so. 

item_count(Sup#, Count) ← item_set(Sup#, S), cardinality(S, Count). 

cardinality({}, 0). 

cardinality({X}, 1). 

cardinality(Set, Value) ← partition(Set, Set1, Set2), 

cardinality(Set1, Value1), 

cardinality(Set2, Value2). 

Value = Value1 + Value2. 

2.4 The Paraconsistent Model 

In this section we present key background knowledge of paraconsistent relational data 

model related to the dissertation. The paraconsistent relational data model extends the traditional 

relational model with explicit negation by allowing both positive and negative facts to be stored 
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in paraconsistent relations. Here we give a brief overview of this model, for a detailed descrip-

tion the reader is referred to [BS95]. 

2.4.1 Paraconsistent Relations 

Paraconsistent relations are the fundamental mathematical structures underlying the mod-

el, which essentially contains two kinds of tuples, ones that definitely belong to the relation and 

others that do not belong to the relation.   

Definition 2.16 (Paraconsistent) A paraconsistent relation R is defined as a pair <𝑅!, 𝑅!>, 

where 𝑅! and 𝑅! are sets of tuples in the relational schema, where tuples in 𝑅! denote positive 

facts and tuples in 𝑅! denote negative facts. 

Let a (relation) scheme Σ be a finite set of attribute names. Let τ(Σ) denote the set of all 

tuples on Σ. A paraconsistent relation R on scheme Σ, is consistent if 𝑅! ∩ 𝑅! = ∅. Moreover R 

is called complete relation if 𝑅! ∪ 𝑅!= τ(Σ). If R is consistent and complete i.e. 𝑅! = τ(Σ) – 𝑅!, 

then it is a total relation.  

If a tuple falls beyond the union of 𝑅! and 𝑅!, it can only be assumed as unknown. If a 

tuple appears in both 𝑅! and 𝑅!, it indicates an inconsistency. Notice that a paraconsistent struc-

ture is strictly general than an ordinary relation. For any ordinary relation, there exists a corre-

sponding paraconsistent relation, but not vice versa. The paraconsistent data model is able to 

handle incomplete information about tuples, yet still provides a way to check inconsistent data. 

For the above reasons, paraconsistent model might be suitable to mediate translation from rela-

tional data to OWL instances, while keeping the ability to maintain constraints and reject incon-

sistent data. For details about a complete set of algebraic operators on paraconsistent relations 

and appropriate handling of storage issues, the reader is referred to [BS95]. 
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2.4.2 Algebraic Operators on Paraconsistent Relations 

This sub-section presents some algebraic operators on paraconsistent relations related to 

this dissertation. To reflect the generalization of algebraic operators of ordinary relations, a dot is 

placed over the ordinary relation operator to obtain corresponding paraconsistent relation opera-

tor and distinguish from the ordinary operator. For example, ⋈ denotes the natural join among 

ordinary relations, and ⋈ denotes natural join among the paraconsistent relations. We first look 

at related set-theoretic operators. 

Definition 2.17 (set-theoretic operators) Let R and S be two paraconsistent relations on scheme 

Σ. Then, 

• the complement of R, denoted by −  R, is a paraconsistent relation on scheme Σ given 

by 

(−  𝑅)! = 𝑅!, (−  𝑅)! = 𝑅!;   

• the union of R and S, denoted by R ∪ S, is a paraconsistent relation on scheme Σ giv-

en by 

(𝑅   ∪   𝑆)! = 𝑅! ∪ 𝑆!, (𝑅 ∪   𝑆)! = 𝑅! ∩ 𝑆!-; 

• the intersection of R and S, denoted by R ∩ S, is a paraconsistent relation on scheme 

Σ given by 

(𝑅   ∩   𝑆)!= 𝑅! ∩  𝑆!,  (𝑅   ∩   𝑆)! = 𝑅! ∪   𝑆!; 

• the difference of R and S, denoted by R − S, is a paraconsistent relation on scheme Σ 

given by 

(𝑅  −  𝑆)! =  𝑅! ∩ 𝑆!, (𝑅  −  𝑆)!= 𝑅! ∪ 𝑆!. 
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Now, we look at relation-theoretic operators. If Σ and Δ are relation schemes such that Σ 

⊆ Δ, then for any tuple t ∈ τ(Σ), we let tΔ denote the set {t′ ∈ τ(Δ)| t′(A) = t(A), for all A ∈ Σ} of 

all extensions of t. We extend this notion for any T ⊆ τ(Σ) by defining TΔ = ∪!∈! tΔ. 

Definition 2.18 (Natural Join/ Join) Let R and S be partial relations on schemes Σ and Δ, re-

spectively. Then, the (natural) join of R and S, denoted by R ⋈ S, is a partial relation on the 

scheme Σ ∪ Δ, given by 

(𝑅   ⋈   𝑆)!= 𝑅!⋈ 𝑆! ,  (𝑅   ⋈   𝑆)!= (𝑅!) Σ∪Δ ∪ (𝑆!) Σ∪Δ; 

It is important to observe that (𝑅   ⋈   𝑆)! contains all extensions of tuples in 𝑅! and 𝑆!, because 

at least one of R and S is believed false for these extended tuples.  

Definition 2.19 (Projection) Let R be a paraconsistent relation on scheme Σ, and Δ be any 

scheme. Then, the projection of R onto Δ, denoted by 𝜋Δ(R) is a paraconsistent relation on Δ giv-

en by 

𝜋Δ(𝑅)!=  = πΔ((𝑅!) Σ∪Δ ), 𝜋Δ(𝑅)!  = { t ∈ τ(Σ) | t Σ∪Δ  ⊆   (𝑅!)  Σ∪Δ  }, 

 where πΔ is the usual projection over Δ on ordinary relations. 

Definition 2.20 (Strong Projection) Let R be a paraconsistent relation on scheme Σ, and Δ be 

any scheme. Then, the strong projection of R onto Δ, denoted by 𝜇Δ(R) is a paraconsistent rela-

tion on Δ given by 

𝜇Δ(R) = −  (𝜋Δ(−  R)). 
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CHAPTER 3     MAINTAINING INTEGRITY CONSTRAINTS IN RELATIONAL TO 

OWL TRANSLATION 

 The data of Semantic Web exist in machine readable format like RDF(S) and OWL, in 

order to promote data exchange on the web based on their semantics.  Besides starting from 

scratch, one can also automatically construct OWL ontologies by translating relational databases 

into RDFs/OWLs, although this method tends to lose most, if not all, vital constraints from the 

relational databases.  In this chapter, we focus on maintaining the integrity constraints in the very 

first process of OWL lifecycle shown in figure 1.1. We present a paraconsistent logic based 

method to maintain as many relational integrity constraints as possible while translating relation-

al data into OWL. In addition, we are able to further enforce OWL-like constraints on the result-

ing ontologies, as they are often desirable if we want to fully exploit the expressiveness and logic 

inference power of OWL. Most importantly, with this method, the problem of inconsistency 

checking of OWL instances reduces to simple instance matching within two classes. 

3.1 Motivations 

Although numerous ontologies are available in the RDF/RDFS form, there is still a huge 

demand for developing more OWL ontologies for various purposes. With the help of developing 

tools such as Protégé, one can always construct ontology from scratch by first defining concepts 

and relationships in the TBox, followed by inserting instances of concepts and relationships into 

the ABox of the ontology. However, when the knowledge base gets huge, this developing pro-

cess may become time-consuming and erroneous. The idea of translating relational databases 

into OWL automatically seems appealing, as relational resources are abundant and of great im-

portance. Taking the contents of deep web into consideration, the market for this idea becomes 

several orders of magnitude larger. For one reason, the size of those hidden data is incredibly 
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enormous, and for the other reason, the owners of these resources might want to take advantages 

of the reasoning services in OWL as well. However, current approaches to converting relational 

information into OWL instances tend to lose most, if not all, vital constraints from the relational 

databases. Undoubtedly, maintaining integrity constraints in semantic web could be as important 

as in relational databases, especially for database users who wish to exploit automated reasoning 

in OWL. Integrity constraints are valuable in checking and enforcing data consistency, providing 

further semantics on data, and promoting semantic query optimization. 

Researchers have constantly shown the important usages of mapping from relational da-

tabases to OWL in the promotion of semantic web ([Ber04], [SSV02],  [Biz03]). In ([Biz03]), 

Bizer introduced a database to RDF mapping language called D2R MAP. In accordance, W3C 

published new ontology patterns that are used to capture n-ary relations in RDF and OWL, while 

conventional semantic web languages are only capable of representing binary relations. Although 

these approaches greatly facilitate the generation of OWL instances, they tend to lose vital con-

straint information and barely support generic mapping. One the other hand, efforts have been 

spent on integrating integrity constraints within RDFs ([TDB+08], [MHS07], [MHR06]). The 

current trend of incorporating ICs into OWL is either based on the query language SPARQL 

([TDB+08]) or based on logic programming ([MHR06]). However, to the best of our knowledge, 

none of them combines with the relational to RDF mapping and addresses the important relation-

al aspect of integrity constraints like our approach does. 

3.2 The paraconsistent-based translation 

Throughout this section, we will demonstrate our approach using the following small yet 

effective relational database in figure 3.1. There are four relational tables, namely people, stu-

dent, course, and take. For simplicity (and without loss of generality) we will assume that each 
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of the ”entity” tables (in this case all but the take table) consists of one column containing the 

primary key value and each ”relationship” table (in this case the take table) consists of the prima-

ry key columns of the entity types involved in the relationship. Again, for simplicity we will as-

sume that all relationship tables correspond to binary relationships, as the same in OWL.  

	  

Figure 3.1 A small relational database with 3 foreign keys: (1)student  pointing to people; 
(2)student  column in take  pointing to student; (3)course  column in take  pointing to course. 

3.2.1 Foreign Key Constraint 

Our method to deal with foreign keys is composed of five steps as detailed below: 

Step 1:  

Convert the given relational database into a paraconsistent database by adding the follow-

ing tables shown in Figure 3.2, using the Relational to Paraconsistent Transformation Algorithm. 

Missing tuples are considered to be false under the relation predicate due to the Closed World 

Assumption in relational database, thus these tuples go into negative tables.   

The following figure shows the negative data tables for the example database. 

	  

Figure 3.2 Negative data tables 
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Step 2:  

Translate positive table(s) in the relational database into regular classes and properties in 

OWL. Each tuple of a positive table will become an OWL instance of a class whose name is the 

same as the corresponding table name in the relational data. For the example database, we will 

get people(a), people(b), people(c) , student(a), student(b), course(s), course(t) , take(a, s), 

take(b, t ). 

 

 

Algorithm: Relational to Paraconsistent Transformation  

For every entity table R 

Let S be the most general super-class of R 

(Note: S  = R if R does not have any superclass) 

 = {a | a ∈ S  and a ∉ R} 

End For; 

 

For every relationship table R that has two columns (say A and B) 

Let C be the most general superclass of A 

  (C = A if A  does not have any superclass) 

Let D be the most general superclass of B 

  (D = B if B does not have any superclass) 

 = {(a, b) | a ∈ C  and b ∈ D and (a, b) ∉ R} 

End For; 
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Step 3:  

Express integrity constraints as regular Description Logic axioms. For the first two for-

eign keys in the sample relational database, the following two DL axioms will be generated: 

student ⊑ people 

∃ take.  ⊑ student 

Step 4:  

Translate the negative table(s) that corresponds to the right-hand side of the DL axioms 

into new OWL class(es). If the right-hand side is in the form of negation (e.g. ¬C), still translate 

the table C  into an OWL class. For the above example, we will introduce two new OWL clas-

ses: people  and student  and introduce the instance student (c). 

Step 5 (IC Check):  

Check whether every non-empty negative class and its positive counterpart are disjoint by 

simply running the following SPARQL query: 

ASK{ 

? x rdf:type  C. 

? y rdf:type  C . 

FILTER ( ?x = ?y) 

}. 

If yes then IC is not violated. In our case, we only need too check if student and student  classes 

in OWL ontology are disjoint. From now on till the end of section 3.2.1, let us only focus on the 

second axiom. For example, if we are trying to insert take(c, t) into our ontology, system will 

attempt to insert student(c) automatically. Then a violation will occur since our ontology con-

tains both student(c) and student (c). 
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Please note that the reason for not translating negative tables for the left-hand side of the 

DL axioms (in the case of the second axiom, take table) into OWL classes is that we still want 

to maintain some flexibility for OWL. Otherwise every insertion of new data into current ontolo-

gy will cause violation. For example, instead of inserting take(c, t), we insert take(a, t)  into 

OWL, and our OWL is still legal under the second axiom, even though system will attempt to 

insert student(a) automatically (and will find student(a)  is already present). This is consistent 

with our relational DB because take(a, t)  is a valid insertion in relational database as well. How-

ever, if take class is also present as the result of translating negative left-hand side tables, inser-

tion of take(a, t)  will raise violation because take (a, t)  will also be available in our ontology. 

This false positive indication of violation is obviously unreasonable. 

3.2.2 Total Participation Constraint 

Our methodology can also easily handle Total Participation Constraint that is present in 

the relational database. Consider the constraint: every student must take a course. The first two 

steps of our methodology to handle such constraints are exactly the same as for foreign key con-

straint. We now start directly from Step 3 by expressing the integrity constraint as: 

student ⊑ ∀take.course 

 As take is on the right-hand side of this axiom, in Step 4, we include a take  class and its in-

stances take (a, t), take (b, s), take (c, t), and take (c, s). In Step 5, if we want to insert stu-

dent(c) into OWL, we will have take(c, t), or take(c, s) or both. Each one of these three cases will 

raise violation because they all conflict with take  class. 
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3.3 OWL-style constraints 

In addition to maintaining the integrity constraints that were enforced in the original rela-

tional database, we are also able to specify and enforce additional OWL-style constraints on the 

transformed RDF(S)/OWL data. We illustrate two such constraint types with examples. 

3.3.1 Redundant Individual Type Constraint 

An OWL-style constraint called redundant individual type constraint is illustrated first. 

This constraint specifies that an individual cannot be explicitly declared to have both class C and 

D (where D is a superclass of C) as its types. Suppose C ⊑ D is already defined in the TBox. 

Then, in Step 3 this constraint can be expressed as: 

C ⊑ ¬D 

To enforce this constraint on student class we must check if every instance in student also ap-

pears in people. If an instance of student does not appear in people , a constraint violation 

should be reported. 

Please note the inclusion of C ⊑ D and C ⊑ ¬D at the same time may seem contradictory, 

but they bear different meanings. The former is a part of regular ontology and can be used to 

formally infer new knowledge, while the later is created solely for generating negative tables and 

integrity checking and it should not participate in regular reasoning services. These differences 

can be easily differentiated during implementation. 

3.3.2 Specific Individual Type Constraint 

An OWL-style constraint called Specific Individual Type constraint requires that the de-

clared type of a given individual in the instance data must be the most specific one. Suppose the 

following class hierarchy is already defined in the TBox: 

C1 ⊑ C2 
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C2 ⊑ C3 

... 

Ci−1 ⊑ Ci 

... 

Cn−1 ⊑ Cn 

Then, in Step 3, this constraint can be expressed as follows: 

for each 1 ≤ i ≤ n − 1 : 

Ci ⊑ ¬ Ci+1 

Ci ⊑ ¬ Ci+2 

... 

... 

Ci ⊑ ¬ Cn 

This type of constraint can also be easily checked by membership in positive or negative tables. 

As an illustration of specific individual type constraint, consider the class hierarchy: 

graduateStudent ⊑ student ⊑ people 

 Let {a, b, c, d} be the set of all individuals and let a and d be instances of graduateStudent. This 

will prohibit a and d from being stated as instances of student and people classes. Let c be an in-

stance of student. This will prohibit c from being stated as an instance of people class. So, a valid 

ABox will be: 

people(b) 

student(c) 

graduateStudent(a) 

graduateStudent(d) 



39 

If one tries to add student(a) , system will detect an inconsistency. This is because a, b, and d 

will appear in class student due to the IC axiom: 

graduateStudent ⊑ ¬ student 

 There is an evident conflict between student(a) and student (a) . 

Besides redundant individual type constraints and specific individual type constraints, 

others constraints are also definable with this approach as well. In fact, any integrity constraint of 

the form 

A ⊑ C  (A is subsumed by C) 

is enforceable in our approach, where A is either an atomic class or a compound class built from 

other classes using connectives such as union, intersection, negation, and etc.. An instance of A 

will require itself to be present under the class C. Many user-defined integrity constraints take 

this form. 
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CHAPTER 4     MAINTAINING INTEGRITY CONSTRAINTS IN A SINGLE OWL 

This chapter focuses on maintaining integrity constraints within a single OWL, whenever 

there is an update issued to this ontology. The update we consider corresponds to the second pro-

cess in the OWL lifecycle shown in figure 1.1. Enforcing constraints in a single OWL represents 

the majority of ongoing research interests in the field of ICs in Semantic Web. For the rest of this 

chapter, we will first look at the motivations of our work in this process. Then we formally intro-

duce the syntax and semantics of Rule-based DL language with set extension. By using sample 

ontology, we show that the newly introduced language is effective to capture many commonly 

used integrity constraints. 

4.1 Motivations 

Several lines of approaches have been proposed to address IC issues in a single OWL. 

They either integrate OWL with a different formalism such as rules or epistemic queries, or pro-

vide an alternative semantics in OWL. The rule-based approach ([EIL+04], [Mot07]) builds a 

hybrid knowledge base (KB) in which rules are responsible for imposing ICs on the DL data. If 

the KB entails a certain rule predicate, then a violation to ICs exist. However, this approach is 

computationally expensive when the data set gets huge. In addition, important aggregate types of 

constraints are hard, if possible, to express in this formalism. The epistemic query-based method 

([CGL+07]) checks the satisfaction of ICs by asking queries against the KB. The results of these 

queries determine whether there is a violation or not. Unfortunately, the data complexity that in-

herits from this approach in expressive DLs still remains unknown. Most recently, an alternative 

semantics-based approach ([Tao10]) emerged as a different line of solution. In this approach, the 

semantics of OWL has been extended. Now OWL not only serves as an ontology modeling lan-

guage, but also works as a native language to specify integrity constraints. Although the effort to 
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provide a unified ontology and IC language has been very much appreciated, confusions in dis-

tinguishing these two may arise as well. In addition, non-traditional semantics can have interop-

erability issues when an application based on this approach interacts with other conventional ap-

plications. Also, the types of constraints this unified language is capable of expressing are 

bounded by the OWL formalism. 

In this study, we carefully designed a language named Rule-based DL language with set 

extension that does not have to be omnipotent in specifying every possible integrity constraints, 

but rather capable of defining constraints that are mostly used by ontologists in practice. On the 

other hand, we were able to confine our DL base so that efficient reasoning is possible. 

4.2 Syntax 

Here we first introduce the Rule Logic syntax, followed by the syntax of Description 

Logic. At the end of this section, Rule-based DL language with set extension is defined. 

4.2.1 Rule Logic (RL) syntax 

The definition of Rule Logic is based on a series of definitions including alphabet, term, 

atomic formula, literal, and rule. 

Definition 4.1 (Alphabet) The alphabet A of the Rule Logic consists of the following classes of 

symbols:  

1) variables denoted by capital letters, e.g. X, Y, Z;  

2) constants denoted by lower-case letters, e.g. a, b, c ; 

3) predicate symbols denoted by alphanumeric identifiers in lower-case, with an associ-

ated arity ≥ 0, e.g. pre/0;  

4) arithmetic and comparison predicates +, -, *, /, <, <=, =, >, >=, <>;   

5) miscellaneous symbols (, ), :-, ,, <, >, K, not. 
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Although comparison predicates < and > share the same syntax with set generation sym-

bols < and > in miscellaneous symbols, their semantics should be easy to differentiate based on 

the context in which they are used. 

Definition 4.2 (Terms) Terms T can be inductively defined as the smallest set such that: 

1) any constant in A is in T; 

2) any variable in A is in T; 

3) any object ID;  

4) <X>, where X is a variable. 

An object ID is commonly used to uniquely identify an object in ontologies. One such example 

could be a Universal Resource Identifier (URI).  Set generation operator <X> gathers all of the 

elements of a set under certain specification. 

Definition 4.3 (Atomic Formula) Atomic formulas F of well-formed formulas (wff) with re-

spect to alphabet A and terms T are defined as the smallest set such that: 

1) p(t1, t2, …, tn) is in F if p/n is a predicate symbol in A and t1, t2, …, tn  are terms in T; 

2) K p(t1, t2, …, tn) is in F if p(t1, t2, …, tn) is in F; 

3) built-in atomic formula of the form K XθY where X and Y are variables or constants 

and θ is comparison predicate <, <=, =, >, >=, <>. 

Please note special operator K is interpreted under minimal knowledge semantics, and not (used 

below) is interpreted under as failure. 

Definition 4.4 (Literal) Literal L is defined as either a positive atomic formula, or a negative 

atomic formula denoted as not p(t1, t2, …, tn) (shorthand of not K p(t1, t2, …, tn), by convention) 

where p(t1, t2, …, tn) is in F.  

Definition 4.5 (Rule) A Rule is called RL rule if it is a formula of the following form: 
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K A :- L1, …, Lk. 

where K A, called the head of a rule, is in L, and L1, …, Lk, called the body of a rule,  are literals.  

A rule with an empty body is called a fact and is simply written as K A. A rule containing <X> in 

the head is called a grouping rule. A rule without a head is called a constraint rule; the deriva-

tion of an empty head indicates a violation to a constraint. 

Definition 4.6 (Well-formed Rule) A rule is well-formed if it obeys the following syntactic re-

strictions: 

1) the body contains no occurrence of the form <X>; 

2) the head contains at most one occurrence of the form <X>, such occurrence must be 

an argument of the head predicate symbol; 

3) all the predicates in  the body of a grouping rule are positive; 

4) all the predicates in the rule are either associated with the K operator or not operator. 

(1), (2) and (3) are related to grouping rules and they are present in the original LDL language.  

4.2.2 Description Logic (DL) syntax 

Let O be a Description Logics (DL) based OWL knowledge base whose data complexity 

of checking entailment of ground literals remains in P (e.g. Horn-SHIQ, DL-lite).  The 

knowledge base O can be further divided into two parts, namely TBox and ABox of the follow-

ing generic form (specific grammar depends on the particular choice of language): 

TBox: 

A ⊑ B 

ABox: 

A(a), B(a) 
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The reasoning services in DL constitute of TBox reasoning about intensional knowledge 

as well as ABox reasoning about extensional data. 

4.2.3 Rule-based DL language with set extension knowledge base 

Finally we define Rule-based DL language with set extension knowledge base k as a tri-

ple (T, A, R), where a program R is a finite set of well-formed Rule Logic rules with the follow-

ing additional properties: 

1) any predicate in R with the same symbol of a concept or property in O (the collection 

of TBox T and ABox A) actually refers to the very same concept or property. 

2) any object ID in P with the same identifier of a resource in O actually refers to the 

very same resource.  

However, please note one can create additional predicate symbols and resources in R other than 

those already in the knowledge base O.   

4.3 Semantics 

The semantics of Rule-based DL language with set extension is largely based on the se-

mantics of logic programming and semantics of DL we have introduced in section 2.2.2 and 

2.3.1, respectively. However, we still need to specifically define the semantics of K operator.  

A Rule-based DL language with set extension knowledge base k now is triple k = (T, A, 

R), where T is a TBox, A is an ABox, and R is a set of rules of the forms defined in section 

4.2.1. The semantics will be defined in such a way that it applies only to individuals in the 

knowledge base that provably are instances of C, but not to arbitrary domain elements, which 

would be the case if we dropped K. The fact that a knowledge base has knowledge about the do-

main can be understood in such a way that it considers only a subset W of the set of all interpre-
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tations as possible states of the world. Those individuals that are interpreted as elements of C un-

der all interpretations in W are then “known” to be in C.  

Now, we define an epistemic interpretation as a pair (I, W), where I is a first-order inter-

pretation and W is a set of first-order interpretations. Every epistemic interpretation gives rise to 

a unique mapping • I,W associating concepts and roles with subsets of Δ and Δ×Δ, respectively. 

For , , for atomic concepts, negated atomic concepts, and for atomic roles, • I,W agrees with • 

I. For other constructors, • I,W can be defined analogously. Note that for a concept C without an 

occurrence of K, the sets C I,W and C I are identical. The set of interpretations W comes into play 

when we define the semantics of the epistemic operator: 

(K C) I,W  = CJ ,W

J∈W
  

It would also be possible to allow the operator K to occur in front of roles and to define the se-

mantics of role expressions of the form K R analogously. 

An epistemic interpretation (I, W) satisfies a rule knowledge base k = (T, A, R) if it satis-

fies every axiom in T, every assertion in A, and every rule in R. An epistemic model for a rule 

knowledge base k is a maximal nonempty set W of first-order interpretations such that, for each I 

∈ W, the epistemic interpretation (I, W) satisfies k. 

4.4 An Example 

The following small knowledge base is used to exemplify the usage of Rule-based DL 

language with set extension in maintaining integrity constraints. For simplicity we use strings to 

represent resources, but in real applications they can be replaced by URIs to avoid ambiguity.  

TBox: 

student ⊑ person 
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gradueateStudent ⊑ student 

∃ enrolled.student ⊑ class 

∃ hasEmail.Email ⊑ student 

webEnrolled ⊑ enrolled 

ABox: 

person (a) person (b) 

student(a) student(b) 

graduateStudent(a) 

class(csc4710)  class(csc6730) 

hasEmail(a, a@gmail.com) hasEmail(b, b@gmail.com) 

enrolled(csc4710, a)  enrolled(csc4710, b) 

webEnrolled (4710, a) 

4.5 Constraint List 

In this section, we list 18 types of integrity constraints and show how our approach can 

properly handle these constraints, using the small example in section 4.4. These constraints are 

from reliable sources. Many of them are from a survey result in ([TDB+08]). In this survey, 

OWL engineers and ontologists were asked what integrity constraints they desired to use in their 

applications. Some constraints are from various literatures whose goal is to address these con-

straints. The rest of the constraints are derived from their relational database counterparts. A def-

inition of a constraint is provided if the meaning of that constraint is not self-evident to the read-

er. Please note a derivable empty head will indicate a violation to that constraint. 

1) Key Constraints 

:- K hasEmail(X, Y), K hasEmail(Z, Y), X <> Z. 
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2) Foreign Key Constraints 

:- K student(X), not person(X). 

3) Functional Dependency: essentially the same as key constraints be properties are bi-

nary relationships in OWL. 

:- K hasEmail(X, Y), K hasEmail(Z, Y), X <> Z. 

4) Max-cardinality Constraints: Max(C, n, R): {x | #{y | (x, y) ∈ RIP} ≤ n} ⊇ CIC 

K student_set(csc4710, <X>) :- K enroll(csc4710, X). 

:- K student_set(csc4710, S), K cardinality(S, Count), K count > 40. 

5) Min-cardinality Constraints: Max(C, n, R): {x | #{y | (x, y) ∈ RIP} ≥ n} ⊇ CIC 

K student_set(csc4710, <X>) :- K enroll(csc4710, X). 

:- K student_set(csc4710, S), K cardinality(S, Count), K count <10. 

6) Functionality Constraints: Func(C,Q): {x | #{y | (x, y) ∈ RIP} ≤ 1} ⊇ CIC 

K student_set(csc4710, <X>) :- K enroll(csc4710, X). 

:- K student_set(csc4710, S), K cardinality(S, Count), K count >= 1. 

7) Totality Constraints: Total(C,Q): {x | #{y | (x, y) ∈ RIP} = 1} ⊇ CIC 

K student_set(csc4710, <X>) :- K enroll(csc4710, X). 

:- K student_set(csc4710, S), K cardinality(S, Count), K count <> 1. 

8) SubProperty-chain Constraints: SubPChain(C,p1,. . . ,pn,q) enforces that, for each 

object o of type C, if there is a chain of properties p1,. . . ,pn starting from o, then this 

chain always references a node that is also directly referenced via property q of o. 

:- K class(X), K enrolled(X,Y), K hasEmail(Y,Z), not collects(X,Z). 

9) Singleton Constraints: Single(C) enforces that there is exactly one object of class C. 

K person_set(<X>) :- K person(X). 
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:- K person_set(csc4710, S), K cardinality(S, Count), K count > 1. 

10) Sub-class Constraints: SubC(C,D) : CIC ⊆ DIC 

:- K student(X), not person(X). 

11) Sub-property Constraints: SubP(R,S) : RIP ⊆ SIP 

:- K webEnrolled(X, Y), not enrolled(X, Y). 

12) Property Domain Constraints: PropD(R, C) : {x | ∃y : (x, y) ∈ RIP } ⊆ CIC 

:- K enrolled(X, Y), not student(Y). 

13) Property Range Constraints: PropR(R, C) : {y | ∃x : (x, y) ∈ RIP } ⊆ CIC 

:- K enrolled(X, Y), not class(X). 

14) Expected Individual Type Constraints: The declared type of a given individual in 

the instance data must meet the expectation of the referenced ontologies. 

:- K enrolled(X, Y), not class(X). 

15) Specific Individual Type Constraints: The declared type of a given individual in the 

instance data must be the most specific one 

:- K student(X), K person(X). 

:- K graduateStudent(X), K person(X). 

:- K graduateStudent(X), K student(X). 

16) Redundant Individual Type Constraints: An individual cannot be explicitly de-

clared o have both C and C’s superclasss as its type. 

:- K student(X), K person(X). 

17) Uniqueness Constraints: An instance that is expected o be unique cannot has two or 

more individuals in the data set. 

:- K hasEmail(X, Z), K hasEmail(Y, Z), Y<>Z. 
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18) User-defined Constraints: A student cannot take more than 4 classes: 

K class_set(<C>, X):- K enroll(C, X). 

:- K class_set(S, X), K cardinality(S, Count), K count > 4. 

Please note for this simple sample ontology, we see different integrity constraints possess 

the same expression. However, the semantics behind these constraints are totally difference. 

Their differences should be evident as the ontology becomes more complex. 

The purpose of the above list is not to exhaust the possible constraints our approach can 

handle, but rather to show the capability to express many useful integrity constraints in real ap-

plications without much of increase in computational complexity. Our goal is to cover usefulness 

and efficiency instead of completeness in IC research in OWL. Users are allowed to express ap-

plication-specific constraints with this formalism as well. 
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CHAPTER 5     A HYBRID APPROACH TO CONSTRAINT REASONING IN BIO-

ONTOLOGIES 

This chapter continues focusing on maintaining integrity constraints within a single 

OWL, with implementation details on Bio-ontologies. The update we consider corresponds to the 

second process in the OWL lifecycle shown in figure 1.1. In this study, we examined characteris-

tics of commonly used bio-ontologies. Then this chapter proposes a hybrid architecture integrat-

ing semantic knowledge base technologies and forward rule reasoning, called Jena2Drools, to 

better serve the purpose of maintaining integrity constraints in bio-ontologies. A design and a 

prototype implementation are introduced. As a preliminary result, our demonstration shows the 

feasibility of efficient, composable, and easy-to-use bio-ontology constraint checking method 

from expressive rules reasoning 

5.1 Motivations 

Although numerous ontologies, such as Disease Ontology1, Symptom Ontology2, Gene 

Ontology3, are available in OWL form, there is still a huge demand for developing more OWL 

ontologies for various purposes in Bio-medical field. We have surveyed 82 bio-medical ontolo-

gies that are publicly available from Ontology Lookup Service4 and Bio-portal5. Close analysis 

revealed some common features among these ontologies. In general, these ontologies vary in 

size, with the number of terms ranging from 10 to 679478. But almost all of them emphasize on 

concept classification in TBox, while having little to none individual description in ABox. This 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 http://disease-ontology.org/ 
2http://symptomontologywiki.igs.umaryland.edu/wiki/index.php/Main_Page 
3 http://www.geneontology.org/ 
4 http://www.ebi.ac.uk/ontology-lookup/ontologyList.do 
5 http://bioportal.bioontology.org/ontologies 
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means the reasoning service for biomedical ontologies will mostly focus on TBox reasoning, in-

stead of instance checking (i.e. checking whether an assertion is entailed by an ABox) or realiza-

tion (i.e. finding the most specific concept that an individual belongs to) in ABox reasoning. The 

following is a snippet about Lymphocytes in OMIT6 (Ontology for MicroRNA Target) ontology.  

Its relationships with other classes are shown in figure 5.1 (Lymphocytes is in the green outlined 

box). An arrow edge denotes an subClassOf relation. 

	  

Figure 5.1 Lymphocytes and its relationship with other classes in OMIT 
 

<owl:Class rdf:about="#Lymphocytes"> 

<rdfs:label>White cells of the lymphatic lineage</rdfs:label> 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 http://omit.cis.usouthal.edu/ 
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<rdfs:subClassOf rdf:resource="#Agranulocyte"/> 

 <owl:disjointWith rdf:resource="#Monocytes"/> 

</owl:Class> 

OMIT was proposed to handle the challenge of predicting the relationship between miR-

NAs and their targeting genes for cancer research. Similar to OMIT, the vast majority of biomed-

ical ontologies listed on Ontology Lookup Service and BioPortal not only share the hierarchical 

structure, but also share their focus on terminology and relationship description in TBox. Table 

5.1 summarizes statistics of some representative bio-ontologies: 

Table 5.1 Statistics for sample bio-ontologies 
Ontology # of classes #of individuals # of properties 

GO3 37051 0 8 

OMIT10 319 0 18 

CL7 2003 0 9 

Diagnostic Ont8 96 6 9 

DOID1 8623 0 19 

TRANS9 28 0 6 

SYMP2 934 0 9 

 

5.2 Proposed Architecture 

Here in this section we first describe our hybrid architecture in details, followed by dis-

cussions on implementation. Examples of Drools rules for constraint checking are also demon-

strated here. We adopted the rule-based approach to handling the constraint problem. Here we 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

7 https://lists.sourceforge.net/lists/listinfo/obo-cell-type 
8 http://bioportal.bioontology.org/ontologies/3013 
9 http://bioportal.bioontology.org/ontologies/1094 



53 

present our preliminary results of implementing a hybrid system that combines knowledge base 

management and rule-based reasoner. To this end, we begin with Drools10, a powerful, expres-

sive, and state-of-the-art rule-based reasoner that implements full and enhanced Rete-oo algo-

rithm. On the other hand, Jena11, a Java framework for building Semantic Web applications, is 

employed to manage bio-ontologies and to loosely interact with other components. It is essential 

that we provided a bridge component that faithfully translate OWL model into Java model for 

Drools reasoning. We argue this system suits bio-ontology constraint checking well, because 

limited to none ABox reasoning in bio-ontologies permits efficient reasoning about constraints 

written in more expressive Drools rule form.  

5.2.1 Loosely coupled hybrid architecture 

The prototype consists of five main components as depicted in figure 5.2.  

	  

Figure 5.2 Loosely coupled hybrid architecture 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

10 http://www.jboss.org/drools 
11 http://jena.apache.org/ 



54 

Drools is a mature and widely used production rule system in which rules are expressed 

in the following form: 

when 

[condition-list]  

then 

[action-list] 

end 

In our system, the actions in action-list can either be derivations of new facts from custom rules 

and knowledge base, or indications of integrity constraint violation if the premises are true, fol-

lowed by reverting the ontology back to its previous valid state. 

Compared to other reasoners including some that implement rule-based systems, Drools 

possesses the following advantages that make it an ideal tool for constraint checking in biomedi-

cal ontologies. 

• Drools is interpreted under CWA in nature. This feature is aligned with the need of 

“closing” part of the ontology for constraint checking. 

• An article [WRJ+09] surveyed 28 modern OWL reasoners, and found rule-based rea-

soners are fast, expressive, and easy to modularize. Indeed, in Drools, implied facts 

are derived and stored, so it is optimized for retrieval. 

• Drools implements forward-chaining reasoning where the reception of new data au-

tomatically triggers new inferences. This makes the engine better suited to bio-

ontologies whose updates are frequent over time. 
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• Drools permits negation in the rule premises, while negation is not supported in many 

rule formalisms and their reasoners, such as Jena and the W3C recommended Seman-

tic Web Rule Language (SWRL). 

• Drools is adapted to object oriented programming. In Drools, asserted facts are simp-

ly Java objects that can be accessed and changed through their methods and proper-

ties. This feature alleviates the complexity of integrating the rule engine with external 

applications. 

• Drools allows rules to be expressed in natural language by mapping such sentences to 

Java objects. In addition, it supports online collaborative management of knowledge 

base. Thus Drools is friendly to domain experts that are not familiar with underlying 

implementation. 

This system is capable of handling various species of Semantic Web documents, such as 

RDF, RDFs, and OWL. Since we are specifically interested in how Drools is suited to maintain 

integrity constraints in biomedical ontologies, we only tested with OWL documents, as these on-

tologies are available in OWL format. As shown in previous section, biomedical OWL docu-

ments usually contain no individuals in ABox, therefore, reasoning service in these ontologies is 

a pure T-box reasoning, such as subsumption (i.e. determining whether a concept is a sub-

concept of another or not) and classification (i.e. consolidating and reorganizing a set of concepts 

into the minimal hierarchy). This special feature in biomedical ontology reasoning permits effi-

cient validation of constraints that are intended to leverage the expressive power of Drools in this 

hybrid system. Please note our approach is also capable of handling ontologies with non-empty 

ABox, as shown later in this section. 
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Jena in this system is a Java framework for building Semantic Web applications. It con-

tains Application Programming Interface (API) to read, process, write, manage, and query RDF 

model in various formats like XML, N-triples and Turtle formats. Ontology API for RDFS and 

OWL ontologies are also included. Ontologies can either be stored in memory, or stored in per-

sistent storage such as TDB and SDB. Jena framework is well-known for its flexibility. Jena uses 

its interface to facilitate the connection and interoperation with other external applications, in-

cluding third party reasoners. In addition, Jena comes with a very limited built-in OWL reasoner. 

For example, Jena does not support the well-founded negation, even in its simpler form like 

predicate-stratified negation. Such flexibility and limitation make the integration with more so-

phisticated rule engine like Drools desirable.  

It is important to note that although rule engines and ontology reasoners are currently 

available, few of them are capable of handling rule reasoning and OWL reasoning at the same 

time. Besides Jena, other examples under this category include Hammurapi Rules12, Algernon13, 

and SweetRules14. Despite their effort of unifying two types of reasoning under the same frame-

work, they are less customizable, less widespread than the components of our loosely coupled 

solution.  Loosely integrated approach, on the other hand, can combine the strengths from two 

systems, each of which is specialized at providing one aspect of the solution, while leaving op-

portunities for flexible integration with other applications. Compared to these unified systems, 

our hybrid system also has the advantage of operating under CWA that is suitable for constraint 

checking, as well as more expressive power such as negation-as-failure.  

However, loose integration of ontology and rule-based system poses several issues, in or-

der to handle mutual interactions between components, and to align their models.  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

12 http://www.hammurapi.com/ 
13 http://algernon-j.sourceforge.net/ 
14 http://sweetrules.semwebcentral.org/ 
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• The rule engine should be capable to import data via Jena from existing ontology, as 

well as to define ontology model internally. 

• The rule engine should be capable of querying the information described and derived 

from the ontology model, since ontology usually contains implicit information. 

• In general, the premises expressed in the rules should be defined using the concepts 

from the ontology TBox and evaluated against entities in the ontology ABox. 

In our system, we handle these issues by building an ontology-to-facts translator, to me-

diate translation between OWL ontology and Drools facts. This translator is essential, because 

Jena internally stores OWL documents as RDF graph model, while Drools can only operate on 

Java object model. Thus this translator serves as a tool for the automatic translation of concepts, 

relations and individuals from an OWL document into Java classes, properties, and instances. 

The JavaBeans can then be directly asserted as facts into the working memory of Drools for for-

ward-chaining reasoning. Note our ontology translator is capable of translating stored RDF mod-

el in Jena directly, as well as translating derived data from Jena built-in reasoner or other OWL 

reasoners. 

The following algorithm details the mapping mechanism from ontology to Java facts. 

Please note that this mapping can also work with general ontologies whose ABox is not empty. 

Although this mapping can possibly map a TBox property and an ABox relation that is the in-

stance of that TBox property to the same Java class, they can be differentiated by appending dif-

ferent labels during class instance creation. 
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For implementation, the prototype used Java 1.6. The Drools rule engine 5.3 was used as 

the rule engine, and Jena 2.6.4 was used for ontology processing and management. To validate 

the effectiveness of our system on heterogeneous datasets, we tested on Breast Cancer Grading 

Ontology15, Breast Tissue Cell Line Ontology16, Cell Line Ontology17, Computational Neurosci-

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
15 http://bioportal.bioontology.org/ontologies/1304 
16 http://bioportal.bioontology.org/ontologies/1438 

Algorithm: Mapping from Semantic Model to Java Model 

TBox: 

For each distinct concept in TBox: 

Create a Java class with the same name as the concept; 

For each distinct property in TBox: 

Create a Java class with the same name as the property; also, create two attrib-

utes for this class; 

For each Subject-Object pair of this property in TBox: 

Create an object of this class; set two attributes to the name of Subject 

and Object, respectfully;  

ABox: 

For each individual in ABox: 

Create an object of the class that corresponds to the concept this individual be-

longs to; 

For each relation in ABox: 

Create an object of the class that corresponds to the property this relation be-

longs to; 
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ence Ontology18, Diagnostic Ontology12, Ontology for Drug Discovery Investigations19, Gene 

Regulation Ontology20, Infectious Disease Ontology21, Neomark Oral Cancer Ontology22, Neural 

Motor Recovery Ontology23, and Ontology for MicroRNA Target Prediction. The number of 

classes in these datasets ranges from 30 to 8934. For demonstration, we show example of con-

straint checking by Drools using the OMIT ontology.	  

5.2.2 Examples of Constraint Checking 

The following examples assume the hybrid system has already loaded the ontology into 

Jena, and performed the ontology to Java Model transformation. All prefixes are removed in the-

se examples for the sake of better readability. 

Example 5.1: Consider the rule below that specifies the constraint that a concept cannot be the 

subclass of two disjoint classes. In the setting where no Jena or OWL external reasoners are in-

volved, Drools is still capable of derive all the implicit subclasses of a concept, instead of just the 

immediate subclass that is explicitly stated in ontology. Variables begins with a $ sign.  

rule “obtain all subclasses” 

salience 10  //higher priority 

when  

subClassOf ($s : subject, $o : object) 

exists (( subClassOf ($o: subject, $t : object ) or (SubConceptOf($o, $t))) 

then  

     insert (new SubConceptOf($s, $t)) 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

17 http://sourceforge.net/projects/clo-ontology/ 
18 https://github.com/INCF/Computational-Neurosciences-Ontology--C.N.O.- 
19 http://code.google.com/p/ddi-ontology/ 
20 http://www.ebi.ac.uk/Rebholz-srv/GRO/GRO.html 
21 http://infectiousdiseaseontology.org/page/Main_Page 
22 http://www.neomark.eu/portal/ 
23 http://cis.usouthal.edu/~huang/ 
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insert (new SubConceptOf($s, $o))  

insert (new SubConceptOf($o, $t))      

//Assume SubConceptOf class are created to store all subclass relationships 

//explicitly 

end 

rule “check disjoint superclasses” 

salience 5  //lower priority 

when  

     subConceptOf ($s : subject, $o1 : object) 

     subConceptOf ($s : subject, $o2 : object) 

     disJointClass($o1 : subject, $o2 : object) 

then  

     //raise a flag of constraint violation revert to previous state 

end 

subClassOf ($s : subject, $o : object) will match through all the objects of subClassOf class, and 

assign the value of property subject to $s, and assign the value of corresponding property object 

to $o. In implementation, Java Map data structure is used to avoid data duplication.  

Example 5.2: Consider a real-time or near real-time biomedical application that uses ontology 

and reasoning as its information source.  Since reasoning can be time-consuming thus not be able 

to meet the real-time requirement, it is desirable to explicitly store inferred knowledge to trade 

for efficiency. The example below is used to specify the constraint that every subclass relation-

ship has to be explicitly stored. Upon any state change to the knowledge base, this constraint 

checking can be triggered. Assume prior to updates, the knowledge base is valid (i.e. all subclass 
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relationships are explicitly stored). This example demonstrates the expressive power of negation-

as-failure, which is not available in rules like Jena Rules and SWRL. 

rule “check implicit subclass relation” 

salience 10   

when  

     SubClassOf ($s : subject, $o : object) 

     SubClassOf ($o : subject, $t : object) 

not  SubClassOf ($s : subject, $t : object) 

then  

    //raise a flag of constraint violation revert to previous state 

End 

Please note that example 5.2 is independent from example 1, so as their salience. Exam-

ple 5.1 uses SubConceptOf to store explicit and derived subclass relationships for subsequent 

disjointness checking, while example 5.2 only check if every subclass relationship is captured 

explicitly in SubClassOf. 
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CHAPTER 6     IMPLEMENTATION AND EVALUATION OF AN IMPROVED JE-

NA2DROOLS FOR GENERAL-PURPOSE CONSTRAINT CHECKING 

In this chapter, we present an improved version of Jena2Drools that now can take Seman-

tic Web data in common formats like RDFS, RDF, and OWL, for general-purpose constraint 

checking. In section 6.1, we introduce the improved version over the earlier of Jena2Drools de-

scribed in Chapter 5. Then in section 6.2, we describe the evaluation methods that we have used 

on the well-known Lehigh University Benchmark (LUBM) for Semantic Web. A performance 

analysis of our system is then presented in section 6.3. 

6.1 Jena2Drools 2.0 

The improved Jena2Drools version 2.0 still adopts the same architecture used in the earli-

er version shown in figure 5.2. The major improvement over the earlier version is that Je-

na2Drools 2.0 now can accept any arbitrary syntactically legal Semantic Web data as input in 

common forms, including RDFS, RDF, and OWL. In contrast, the earlier version of Jena2Drools 

was tested with biomedical ontologies whose ABox is usually very small while their TBox most-

ly contains subsumption relationships.  

The expansion of applicability comes from a vastly different approach to constructing the 

Java model from the Semantic Web model. In Jena2Drools 1.0, both concepts and properties are 

modeled as Java classes, and each class that represents a property contains two fields corre-

sponding to the subject and object of the property. This approach suits simple properties like 

subsumption well. In the improved version, only concepts are modeled as Java classes. These 

classes are essentially object wrapper class that wraps around the Resources in the RDF model. 

In other words, these Java classes are Object-oriented representation that is internally still backed 

by the RDF model. Properties, on the other hand, are now modeled as fields in Java classes 
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whose represented concepts are the subjects of this property. The getters and setters provide 

means to access and change the backend RDF model through the object wrapper class. In this 

way, our RDF to Java translator can handle more complex Semantic Web constructs, and thus 

can be used as a part of the general-purpose constraint checking system. 

The Jena2Drools 2.0 system reads the Semantic Web data files and user-specified integri-

ty constraints as inputs. As the outputs, the user can choose to have this system report either a 

single violation or all the violations to constraints. The entire validation process can be further 

broken down into the following sequential steps: 

• Generating Class Files: Jena2Drools 2.0 first reads schema files in RDFS or OWL 

format as inputs, and then constructs a RDF model out of these schema files. The 

concepts and properties in this model are then analyzed before automatic generation 

of Java class files from the RDF model. As described earlier, each outputted Java 

class is an object-oriented representation of a concept in the RDF model, while fields 

within each class relate to the properties of that concept. Since schema file updates 

are far less frequent than instance file, this class file generation step can be considered 

as a one-time overhead. Also, compared to instance files, the size of schema files is 

usually much smaller, in terms of the number of statements. Therefore, the time to 

generate the Java classes is small when compared with the time during the translation 

step where instance files are translated to Java objects. 

• Loading Instance Data: The instance data in RDF or OWL are then loaded into this 

system. Usually the size of instance data varies from time to time, and it is a key fac-

tor that accounts for the loading time. 



64 

• Translating RDF Model to Java Model: This is the core step in the system. Je-

na2Drools 2.0 will look at the RDF model built from the schema and instance files, 

and map each resource in the RDF model to the automatically generated Java classes 

by creating corresponding Java object.  These Java Objects are Plain Old Java Objects 

(POJOs) so that they can be subsequently consumed by Drools. This translation step 

is relatively time-consuming and its running time depends on the size of the instance 

data. However, it is important to note that this translation step only needs to run one 

time. Once the complete Java model (i.e. Java classes and their objects) is in the sys-

tem, any updates to the RDF model will also be carried over accordingly to the Java 

model, without going over the entire translation step again.   

• Preparing Knowledge Base and Inserting Java Objects: In this step, a default 

empty knowledge base is created for Drools. Then this knowledge base is populated 

with the Java objects created in last step. After insertion, this Drools knowledge base 

stores equivalent knowledge as in the RDF model. 

• Validating Knowledge Base with Integrity Constraints: Integrity constraints are 

expressed as rules in Drools rule language. The rule language, together with its rule 

engine, can reason under Close World Assumption and Negation-as-Failure. User has 

the flexibility to choose whether to find all the violations or just one at a time. In ad-

dition to listing all violations, the system is also equipped with the capability of re-

pairing the knowledge base. 
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6.2 Evaluation 

To evaluate Jena2Drools2.0, we analyzed the performance of this system by using da-

tasets of different sizes and modeling integrity constraints for the data. The total running time is 

broken down into four pasts as described in last section: RDF load, RDF translation, knowledge 

base preparation and Java objects insertion, and finally validation. We also compared the per-

formance of our system with OWL 2 DL-based system [Tao12] for constraint checking, using 

the same datasets and integrity constraints.  

Datasets: The Lehigh University Benchmark (LUBM)24 is a standard benchmark that is 

intended to evaluate Semantic Web systems in a systematic way over a large dataset that com-

mits to a single realistic ontology in the university domain. Because the contents in the ontology 

is relevant to the integrity constraints being tested, here we quote the descriptions of the ontology 

from the LUBM website: 

“(Class and property names are underlined. Class names are capitalized and property names in 
italic.) 
In each University 

• 15~25 Departments are subOrgnization of the University 
In each Department: 

• 7~10 FullProfessors worksFor the Department 
• 10~14 AssociateProfessors worksFor the Department 
• 8~11 AssistantProfessors worksFor the Department 
• 5~7 Lecturers worksFor the Department 

 
• one of the FullProfessors is headOf the Department 

 
• every Faculty is teacherOf 1~2 Courses 
• every Faculty is teacherOf 1~2 GraduateCourses 
• Courses taught by faculties are pairwise disjoint 

 
• 10~20 ResearchGroups are subOrgnization of the Department 

 
• UndergraduateStudent : Faculty = 8~14 : 1 
• GraduateStudent : Faculty = 3~4 : 1 

 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

24 http://swat.cse.lehigh.edu/projects/lubm/ 
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• every Student is memberOf the Department 
 

• 1/5~1/4 of the GraduateStudents are chosen as TeachingAssistant for one Course 
• The Courses the GraduateStudents are TeachingAssistant of are pairwise different 
• 1/4~1/3 of the GraduateStudents are chosen as ResearchAssistant 

 
• 1/5 of the UndergraduateStudents have a Professor as their advisor 
• every GraduateStudent has a Professor as his advisor 

 
• every UndergraduateStudent takesCourse 2~4 Courses 
• every GraduateStudent takesCourse 1~3 GraduateCourses 

 
• every FullProfessor is publicationAuthor of 15~20 Publications 
• every AssociateProfessor is publicationAuthor of 10~18 Publications 
• every AssistantProfessor is publicationAuthor of 5~10 Publications 
• every Lecturer has 0~5 Publications 
• every GraduateStudent co-authors 0~5 Publications with some Professors 

 
• every Faculty has an undergraduateDegreeFrom a University, 

a mastersDegreeFrom a University, and a doctoralDegreeFrom a University 
• every GraudateStudent has an undergraduateDegreeFrom a University ” 
 

	  

Figure 6.1 LUBM datasets statistics 
 

0	  

200000	  

400000	  

600000	  

800000	  

1000000	  

1200000	  

1400000	  

LUBM	  Datasets	  Sta,s,cs	  

#	  of	  statements	  

#	  of	  instances	  



67 

We have used 10 LUBM datasets that represent 1 to 10 universities. LUBM provides data 

generator that produces synthetic OWL instance data over the University ontology described 

above. The size of the datasets ranges from around 100 thousand statements to more than 1.2 

million statements. We also plotted the number of statements and the number of distinct Java ob-

jects generated by Jena2Drools over the number of universities in each dataset, and observed a 

linear relation between them. 

Integrity Constraints: We modeled five representative integrity constraints shown be-

low. Please note that IC1, IC4, and IC5 are taken from [Tao12] for performance comparison. IC2 

and IC3 are added to demonstrate the variety of constraints Jena2Drools 2.0 can handle. These 

ICs are only for performance evaluation purpose. They vary in size and complexity, but they are 

not intended to represent all possible ICs. 

# IC 1: each publication has to be one of the following: Book, JournalArticle, 

# ConferencePaper, or TechnicalReport 

rule "publication" 

dialect "java" 

when 

$pub:Publication() 

eval(! ($pub instanceof Book)) 

eval(! ($pub instanceof JournalArticle))  

eval(! ($pub instanceof ConferencePaper))  

eval(! ($pub instanceof TechnicalReport))             

then 

System.out.println("Found one constraint violation with publication: " + $pub); 
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drools.halt(); 

end 

# IC 2: each author of an publication has to be a faculty 

rule "publicationAuthor" 

dialect "java" 

when 

$pub:Publication() 

$author:Person() from $pub.getPublicationAuthor() 

 eval(! ($author instanceof Faculty))                    

then 

         System.out.println("Found one constraint violation with author: " + $author); 

    drools.halt(); 

end 

# IC 3: each faculty can not for the same university in which he got his doctoral degree  

rule "degree" 

dialect "java" 

when 

$faculty:Faculty() 

 $dep:Department() from $faculty.getWorksFor() 

 $phdUniv:University() from $faculty.getDoctoralDegreeFrom() 

 eval(("http://www." + $dep.toString().substring($dep.toString().indexOf 

("University"))).equals($phdUniv.toString())) 

then 
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System.out.println("Found one constraint violation with degree: facaulty " + 

$faculty.getName() + " works for and got PHD degree from the same uni-

versity "+ $phdUniv);         

   drools.halt(); 

end 

# IC 4: full professors only teach graduate course 

rule "fullProfessorGraduateCourse" 

when 

$fullPro:FullProfessor()       

$course:Course() from $fullPro.getTeacherOf(); 

eval(! ($course instanceof GraduateCourse)) 

then 

System.out.println( "Found one constraint violoation with full professor + " + 

$fullPro + " teaching " + $course); 

      drools.halt();         

end 

# IC 5: assistant professors cannot teach less than 3 courses 

rule "assistantProfessor3course" 

when 

$assistantPro:AssistantProfessor() 

eval($assistantPro.getTeacherOf().size() < 3); 

then 
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System.out.println( "Found one constraint violation with assistant professor " + 

$assistantPro + " teaching only " +  $assistantPro.getTeacherOf().size() +" 

courses."); 

 drools.halt(); 

end 

6.3 Performance Analysis 

To gain insights into the performance of Jena2Drools 2.0, we evaluated the RDF load 

time, RDF instance translation time, knowledge base preparation and insertion time, and valida-

tion time. In this section, we present our findings along with analysis of the results. 

• Load, Translation, and Preparation Time: Figure 6.2 below shows the running 

time for RDF load, RDF translation, and knowledge base preparation and insertion.	  	  

	  

Figure 6.2 RDF load, RDF instance translation, and knowledgebase preparation and insertion 
time. 
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Both RDF load time and RDF translation time grow linearly as the size of the datasets 

grows, while knowledgebase preparation and insertion time remains flat. It is because 

inserting Java facts into Drools knowledgebase is so fast that its time becomes insig-

nificant to the constant knowledgebase initialization time. It is clear that translating 

from instance data in the RDF model into Java object facts takes more time than the 

other two steps combined. This reflects the fact that the translation part is where most 

of the calculations come form. But note that, although translating 1.2 million RDF 

statements into Java object facts takes about 55 seconds, once these objects are creat-

ed and stored, Jena2Drools will never need to translate those 1.2 million statements 

again. 

• Validation Time: Next set of experiments look at the validation time only (i.e. the 

time that the system take to reason against rules and facts) and the entire system run-

ning time (i.e. from loading the input all the way till outputting results). We then 

compare these results with the ones in DL-based system from [Tao12] for integrity 

constraint 1, 4 and 5, as shown in figure 6.3, 6.4, and 6.5, respectively. This DL-based 

system represents the most recent development in the integrity constraint research of 

Semantic Web. In these tests, both systems are required to find out all the violations 

to the constraint specified. There are several interesting observations in these tests. 

When only validation time is considered, Jena2Drools outperformed DL-based sys-

tem in all three cases.  In addition, the growth rate for validation time in Jena2Drools 

is also lower than the other system. The most drastic contrasts come from IC4 and 

IC5. For example, in the case of IC4, validation time for DL-based system grew from 

about 2000 milliseconds (LUBM-1) to more than 15000 milliseconds (LUBM-2), 
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Figure 6.3 Comparing validation time and total running time for integrity constraint 1. 
	  

	  

Figure 6.4 Comparing validation time and total running time for integrity constraint 4. 
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Figure 6.5 Comparing validation time and total running time for integrity constraint 5. 
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tal running time also contains an extra service called justification of axiom entailment 

(i.e. the minimal sets of axioms in the knowledgebase that are sufficient to produce an 

entailment in OWL DL). In summary, when the RDF instance data load is infrequent 

but updates are frequent (thus the need to validate the RDF model after updates), Je-

na2Drools can be the preferable system. 

• Single Violation versus All Violations: Jena2Drools comes with a feature to turn on 

or off finding all violations. When all-violation feature is off, Jena2Drools will only 

look for and return for one violation instance and then stop.  This feature becomes 

handy when ontology engineer only wants to perform a quick check to see whether 

the Semantic Web data is in compliance with constraints, or only want to find and fix 

one violation at a time. 

	  

Figure 6.6 Validation time comparison between finding a single violation and finding all viola-
tions, when load, translation, and preparation time is not taken into account. 
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Figure 6.7 Validation time comparison between finding a single violation and finding all viola-
tions, when load, translation, and preparation time is taken into account. 
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when compared with the combination of the load, translation and preparation time, 

validation time, whether the time to find single validation or all validations, is of one 

even several orders of magnitude less. 
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CHAPTER 7     MAINTAINING INTEGRITY CONSTRAINTS IN MULTIPLE DIS-

TRIBUTED OWLS 

Due to the nature of knowledge bases, ontologies tend to be very large, distributed, and 

interconnected. Thus, maintaining constraints and enforcing data consistency for a group of on-

tologies become very challenging. In addition, frequent updates on ontologies necessitate an au-

tomatic approach to checking for potential constraint violations before any change takes place. 

In this section, we focus on solving the integrity constraint issue for process 3 in OWL 

lifecycle shown in figure 1.1. Based on the same Rule-based DL language with set extension 

formalism we have introduced in chapter 4, we can easily extend it to express global constraints 

that span multiple ontologies. We conducted a pioneer study and presented a framework for 

checking global constraints and ensuring integrity on data that span multiple ontologies. As an 

update is issued to a single site, global constraints that can be potentially violated are broken 

down into sub-constraints that only involve a small subset of ontologies. The checking of sub-

constraints runs effectively in parallel and returns results about each subset. The collection of 

these results determines the violation of global constraints. 

7.1 Motivations 

As an initial investigation as well as an evidence to show ontologies are interdependent 

and dynamic, we explored a group of well-established and well-known ontologies from the bio-

medical field. As a result, we drew the following conclusions. 

7.1.1 Biomedical ontologies are heavily interconnected 

We have investigated 81 bio-ontologies from The Open Biological and Biomedical On-

tologies and the Ontology Lookup Service. For each of the ontology, we have examined and 
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parsed its data file in order to obtain interdependency information. As shown in figure 6.1, each 

directed edge indicates a reference from the origin to the destination. There is also a decimal 

number associated with each individual edge, representing the percentage of the total number of 

terms in that origin ontology reference to the destination ontology. The result shows 218 directed 

edges in the graph. This means in average, each biomedical ontology references to/depends on 

three other bio-ontologies. For the simplicity of the graph, we took off self-referenced edges, as 

well as edges pointing to ontologies other than the 81 ontologies we have examined. Taking the-

se factors into account, the interdependencies between biomedical ontologies are much more 

complicated than what is shown in figure 6.1. Therefore, it is safe to say that the entire biomedi-

cal ontology networks are heavily interconnected. This result is not surprising at all because one 

of the purposes of ontology is to promote information exchange and reuse. 
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Figure 7.1 Interdependency between Biomedical Ontologies 
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7.1.2 Biomedical ontologies are updated frequently 

We further scrutinized 45 biomedical ontologies whose update logs are immediately 

available. We were interested in information about update frequency and update scale. Figure 6.2 

shows the averaged number of updates in a year for each bio-ontology. Although some ontolo-

gies in the set do not change very often, the majority of these ontologies updates at least 6 times 

a year, making the average update frequency 21.31 times/year for the entire set. In figure 6.3, we 

measured the averaged number of lines that are involved in each update for every bio-ontology 

in the set. The result gives a 98484.55 lines/update as the highest 0 lines/update as the lowest, 

and 7010.57 lines/update as the average for the whole set of biomedical ontologies. In short, bi-

omedical ontologies are updated rapidly over time, with each update involving great amount of 

changes. 

	  

Figure 7.2 Biomedical Ontologies update frequency (updates/year) 
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Figure 7.3 Biomedical Ontologies update scale (lines/update) 

7.2 A framework for distributed ontologies 

Throughout the rest of section, we will illustrate our framework using the following small 

example. 

• Patient Ontology (PO): A doctor’s office maintains an ontology that captures various 

types of patients and their properties such as healthPlan, etc. 

• Treatment Ontology (TO): A hospital keeps an ontology that records treatments and 

their properties such as doctor, treatedDisease etc.  

• Claim Ontology (CO): A health insurance company stores an ontology that describes pa-

tients’ claims and their properties like patient who files the claim, the treatment he/she 

files for, and the amount of money for the claim, etc. 

The following texts along with figure 6.4 describe the schema and contents of these three 

ontologies. For the sake of simplicity, we designate some information such as disease as literals. 
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In practice, unique URIs are usually used as identifiers to avoid ambiguity. Note that it is ac-

ceptable to for ontology to have missing information because of OWA. 

Table 7.1 Contents of Patient Ontology, Treatment Ontology, and Claim Ontology. 
PO 
TBox: 
pediatricPatient ⊑  patient 
ABox: 
pediatricPatient(Tommy), 
patient(Tom), 
hasPlan(Tom, A) 

TO 
TBox: 
drugTreatment ⊑  treatment 
ABox: 
treatment(trt1) 
hasDoctor(trt1, Bill), treatDis-
ease(trt1,smallpox), 

CO 
TBox: 
ABox: 
hasPatient(claim1, Tom), 
hasTreatment(claim1, trt1) 

 

	  

Figure 7.4 Ontology Schema and Constraint Checking Architecture 

Global Constraints: (1) Semantic constraint. Any patient with plan ‘A’ cannot claim 

more than 5000 for smallpox. (2) OWL-style constraint. A useful OWL-style constraint called 

Specific Individual Type ([TDB+08]) constraint requires that the explicitly declared individual 

of a concept or relationship (property) in the instance data must be the most specific one. As an 

example, we are trying to enforce this constraint on the hasPatient property in Claim Ontology. 
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Since hasPatient(claim1, Tom)is explicitly declared, we cannot insert hasPatient(claim1, 

X)where X is Tom’s alias in the super or sub class of concept patient, otherwise there must be a 

claim-patient pair that is not the most specific one. In other words, a person is not allowed to file 

one claim using two identities: patient and pediaticPatient. 

These two global constraints can be formulated as rules in Logic Programming as fol-

lows: 

C1:  

:- K hasAmount(x, y), K hasPatient(x, z), K hasTrt(x, w), K trtDisease(w, ‘smallpox’), K 

hasPlan(z, ‘A’), y>5000. 

C2:  

:- K hasPatient(x, y), K hasPatient(x, z), K Patient(y), K pediatricPatient(z), y=z. 

First we illustrate the system architecture using figure 5.4. Assume we are trying to insert 

(1) hasAmount(claim1, 7000) (2) hasPatient(claim1, Tommy) into Claim Ontology in sequence. 

We further assume Tom and Tommy actually refer to the same entity (so that Global Constraint 2 

will be violated). This is possible in OWL because OWL uses Non-Unique Name Assumption. 

The constraint checker that resides on Server 1 is responsible for communicating with the Global 

Metadatabase whenever an update occurs to the Claim Ontology.  

The Global Metadatabase is a central repository of site information that describes where 

each ontology source resides. It also contains domain information about metadata descriptions 

for instances of all ontology sources as well as the global constraints C1, … Cn. Each biomedical 

ontology registers itself to the Global Metadatabase with its hierarchical concept structures and 

its term compositions as well.  
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The constraint checker will first consult Global Metadata to collect all global constraints 

that could be possibly violated. All these global constraints will be examined one at a time. In 

our case, there are two global constraints and they can be potentially violated. Each global con-

straint is decomposed into several sub constraints for parallel validations, with each one of the 

sub constraints targeting at a small subset of all the ontologies involved in the global constraint. 

Take our first global constraint C1 as an example. Upon inserting hasAmount(claim1, 7000), the 

values of corresponding amount, patient, treatment will be available locally at server 1. Subse-

quently, one sub constraint checker will be dispatched to check whether that treatment is for dis-

ease smallpox in the Treatment Ontology, and return true if it is the case. Similarly, another sub 

constraint checker is dispatched to Patient Ontology in parallel to see if that patient has health 

plan ‘A’. In the meanwhile, that amount value will be checked locally in Claim Ontology to see 

whether it exceeds 5000. Finally, based on the results brought back by these sub constraint 

checkers, global constraint violation can be determined by checking if every predicate in C1 has 

been met. If they are met, then an empty rule head is derivable, thus the global constraint C1 is 

violated. Therefore we have to reject the insertion of hasAmount(claim1, 7000) and flag an error 

message to user. In this way, we prevent the communications to bring the entire Patient Ontology 

and Treatment Ontology to Server 1. Reader is encouraged to follow similar analysis for C2. 

Figure 6.5 gives a detailed and decomposed structure of the Constraint Checking meth-

odology. Each module in the constraint checker is explained as follows: 

• Update Parser: Parses a user specified update, and return involved ontology objects. 

• Metadata Extractor: Extract the set of global constraints that could be potentially vio-

lated by the update statement. 
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• Constraint Planner:  runs an effective algorithm to generate sub constraints that will 

be dispatched to remote ontology sites. 

• Constraint Optimizer: reorganizes the order of sub constraints in order to achieve 

higher efficiency. 

• Constraint Executor: Execute sub constraints in parallel, and made decisions about 

the global constraint upon receiving the results of sub constraints. 

	  

Figure 7.5 Internal Architecture of Constraint Checker 

The entire process of global constraint checking can be further decomposed into the fol-

lowing eight steps. Consider the three ontologies and two global constraints we have introduced 

at the beginning of this section. The Specific Individual Type Constraint can be formalized by 
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adopting the notations used in ([TDB+08]). For the sake of argument, suppose we have the fol-

lowing generalized class hierarchy in the Patient Ontology shown in figure 6.6. An arrow from 

Pm to Pn indicates a subClassOf relationship between these two classes. In other words, Pm is 

subsumed by Pn. The Specific Individual Type Constraint posed on hasPatient property in Claim 

Ontology can be formally described as the following: 

for every pair (Pm, Pn) where Pm is a direct or indirect subclass of Pn, we put one rule for 

this pair: 

:- K hasPatient(x, y), K hasPatient(x, z), K Pm(y), K Pn(z), y=z. 

 

	  

Figure 7.6 A Generalized Class Hierarchy for Patient Ontology 

Each of the sub-goal in a rule can be easily translated to a query in standard OWL query 

language SPARQL. To finally determine whether an update violates this constraint, the Con-

straint Executor will conjunct a set of SPARQL queries. Each of the ask query represents a sub 

constraint and returns a value to the Constraint Executor. 
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From here we will provide a step-by-step procedure to show how each global constraint 

is automatically checked upon updates. 

Step 1 

The user of the Claim Ontology tries to issue a change to his local ontology. This change 

can be an insertion, a deletion, or an update statement.  In most biomedical ontologies, updates 

are handled by a deletion followed by an insertion.  For our small example, user issues the fol-

lowing insertion statements to Server 1: 

1) insert hasAmount(claim1, 7000)  

2) insert hasPatient(claim1, Tommy)  

Due to the fact that there is no equivalent SQL insertion statement in the OWL query lan-

guage SPARQL, this insertion can be executed by directly using the available API. It is easy to 

try and find out insertion (1) will not affect global constraint C2 and insertion (2) will not affect 

global constraint C1. Thus, for demonstration purpose, we group these two insertions together in 

our stepwise discussion as if they are a single insertion. After the insertion(s), we will have the 

following Claim Ontology; 

Table 7.2 The updated content of Claim Ontology 
CO 

TBox: 

ABox: 

hasPatient(claim1, Tom), 

hasTreatment(claim1, trt1), 

hasAmount(claim1, 7000), 

hasPatient(claim1, Tommy) 
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Our goal is to check if this updated Claim Ontology still satisfies the global constraints. 

Step 2 (Update Parser) 

In this step, the Update Parser identifies which part of ontology is affected by the update 

statement issued by the user. In the case of insertion, new terms are added to the ontology. The 

output of this step will be an ontology object list that contains updated values of each item. 

Ontology Object List = {Claim Ontology (patient = ‘Tommy’, claim = ‘claim1’, amount = 

‘7000’ )} 

Step 3 (Metadatabase Extractor) 

By taking the output from the Update Parser, the site that is being affected (Server 1) will 

send the ontology object list to the Global Metadatabase. The Metadatabase Extractor will take 

as input the ontology object list, consult the domain information stored in the metadatabase, and 

return a Constraint-Source Table (CST) in the following format: 

CST (Ci) = <Ci, list(Sj)> 

where Ci is the Global Constraint Identifier, and list (Sj)  is the list of ontology sources that are 

being affected by the constraint Ci. The CST captures which global constraints could be poten-

tially violated and which ontologies are involved for each of the global constraint. For our small 

example, the server 1 will receive the following CST shown in table 6.3.  

Table 7.3 Constraint-source table 
Ci List(Si) 

C1 (Semantic Constraint) (S1, S2, S3) 

C2 (Specific Type Constraint) (S1, S2) 
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Step 4 

The constraint planner residing on Server 1 receives the CST from Metadatabase Extrac-

tor. 

Step 5 (Constraint Planner) 

The Constraint Planner, based on Constraint Planning Algorithm is the core part of the 

entire framework. It takes the CST from previous step as the input, and produces the Constraint 

Planning Table (CPT) in the following format: 

CPT (Ci) = <Ci, list(Cik, Sj), and-list(Ci)> 

where Ci is the Global Constraint Identifier, Cik is the sub constraint that is decomposed from Ci 

and targeted at the ontology source Sj. The and-list is a list of SPARQL queries forming a con-

junction of sub constraints whose value will be used to determine whether this global constraint 

Ci is being violated or not. For our running example, the following CPT in table 6.4 will be gen-

erated.  

Table 7.4 Constraint planning table 
Ci list(Cik, Sj) and-list(Ci) 

C1(Semantic Constraint) (C11,S1)( C12,S1) (C13,S1), 

(C14, S2), (C15,S3), (C16, S1) 

( C11 , C12 , 

C13 , C14 , C15, C16) 

C2 (Specific Individual Type 

Constraint) 

(C21,S1)( C22,S1) (C23,S2), 

(C24, S2), (C25,S2) 

( C21 , C22 , 

C23 , C24 , C25) 

 

It is obvious that each sub constraint corresponds to a sub-goal in the constraint rule: 

C1:  

:- K hasAmount(x, y), K hasPatient(x, z), K hasTrt(x, w), K trtDisease(w, ‘smallpox’), K 

hasPlan(z, ‘A’), y>5000. 
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C2:  

:- K hasPatient(x, y), K hasPatient(x, z), K Patient(y), K pediatricPatient(z), y=z. 

C11 =  SELECT ?x, ?y 

 WHERE  

 { ?x rdf:hasAmount  ?y} 

Algorithm: Constraint Planning Algorithm 

For each constraint c in the list of global constraints C 

 For each site s from CST that is affected by constraint c in the update 

  If site s is not where the update happens 

  Then generate sub-constraints in the form of SPARQL 

    queries  from all the predicates (available in OOL) that  

reference to site s using appropriate conditions. Include 

arithmetic queries when necessary. 

  Elseif site s is where the update happens 

  Then  If there are variables whose values are from s 

   Then generate sub-constraints similar to the above case 

   If there are variables whose values are from remote sites 

Then generate queries to retrieve values from those remote 

sites first, then use those values to generate sub- 

constraints using similar method above 

 End for 

End for 
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C12 =  SELECT ?x, ?z 

 WHERE  

 { ?x rdf:hasPatient  ?z} 

C13 =  SELECT ?x, ?w 

 WHERE  

 { ?x rdf:hasPatient  ?w} 

With the values from Ontology Object List, the above SPARQL queries run locally, as 

C11, C12, C13 are targeted to S1 (Claim Ontology) from Constraint Planner Table. The values of 

those variables (identifiers that begin with a ?) will be available for parallel execution of the rest 

sub constraints. Under current state, ?x = claim1; ?y = 7000; ?w = treatment1; ?z = Tom (?z = 

Tommy can also be obtained if we combine two insertions, but to zoom in the fine-grained steps 

involved here, we consider them as separate updates in step 5). 

C14 =  ASK  

 { treatment1 rdf:trtDisease  smallpox.} 

C15 =  ASK  

 { Tom rdf:hasPlan  A.} 

C16 =  ASK  

 { 7000 rdf:greatThan  5000.} 

Since all sub goals are satisfied, an empty head will be obtained from constraint rule C1, 

indicating a violation. The idea is to run C14, C15 and C16 in parallel, and also to avoid bringing 

the Patient Ontology and Treatment Ontology to server 1 and to achieve higher efficiency.  

For global constraint C2, we will obtain: 

C21 =  SELECT ?x, ?y 
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 WHERE  

 { ?x rdf:hasPatient  ?y} 

C22 =  SELECT ?x, ?z 

 WHERE  

 { ?claim rdf:hasPatient  ?z} 

Note that the result of these two queries will give four combinations for (?y, ?z) pair: 

(Tom, Tom), (Tommy, Tommy), (Tommy, Tom), (Tom, Tommy). All four combinations will be 

checked later on, but the first three will fail at the sub goal  

patient(y), pediatricPatient(z) 

in constraint rule C2 (as a result of failing the following ASK queries). Thus empty head cannot 

be obtained from the first three combinations. For simplicity, we only consider the last combina-

tion for C23, C24, C25. 

C23 =  ASK  

 { Tom rdf:type  patient.} 

C24 =  ASK  

 { Tommy rdf:type  pediatricPatient.} 

C25 =  ASK  

 { Tom rdf:sameIndividualAs  Tommy.} 

As we assumed earlier that Tom and Tommy reference to the same entity, all sub goals are 

met. Even though only one of four combinations gives us an empty head, one empty head is 

enough to indicate an inconsistency. 
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Step 6 (Constraint Optimizer) 

This step is necessary when there are two or more global constraints are potentially vio-

lated by a single update. The Optimizer will reorganize the order of the constraint checking for 

global constraints in order to achieve higher efficiency.  For example, instead of having the Con-

straint Planning Table in table 6.5, we rearrange it into the following CPT table and let C2 to be 

checked first: 

Table 7.5 Optimized Constraint Planning table 
Ci list(Cik, Sj) and-list(Ci) 

C2 (Specific Individual Type Constraint) (C21,S1)( C22,S1) (C23,S2), (C24, 

S2), (C25,S2) 

( C21 , C22 , C23 , 

C24 , C25) 

C1(Semantic Constraint) (C11,S1)( C12,S1) (C13,S1), (C14, 

S2), (C15,S3), (C16, S1) 

( C11 , C12 , C13 , 

C14 , C15, C16) 

 

In this case, if either one of the global constraints is violated, the update will be rejected. 

Therefore, it takes less time if the Constraint Optimizer reorganizes the sequence of global con-

straint checking and let the Constraint Executor from Step 7 test Specific Individual Type Con-

straint first.  This is because it only involves accessing two ontologies S1 and S2, while the other 

constraint involves accessing three ontologies S1, S2 and S3. If C2 turns out to be invalid, there is 

no need to test for C1 anymore. In addition, the Constraint Optimizer can further reduce the time 

by employing short-circuit evaluation. Since the final result can be treated as a Boolean value 

obtained from a conjunction of set of sub constraints, any sub constraints that are evaluated to be 

false will not result in an empty head, meaning no violation will happen. Furthermore, we can 

evaluate the local (S1) sub constraint first in order to avoid unnecessary access to remote sites.  
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Step 7 (Constraint Executor) 

In this step, the Constraint Executor will take input as the optimizer CPT and send sub 

constraint checkers to remote site to obtain information that is necessary for determining the final 

result.  In case of C1, C14 and C15 will be sent to S3 and S2 respectively, in parallel, while C16 is 

running locally at the same time. Next, the constraint checker at S1 will use these values to eval-

uate the value of a set of conjunctions of the constraint rule. Since the all sub goals are met, the 

insertion of hasAmount(claim1, 7000) will cause a violation to the global constraint C1. 

Step 8 

The final result is send back to the user with an empty head meaning violation(s) or oth-

erwise meaning no violations. 

Now we conclude our approach to maintaining integrity constraints in the third process of 

OWL lifecycle. The proposed general framework employs mobile agents for concurrent valida-

tions for global constraints that involve multiple scattered ontologies. Our architecture is com-

pletely distributed. It focuses on the details of the constraint checker, which runs on each ontolo-

gy. Our main contribution is the discovery of global constraint violation issue, and the design of 

a mechanism that is faster and of less network traffic. To the best of our knowledge, this is the 

first time to identify the constraint-maintaining problem among multiple distributed ontologies.  

The applicability of this proposed framework is not limited to the ontologies we used in our illus-

tration, as we did not make any assumptions about the structure of ontologies. Our method can 

be easily extended to ontologies in other areas like wireless sensor networks and business mod-

els. In addition, the global constraint (Specific Individual Type constraint) that we have demon-

strated can be replaced by other types of constraints examined in chapter 4. 
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CHAPTER 8 CONCLUSION AND FUTURE WORK 

In this dissertation, we have presented our approaches to maintaining integrity constraints 

in the Semantic Web. Our design works closely around the entire lifecycle of an OWL document 

since its creation. We have identified three processes in which constraints can be potentially vio-

lated, namely the processes of OWL generation, maintenance, and interactions with other ontol-

ogies. Our work employed a divide-and-conquer approach to tackle these three sub-problems 

individually. During the process of OWL generation from relational database, the paraconsistent 

model is used to maintain integrity constraints during the relational database to OWL translation 

process. To preserve integrity constraints in a single OWL during its update, a new rule-based 

language with set extension is introduced as a platform to allow users to specify constraints, 

along with a demonstration of 18 commonly used constraints written in this language. In addi-

tion, we have designed a hybrid architecture that combines Jena framework and Drools rule sys-

tem to handle inconsistencies in biomedical ontologies. Afterwards, an improved constraint 

maintenance system, called Jena2Drools 2.0, was implemented and evaluated to show its effec-

tiveness and efficiency to handle general-purpose constraint checking. To further handle incon-

sistencies in interactions between multiple distributed ontologies, we constructed a framework to 

break down global constraints into several sub-constraints for efficient parallel validation. These 

methods are brought together as a coherent integral by their underlying uniformed constraint 

specification language: Rule-based DL language with set extension. The second and third pro-

cess utilize this formalism at the logic level, to build the IC capability on top of OWL DL, while 

the paraconsistent model serves as the constraint enabling mechanism at the implementation lev-

el. 
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Current and future work will focus on the construction of a single system that encom-

passes all three processes. This system will be able to handle integrity constraint issues through-

out the lifecycle of OWL files. The efforts presented in this dissertation are unified under the 

same rule-based framework for constraint checking, which essentially lay out the theoretical 

foundation for this single system. The solutions introduced in each chapter were yet tested alone 

and were meant for only a single process in OWL lifecycle. Thus a single constraint checking 

system that unifies all these efforts is desirable in the future. 



96 

REFERENCES 

[BHL01]T. Berners-Lee, J. Hendler, O. Lassila: The Semantic Web, in Scientific American 

284(5) 34-43, 2001. 

[Biz03] C. Bizer: D2R MAP – A Database to RDF Mapping Language, in WWW (Posters), 

2003. 

[BM06] D. Brickley, L. Miller: FOAF Vocabulary Specification, http://xmlns.com/foaf/0.1/, 

2006.  

[BN02] F. Baader, W. Nutt: Basic Description Logics, in the Description Logic Handbook, edit-

ed by F. Baader, D. Calvanese, D.L. McGuiness, D. Nardi, P.F. Patel-Schneider, Cam-bridge 

University Press,  pages 47-100, 2002. 

[BS95] R. Bagai and R. Sunderraman. A Paraconsistent Relational Data Model, in International 

Journal of Computer Mathematics, 1995.  

[Car07] J. Cardoso: The semantic web vision: Where are we?,  in Intelligent Systems, 22(5):84– 

88, 2007. 

[CGL+07] D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini, R. Rosati: EQL-Lite: Effective 

First-Order Query Processing in Description Logics. in IJCAI, 274-279, 2007. 

[Dan04] B. Dan: RDF Vocabulary Description Language 1.0: RDF Schema, 

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, 2004. 

[DFJ+04] L. Ding, T. Finin, A. Joshi, R. Pan, R. Cost, Y. Peng, P. Reddivari, V. Doshi, J. Sachs: 

Swoogle: a search and metadata engine for the semantic web, in Proceedings of the thirteenth 

ACM international conference on Information and knowledge management (CIKM '04), 652-

659, 2004. 



97 

[DPD+05] L. Ding, K. Pranam, Z. Ding, S. Avancha, T. Finin, A. Josh :Using Ontologies in the 

Semantic Web: A Survey, Ontologies in the Context of Information Systems, October 2005. 

[EIL+04] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, H. Tompits: Combining Answer Set 

Programming with Description Logics for the Semantic Web, in Proceedings of the 9th Int. 

Conf. on Principles of Knowledge Representation and Reasoning (KR), 141–151, 2004.  

[FHH+01] D. Fensel, F. Harmelen, I. Horrocks, D. McGuinness, P. Schneider: OIL: An ontology 

infrastructure for the semantic web, in IEEE Intelligent Systems, 16(2):38–45, 2001. 

[GJ2004] K. Graham, C. Jeremy: Resource Description Framework (RDF): Concepts and Ab-

stract Syntax, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/, 2004. 

[Gru93] T. Gruber, A translation approach to portable ontology specifications, Knowledge Ac-

quisition, 199–220, 1993.  

[HS02] I. Horrocks, U. Sattler: Description Logics Basics, Applications, and More, in Tutorial at 

ECAI, 2002.  

[HSH02] I. Horrocks, P. Schneider , F. Harmelen: Reviewing the Design of DAML+OIL: An 

Ontology Language for the Semantic Web, in Proceedings Eighteenth National Conference on 

Artificial intelligence, 792–797, 2002. 

[Joh91] S. John: Principles of Semantic Networks: Explorations in the Representation of 

Knowledge, San Mateo: Kaufmann, 1991. 

[Kun11] M. Kunder: The size of the world wide web, Worldwidewebsize.com, October 2011. 

[MG04] D. Mike, S. Guus: OWL Web Ontology Language Reference, 

http://www.w3.org/TR/2004/REC-owl-ref-20040210/, 2004.  

[MHR06] B. Motik, I.  Horrocks, R. Rosati, U. Sattler : Can OWL and logic programming live 

together happily ever after? in Proc. ISWC-2006, LNCS vol. 4273, Springer, 501 - 514, 2006. 



98 

[MHS07] I. Horrocks, B. Motik, U. Sattler: Bridging the gap between owl and relational data-

bases. in Proc. of the Sixteenth International World Wide Web Conference, Pages: 807 - 816, 

2007. 

[Mot07] B. Motik: A Faithful Integration of Description Logics with Logic Programming, in 

IJCAI, 477-482, 2007. 

[Ng05] G. Ng: Open vs closed world, rules vs queries: use cases from industry, in Proceedings of 

OWL: experiences and directions, 2005.  

[RN03] S. Russell, P. Norvig: Inference in First-Order Logic, Artificially intelligence: a modern 

approach (3rd edition) 322-357, Edited by Hirsch M. New Jersy: Prentice Hall; 2003. 

[SSV02] N. Stojanovic, L. Stojanovic, R. Volz: A reverse engineering approach for migrating 

data-intensive web sites to the Semantic Web, in IFIP 17th World Computer Congress, pages 

141–154, 2002. 

[Tao10] J. Tao: Adding Integrity Constraints to the Semantic Web for Instance Data Evaluation, 

in Proceedings of the 9th International Semantic Web Conference, 2010. 

[Tao12] J. Tao: Integrity Constraints For The Semantic Web: An Owl 2 Dl Extension, Ph.D. 

Dissertation,. 

[TDB+08] J. Tao, L. Ding, J. Bao, D.McGuinness: Characterizing and Detecting Integrity Issues 

in OWL Instance Data,  in Proceedings of the 5th International Workshop on OWL: Experiences 

and Directions (OWLED 2008 EU), 2008. 

[TZ86] S. Tsur and C. Zaniolo: LDL: a logic-based data-language,  in Proceedings of 12th 

VLDB Conference, 33-41, 1986. 



99 

[WRJ+09] W. Tai, R. Brennan, J. Keeney, D. OSullivan: An Automatically Composable OWL 

Reasoner for Resource Constrained Devices, in Proceedings of 3rd IEEE International Confer-

ence on Semantic Computing, pp. 495-502, September, 2009. 

 


	Georgia State University
	ScholarWorks @ Georgia State University
	Spring 5-10-2013

	Maintaining Integrity Constraints in Semantic Web
	Ming Fang
	Recommended Citation


	FANG_MING_201305_PHD_1

