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Abstract

Ontology-based data management (OBDM) is a powerful
knowledge-oriented paradigm for managing data spread
over multiple heterogeneous sources. In OBDM, the data
sources of an information system are handled through
the reconciled view provided by an ontology, i.e., the
conceptualization of the underlying domain of interest
expressed in some formal language. In any information
systems where the basic knowledge resides in data sources,
it is of paramount importance to specify the acceptable
states of such information. Usually, this is done via integrity
constraints, i.e., requirements that the data must satisfy
formally expressed in some specific language. However,
while the semantics of integrity constraints are clear in the
context of databases, the presence of inferred information,
typical of OBDM systems, considerably complicates the
matter. In this paper, we establish a novel framework for
integrity constraints in the OBDM scenarios, based on
the notion of knowledge state of the information system.
For integrity constraints in this framework, we define a
language based on epistemic logic, and study decidability
and complexity of both checking satisfaction and performing
different forms of static analysis on them.

1 Introduction
Managing information spread over multiple heterogeneous
data sources is a long-standing topic in the fields of data
management and knowledge representation. A powerful
tool to address this issue is the Ontology-based Data
Management (OBDM) paradigm (?), where a conceptual
specification of the domain of interest, called ontology, is
superimposed over a set of pre-existing data sources using
suitable mapping assertions (?). The resulting information
systems, called Ontology-Based Data Management systems,
enable users to interact with the data using the vocabulary
of the ontology, thus giving a high-level view of the
information contained in the data sources, and enhancing
query answering (?; ?; ?) and other data management (?)
tasks. In this paper, we focus on ontologies expressed in
Description Logics (DL) (?). DLs are logical formalisms
that represent the domain of interest in terms of concepts,
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i.e., classes of objects, and roles, i.e., binary relations
between objects. Intuitively, the models of the logical theory
constituted by the ontology, the mapping, and the data,
i.e., the models of the OBDM system, represent all the
possible worlds that are consistent with both the conceptual
specification and the data. A simple example of OBDM
system follows.
Example 1 Consider a set D of data sources, storing HR
data from different branches of a company. Branch A
stores information about employees and their department
in table empA(Name,Code,Department). The central
HR office stores information about departments in table
dep(Code,Manager) and employee codes in table
pers(Name,Code). The following database, denoted by D,
represents a possible instance of D.

empA
N C D

Bob 1B D1

dep
C M

D1 Tim
D0 Jim

pers
N C

Bob 1B
Jim 2J
Wim 3W

We assume that the domain of interest can be formally
described by a DL ontology T with concepts Emp, for
employees, and Dep, for departments, and roles hasDep,
associating employees to their department, hasCode,
associating employees to their individual code, and
hasMan, associating departments to their manager. In this
domain, every employee works for at least one department,
as formalized by the following axioms in T .

Emp v ∃hasDep ∃hasDep− v Dep
The set M of mapping assertions (Figure 1) describes the
relationship between the data in D and the concepts and
roles of T . In the remainder of this section, we will denote
by O the OBDM system constituted by D, T , andM.

In the context of data management, a question that
arises naturally is whether the stored data conform with
our understanding of the domain. During the years, this
fundamental question gave rise to the concept of integrity
constraints (?; ?), ICs for short. Informally, ICs are a means
to describe the acceptable states of a knowledge base, and
are very popular in relational databases where, together with
suitable mechanisms to enforce satisfaction, they are used



∀x, y, z.empA(x, y, z) →


Emp(x)∧
hasCode(x, y)∧
hasDep(x, z);

∀x, y.dep(x, y) →


Dep(x)∧
hasMan(x, z)∧
hasDep(z, x)∧
Emp(z)

∀x, y, z.pers(x, y) →
{
Emp(x)∧
hasCode(x, y)

Figure 1: MappingM for Example 1.

to prevent meaningless states of the data. In this context,
there is a general agreement on languages and semantics
suitable for ICs, typically based on data dependencies, i.e.,
special first-order formulae to be evaluated as queries over
the database.

Example 2 Refer to Example 1, and assume that dep is
the reference table for departments, meaning that every
department must appear in dep. The following data
dependency, also called foreign key constraint, captures this
requirement:

∀x, y, z. empA(x, y, z)→ ∃w.dep(z, w)

ICs have received attention also in the fields of DL
knowledge bases and ontological reasoning (?; ?) and
OBDM (?), where, analogously to the case of databases,
their goal is to define the acceptable states of an
information system. However, databases are often based on
the closed-world semantics. Therefore, checking satisfaction
of constraints in a database D amounts to verifying
whether the corresponding formaulae are true in the logical
interpretation represented byD. In contrast, OBDM systems
support both modelling of incomplete information and
inferences on the data. This means that the semantics of an
OBDM system comprise a set of possible logical models
extending the world represented by the stored data. For
this reason, defining the semantics of integrity constraints
is much more challenging. Indeed, any mechanism that is
able to validate the ICs in this context requires a way to
control the subtle interplay between data, ontology axioms,
mapping, and constraints. Unfortunately, controlling the
way these elements interact is a task far from being
straightforward, and the possible solutions are many. The
consequence is that, after years of efforts, there is still no
general agreement on what formalism for ICs should be used
in ontological reasoning and OBDM. Despite the lack of a
generally accepted formalism, however, the need of defining
the acceptable states of an OBDM system is very natural as
the following example shows.

Example 3 After a detailed analysis, the scenario in
Example 1 reveals that any acceptable state of the OBDM
system O should conform to the following requirements:
1. Every employee has at most one code.

2. Every employee works in at least one department.
3. Every department has at least one manager.

Requirements in Example 3 should not be confused
with general statements about the way the world behaves,
i.e., these are not ontological axioms. Consider, e.g.,
Requirement 1. In the real world, an employee may have
multiple codes, maybe relative to the different roles she
covers. To allow this possibility, the ontology of O has no
axioms entailing that codes are unique for an employee.
What we require with Requirement 1 is that, in the current
state of the system, no employee has more than one code.
Statements of this kind require some form of introspection,
and hence they cannot be expressed using ontological
axioms. To express these requirements, we need to use ICs.
These observations bring us to the following conclusions:
while ontological axioms shape the information contained
in OBDM systems a-priori, ICs should act a-posteriori on
the system, aiming at validating its current state.

Depending on how its current state is defined, there are
different techniques to check and validate the information an
OBDM system contains. Two methods proposed during the
years are the Entailment Semantics (ES), and the Minimal
Herbrand Model Semantics (MHMS).

In the Entailment Semantics (?), each IC is treated simply
as a boolean query, with the idea that it should be evaluated
to true in every model of the system. This approach suffers
from two main drawbacks. First, checking satisfaction
of ICs under ES can very quickly become undecidable,
depending on the form of ICs. Second, ES is too strict,
and its behavior can become counterintuitive at times. For
instance, by referring to Example 1, observe that, since the
ontological axioms do not entail that codes are unique for
the various employees, there exist models of O in which
the same employee has more than one code. In turn, this
proves that, under ES, O violates Requirement 1 mentioned
in Example 3. However, if we inspect the data sources,
there is no evidence whatsoever that the requirement is
violated, because for no employee in the system we have
more than one code. Something analogous happens with
Requirement 3. The case of Requirement 2, however, is
different. Such requirement is satisfied under ES due to the
ontological axioms, although we do not have any evidence
in the data sources about the department whereWimworks.

Intuitively, the above observations tell us that, under ES,
the current state of the data plays a marginal role. On the one
hand, violations that are not directly supported by the data in
the sources may blame the ontology of the OBDM system,
as in the case of Requirement 1 and 3. On the other hand,
constraints may be validated by the ontology, although no
data coming from the sources can be used for this purpose,
as in the case of Requirement 2.

A possible approach to get closer to the information
contained in the sources is to use some notion of minimal
information. This is the idea of the Minimal Herbrand
Models Semantics. Intuitively, the unique minimal Herbrand
model H of an OBDM system O is an interpretation
of O with the following property: for every existentially
quantified conjunction of atomic formulae φ, O entails φ



if and only if φ is true in H. Under MHMS, an OBDM
system satisfies an IC if and only if the minimal Herbrand
model of the system does. This notion was first advocated
for ontological reasoning in (?), and it was recently extended
to OBDM systems in (?). Interestingly, checking satisfaction
of constraints under MHMS is decidable in many relevant
cases. For example, in (?), the authors establish a
decidability result for a very expressive ontological language
(ALCHI) and constraints expressed by arbitrary first-order
formulae. Unfortunately, the proof of decidability relies on
algorithms for MSO, and thus the upper-bound provided
is only non-elementary. In (?), the authors focus on more
restricted languages and present upper-bounds in Πp

2. Under
several restrictions on the languages used, the authors
establish also the decidability of relevant static analysis
tasks.

However, as the definition of MHMS heavily relies on
the minimal Herbrand Model, the violation or satisfaction
of an IC under MHMS is still only loosely related
to the content of the data sources. In our running
example, it is easy to see that the minimal Herbrand
model I of O validates Requirements 1 and 2. However,
observe that, although I satisfies ∃x.hasDep(Wim, x), I
does not satisfy ∃x, y.hasDep(Wim, x) ∧ hasMan(x, y).
Therefore, O does not satisfy Requirement 3 under MHMS.

If the goal is to manage a set of data sources using an
ontology, we argue that the violation or the satisfaction
of an IC should be solidly grounded on the knowledge
that the data in the sources allow the system to achieve.
For this reason, we think that it is worth exploring a new
semantics of ICs for OBDM systems, epistemic in nature.
We call such semantics Knowledge Semantics (KS), because
under this semantics, ICs are validated by what the system
is sure about, i.e., by what the system knows, rather than
by the possible worlds described by the system, or by
the minimal information contained in such worlds. In our
current example, the employees known byO are Tim, Jim,
Wim andBob. For each of them,O knows exactly one code
and therefore, under KS, Requirement 1 is satisfied. In other
words, KS reads Requirement 1 as follows: for each known
employee, the system knows exactly one code. Similarly,
Requirement 3 is satisfied under KS, since the departments
known by O are D1 and D0, and the system knows the
manager of each of them. With regard to Requirement 2,
we consider two possible readings of the condition. The
first reading is the one imposing that all known employees
work in a department. If we consider such reading, it is easy
to see that the system satisfies the condition under KS. In
the second reading the condition states that for each known
employee, the department she works for is known. In this
case, O does not satisfy Requirement 2 under KS, because,
for employee Wim, we know that a department exists but
we do not know its exact identity.

The epistemic approach to ICs was first proposed by
Reiter in the context of incomplete databases (?; ?) and
then applied to ontological reasoning in (?). Also, in (?)
the authors propose query languages with an epistemic
operator and suggest the use of these queries as integrity
constraints for OBDM systems. In this paper, we investigate

this epistemic approach to ICs further, we give a formal
definition of what an OBDM system knows about the real
world, and we develop a new formalism for ICs based on
this notion. The epistemic nature of this language allows us
to express ICs that cannot be expressed in other formalisms
and distinguish between different readings of the integrity
constraints, such as the ones mentioned in the example
above. For ICs expressed in this formalism, we study the
computational complexity of both checking satisfaction and
performing different tasks of static analysis on ICs

Before concluding this section, we want to stress out
that our attempt is not to define the single right way to
express integrity constraints in OBDM systems. Defining
the acceptable states of information systems is a widespread
necessity and the possible different scenarios are many.
However, we observe that, if satisfied, ICs under KS do not
alter the semantics of OBDM systems. For this reason, we
believe that our formalism can be used either as it is or as a
powerful complement to other forms of constraints.

The remainder of this paper is organized as follows.
Section 2 contains preliminary definitions used throughout
the paper. Section 3 introduces our framework for ICs
in OBDM systems. Section 4 presents computational
complexity results relative to this framework. Section 5
concludes the paper.

2 Preliminary Definitions
In this section, we briefly review the concepts used in
the technical development of this paper. In what follows,
we assume basic familiarity with the standard notions of
computational complexity and first-order logic, and refer the
reader to (?) for a detailed account.

Databases. We assume relational databases over a
countably infinite set of constants ∆ and refer to (?) for
a detailed account on the topic. A database schema S
is a pair 〈ΣS , CS〉 where ΣS is a relational signature,
and CS is a set of integrity constraints. A ΣS -database
D is a relational structure in the signature ΣS ; D is
also consistent with S (alternatively S-database) if it
satisfies all the constraints in CS , written D |= CS . In
general, integrity constraints take the form of sentences in
some well-behaved fragment of first-order logic (FOL). A
popular such fragment is Data Dependencies, i.e., formulae
∀x̄φ(x̄) → ∃ȳψ(x̄, ȳ), where φ and ψ are conjunctions of
relational and equality atoms. In this paper, we focus on the
following widely accepted classes of Data Dependencies:
tuple-generating dependencies (tgds), equality-generating
dependencies (egds), and denial constraints (dens). In tgds
ψ is a conjunction of only positive relational atoms; in
egds ψ is a conjunction of equality atoms; in dens ψ
is the symbol False (⊥). Unfortunately, the unrestricted
interaction between tgds, egds, and dens leads easily to the
undecidability of many fundamental decision problems. To
ensure decidability, sets of tgds, egds, and dens are usually
subject to some syntactic requirement. A widely-accepted
requirement, common in data exchange and integration as
well as in data management, is weak-acyclicity (?). For
sets of weak-acyclic tgds, egds, and dens, many reasoning



tasks are decidable due to the termination of the chase
algorithm(?).

Besides checking the satisfaction of integrity constraints,
a fundamental task to perform with databases is query
answering. Given a database D and a query q(x̄), i.e., a
first-order formula with free variables x̄, query answering
asks for the set ans(q,D) of tuples of constants c̄ such that
D satisfies the formula q(c̄). Important classes of queries
are Conjunctive Queries (CQs), i.e., existentially quantified
conjunctions of relational atoms, and Union of Conjunctive
Queries, i.e., disjunctions of CQs sharing the same tuple of
free variables. Computing ans(q,D) for q ∈ UCQ can be
done in NP, and in AC0 if we fix the query q. When dealing
with queries, a fundamental question is whether a query q
is contained in a query q′ under a database schema S, i.e.,
whether ans(q,D) is contained in ans(q′, D) for every S-
database D. In the literature, this problem is called Query
Containment Under Constraints. If S contains only weakly-
acyclic tgds, egds, and dens, checking whether an UCQ q is
contained in an UCQ q′ under S is 2EXPTIME-complete
(?).

Description Logics Ontologies. An ontology is a
conceptualization of a domain of interest expressed in terms
of a formal language. Hereafter, we assume ontologies
expressed in Description Logics (DLs). A DL knowledge
base is a pair 〈T ,A〉 where the TBox T is the ontology,
i.e., a set of axioms specifying universal properties of the
concepts and the roles that are relevant in the domain,
and the ABox A contains logical assertions (called ABox
assertions) specifying the instances of concepts and roles. In
this paper, we focus on ontologies expressed in DL-LiteA,
a member of the DL-Lite family of DLs. In what follows,
we give only a brief account on DL-LiteA and refer the
reader to (?) for a thorough introduction. The syntax of
concept, roles and attributes expressions in DL-LiteA is
specified by the following grammar, where A,P, U are
atomic concepts, roles, and attributes, respectively, and
T1, . . . , Tn are unbounded pairwise disjoint predefined
value-domains.

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→ T1 | · · · | Tn
Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

A DL-LiteA TBox T is constituted by axioms of the
form B v C, Q v R, U v V , E v F , called inclusion
assertions, and axioms of the form (funct Q), (funct U),
called functionality assertions. In DL-LiteA TBoxes,
we further require that roles and attributes occurring in
functionality assertions cannot be specialized, i.e., they
cannot occur in the right-hand side of positive inclusions.

Given a first-order interpretation I, we define {P−}I =

{〈b, a〉 | 〈a, b〉 ∈ P I}; and ¬BI , resp. ¬QI and
¬UI , as the complement of BI , resp. QI and UI . A first-
order interpretation I satisfies an ABox assertion A(a),
respectively R(a, b), if aI ∈ AI , resp., 〈aI , bI〉 ∈ AI . I
satisfies B v C, (respectively Q v R, U v V , E v F ), if
BI ⊆ AI (resp., QI ⊆ RI , UI ⊆ V I , EI ⊆ F I). We say

that a first-order interpretation I is a model of 〈T ,A〉 if I
satisfies the axioms in T and the assertions in A and denote
the set of models of 〈T ,A〉 by Mod(〈T ,A〉).

Ontology-Based Data Management. An OBDM
specification B is a triple 〈T ,M,Σ〉 where T is a
description logic ontology, Σ is a relational signature, and
M is a set of mapping assertions from Σ to T , i.e., FOL
sentences of the form ∀x̄.φ(x̄) → ∃ȳ.ψ(x̄, ȳ), where φ
and ψ are first-order formulae on Σ and on the alphabet
of T , respectively. In this paper, we focus on two classes
of OBDM specifications: lightweight and trivial. In a
lightweight OBDM specification, T is a DL-LiteA TBox
and M is a set of conjunctive GAV mapping assertions,
i.e., formulae of the form ∀x̄.φ(x̄) → ψ(x̄), where both
φ and ψ are conjunctions of atoms (?). In trivial OBDM
specifications, T is an ontology on alphabet Σ and empty
set of axioms, and M is the identity mapping. Clearly,
trivial specifications are also lightweight.

Given an OBDM specification B = 〈T ,M,Σ〉 and a
Σ-database D, the pair O = 〈B, D〉 is called OBDM
system. Semantics of O are defined as follows: a first-
order interpretation I is a model for the OBDM system
O if I is a model for T , and the pair 〈D, I〉 satisfies the
mappingM. As customary, constants from D are assumed
to satisfy the Unique Name Assumption, i.e., each constant
is equal only to itself. The set of models of an OBDM
system O will be denoted by Mod(O); if Mod(O) 6= ∅
we will say that O is satisfiable, unsatisfiable otherwise. If
B is lightweight, we call O = 〈B, D〉 lightweight OBDM
system. For every lightweight OBDM systemO, there exists
a first-order sentence π(O) such that I ∈ Mod(O) if and
only if I is a model for π(O) (?).

In the context of OBDM systems, two fundamental
reasoning tasks are Satisfiability and Query Answering.
Satisfiability is the problem of checking whether
Mod(O) 6= ∅, for input OBDM system O. If B is
lightweight, there exists a UCQ with inequalities vB, called
violation query for B, such that O is satisfiable if and only
if ans(vB, D) = ∅. The query vB can be computed in time
polynomial w.r.t. B, so the problem of checking whether O
is satisfiable is in NP , and in AC0 if B is fixed. Given an
OBDM system O = 〈B, D〉 and a conjunctive query q(x̄),
Query Answering asks for the set cert(q,O) of tuples of
constants c̄ such that the sentence q(c̄) is true in every model
of O. If B is lightweight, for every q ∈ UCQ there exists
a UCQ Rew(q,B) such that c̄ ∈ cert(q,O) if and only if
c̄ ∈ ans(Rew(q,B), D). In general, Query Answering is
NP -Complete, and it can be solved in AC0 if we fix the
query and the specification.

Epistemic Logics. In what follows, we use the logic OL
defined in (?). Formulae in OL are defined as follows:
atomic formulae and the symbol ⊥ are in OL, if φ and ψ
are inOL so are φ∧ψ, φ∨ψ, ¬φ, ∃x.φ(x), ∀x.φ(x), K(φ),
and O(φ). A formula φ ∈ OL is objective if no occurrence
of K and O appears in φ. To interpret formulae in OL, we
use epistemic interpretations over a domain ∆. An epistemic
interpretation is a pair 〈W,w〉 whereW is a set of first-order
interpretations with domain ∆ and w is an interpretation in



W . Let φ be a formula in OL and let E = 〈W,w〉 be an
epistemic interpretation, E satisfies φ, written E |= φ, if the
following conditions hold.
• φ is an atomic formula and w |= φ.
• φ = ¬φ′ and E 6|= φ′

• φ = φ′ ∧ φ′′ and both E |= φ′ and E, w |= φ′′ hold.
• φ = ∃x.φ′(x) and E |= φ′(c), for some c ∈ (∆).
• φ = K(φ′), and w′ ∈W =⇒ 〈W,w′〉 |= φ′.
• φ = O(φ′), and w′ ∈W ⇐⇒ 〈W,w′〉 |= φ′.
Semantics of ⊥, ∨, →, and ∀ are assumed as customary.
Moreover, to ease the complexity of the proofs, we assume
that the domain ∆ is the set of constants used for databases.

3 Knowledge States and Integrity
Constraints

As we argued in the introduction, a promising approach to
ICs in the OBDM paradigm relates the acceptable states of
an information system to its current knowledge state. To
formalize this intuition, we first need to formally define the
state of knowledge of an OBDM system. In our framework,
this is done by means of the logic OL.

Definition 1 An epistemic interpretation E is an epistemic
state of an OBDM system O if E |= O(π(O)).

The set of epistemic states of an OBDM system O will
be denoted by E(O). Intuitively, in every epistemic state
〈W,w〉 of O, the set W represents what O knows about
the world while w represents what O believes to be true.
To define our formalism for integrity constraints we focus
on the former and observe that, while the epistemic states of
O may be infinitely many, the knowledge of O is uniquely
defined, as the following proposition shows.

Proposition 1 If O is a lightweight OBDM system, every
pair 〈W,w〉, 〈W ′, w′〉 ∈ E(O) is such that W = W ′.

Proposition 1 is not the only interesting characteristic
of knowledge states and, in fact, they capture many of
the intuitions discussed in the introduction. To prove this
statement, we need to establish a proper framework for ICs
in OBDM systems. To this end, we start by augmenting
OBDM specifications by a set of OL formulae that will be
interpreted as integrity constraints.

Definition 2 An OBDM specification with constraints BC is
a tuple 〈T ,M,Σ, C〉 where B = 〈T ,M,Σ〉 is an OBDM
specification and C is a set of OL sentences.

In what follows, given an OBDM specification with
constraints BC , we denote by B the underlying OBDM
specification (without constraints). Similarly to the standard
case, OBDM systems with constraints are pairs 〈BC , D〉
where D is a database and BC is an OBDM specification
with constraints. In the following definition, we formalize
what it means for 〈BC , D〉 to satisfy the set of constraints C.

Definition 3 An OBDM system with constraints 〈BC , D〉
satisfies χ ∈ OL if E |= χ, for every E ∈ E(〈B, D〉).

If O satisfies every χ ∈ C, we will say that O satisfies
its constraints. With this notion in place, we are ready to
define semantics for OBDM systems with constraints. As

informally discussed in the introduction, these semantics are
shaped by the ontology and the data and validated by the
integrity constraints.

Definition 4 LetO = 〈BC , D〉. The setMod(O) is equal to
Mod(〈B, D〉) if O satisfies C, Mod(O) = ∅ otherwise.

If Mod(O) 6= ∅, we say that O is satisfiable, unsatisfiable
otherwise. Definition 4 ensures that the semantics of
satisfiable systems are unaltered by the constraints.

With this notion of semantics in place, we can focus on the
definition of a fragment of OL suited to express ICs. From
a computational standpoint, the use of a restricted fragment
of OL is necessary, as the following proposition shows.

Proposition 2 Let B be a trivial OBDM specification and
let C be a set of OL formulae. It is undecidable to check
whether a system 〈BC , D〉 is satisfiable.

Proof 1 (Intuition) Let C = {φ}, where φ is an objective
FOL sentence, and let O = 〈B, D〉 be a satisfiable OBDM
system. The system with constraints 〈BC , D〉 is satisfiable if
and only if I |= φ for every I ∈Mod(O). A reduction from
Validity of FOL sentences follows straightforwardly.

Undecidability, however, is not the only reason why only
specific fragments of OL are suitable as ICs, as the use of
some formulae may lead to unwanted behaviours. Consider,
e.g., Proposition 2. In the informal proof given, we can
see how the use of an objective sentence φ as integrity
constraint for a system O is equivalent to requiring that
φ is entailed by O. In turn, this corresponds to assuming
for φ the Entailment Semantics. With the goal of having a
language that is computationally well-behaved and soundly
grounded on the intuitions presented in the introduction, we
now present Epistemic Dependencies (EDs).

Definition 5 An epistemic dependency is an OL formula

∀x̄.K(∃z̄.
∧
i

φi(x̄, z̄))→ ∃ȳ.K(∃w̄.ψ(x̄, ȳ, w̄))

where x̄, ȳ, z̄ are disjoint tuples of variables, each φi is a
relational atom, and ψ is either:
• a conjunction of relational atoms, or
• a conjunction of equality atoms over x̄, or
• the symbol ⊥.

While EDs may not be the only fragment of OL
that can express suitable ICs, we observe that epistemic
dependencies satisfy many of our desiderata. In the
following example, we show how the Knowledge Semantics
of all the requirements in Example 3 can be faithfully
translated into epistemic dependencies.

Example 4 The following EDs capture Requirement 1 − 3
in Example 3 under Knowledge Semantics.
1. ∀x, y, y′.K(hasCode(x, y) ∧ hasCode(x, y′))→ y = y′;
2. ∀x.K(Emp(x))→ ∃y.K(hasDep(x, y));
3. ∀x.K(Dep(x))→ ∃y.K(hasDir(x, y)).
Consider now ED 1 − 3 in the OBDM system O defined in
Example 1. For each E ∈ E(O), we have:
1. E |= K(hasCode(x, y)) if and only if x = Bob and
y = 1B, or x = Jim and y = 2J , or x = Wim and
y = 3W . Hence, O satisfies ED 1 .



2. E |= K(Emp(Wim)) but E 6|= K(hasDep(Wim, c))
for any constant c. Hence, O does not satisfy ED 2.

3. E |= K(Dep(x)) if and only if x = D0 or x = D1,
and E |= K(hasDir(x, y)) if x = D0 and y = Tim, or
x = D1 and y = Jim. Hence, O satisfies ED 3.

Example 4, shows how the violation or satisfaction of
an epistemic dependency is really grounded on the data
contained in the sources. Consider, e.g., ED 2. While the
OBDM system O entails the axiom Emp v ∃hasDep,
O violates ED 2 due to employee Wim. In turn, while O
does not entail that employee codes are unique, O satisfies
ED 1. This is due to the fact that, in the data sources, every
employee has a unique code.

In the reminder of this section, we discuss standard
reasoning tasks in the context of OBDM specifications and
systems with constraints. The first of these tasks is checking
satisfiability, i.e., given an OBDM system with constraints
O, check whether Mod(O) 6= ∅. From Definition 4, it
follows that checking whether 〈BC , D〉 is satisfiable can
be done in two steps: first, check whether 〈B, D〉 alone
is satisfiable, second, check whether 〈BC , D〉 satisfies its
constraints. While the complexity of the former is well-
known for many ontological languages, we present the
complexity of checking whether a lightweight OBDM
system satisfies a set of epistemic dependencies in the
following section.

Another important task that can be performed with
OBDM systems with constraints is query answering.
Definition 4 ensures that, after checking whether a system
〈BC , D〉 is satisfiable, the set of constraints C does not
affect query answering and can be safely disregarded. This
observation is formalized in the following proposition.

Proposition 3 Given a satisfiable OBDM system with
constraints 〈BC , D〉, a tuple c̄ is in cert(φ(x̄), 〈BC , D〉) if
and only if c̄ ∈ cert(φ(x̄), 〈B, D〉).

In light of Proposition 3, in what follows we will not discuss
query answering any further.

When dealing with standard ICs, an important task
is to check whether a constraint χ is redundant with
respect to a set of constraints C, i.e., check whether
χ is satisfied whenever all the constraints in C are. In
OBDM specifications, redundancy can be translated as
follows: given an OBDM specification BC and an epistemic
dependency κ, check whether every satisfiable system
〈BC , D〉 also satisfies κ. As we will show in the following
section, checking redundancy of epistemic dependencies is
undecidable even in the case of trivial OBDM specification.

Redundancy, however, is not the only static analysis
task that can be performed with OBDM specifications
with constraints. Other interesting tasks are, e.g., checking
faithfulness and checking protection (?). Faithfulness and
protection are defined as follows.

Definition 6 Let BC = 〈T ,M,ΣS , C〉 be an OBDM
specification with constraints and let S = 〈ΣS , CS〉 denote
a database schema. Then:
• S is faithful to BC if, for every ΣS -database D, D is

consistent with S if Mod(〈BC , D〉) 6= ∅;

• S protects BC if, for every ΣS -database D,
Mod(〈BC , D〉) 6= ∅ if D is consistent with S.

Informally, faithfulness and protection are a way to
evaluate a given data source schema at the conceptual level,
via the OBDM specification. In this context, faithfulness and
protection are relevant schema-level measures of the quality
of data, as well as useful tools for the OBDM paradigm. For
example, when OBDM specifications are paired with data
sources that evolve through time, checking satisfiability may
become a frequent task. If the source schema protects the
specification, however, satisfiability can be safely delegated
to the systems managing the data sources (?). In the same
spirit, protection and faithfulness can be used as effectual
designing tools for data source schemas. The following
example illustrates protection.

Example 5 Consider the OBDM specification B defined
in Example 1, the database schema S in Example 2, and
the epistemic dependencies in Example 4. The schema S
protects O from ED 3. Informally, this is because the
departments known by a system O = 〈B, D〉 are those
stored in tables dep and empA. For the former, O always
knows at least one manager while, for the latter, it may
not. However, due to the integrity constraints in S, the
departments stored in table empA are a subset of those
stored in dep. In turn, this implies that every known
department is associated to a manager that is also known.

4 Decidability and Complexity
In this section, we study the complexity of performing the
reasoning tasks presented in Section 3. To this end, we start
by defining relevant decisions problems.
• Satisfiability: given an OBDM system with constraints
O, check whether Mod(O) 6= ∅.

• Protection: given an OBDM specification with
constraints BC and a database schema S, check whether
S protects BC .

• Constraint Implication: given an OBDM specification
with constraints BC and a formula χ ∈ OL, check
whether every satisfiable system 〈BC , D〉 satisfies χ.

• Faithfulness: given an OBDM specification with
constraints BC and a database schema S, check whether
S is faithful to BC .

For our complexity analysis, we will assume integrity
constraints expressed as epistemic dependencies and
lightweight OBDM specifications. This assumption will
lead to decidability for Protection and even tractability, if
the specification is fixed, for Satisfiability. Unfortunately,
Constraint Implication and Faithfulness for epistemic
dependencies are inherently undecidable. To show that
undecidability only depends on the constraints, for
Constraint Implication and Faithfulness we will present
undecidability results using trivial OBDM specifications.

Satisfiability. To present our complexity results, we need
to prove several preliminary lemmas. First, we show that
the satisfaction of epistemic formulae in OBDM systems is
closely related to the problem of computing certain answers
to queries. This is formalized in the following lemma.



Lemma 1 LetO be a satisfiable OBDM system and let φ(x̄)
be a objective OL formula. The formula K(φ(c̄)), for some
tuple of constants c̄, is true in the knowledge states of O if
and only if c̄ ∈ cert(φ(x̄),O).

To check whether O = 〈BC , D〉 satisfies its constraints,
we can encode each epistemic dependency κ in C as a pair
of queries, and make use of Lemma 1 to check whether
O satisfies κ. This encoding is presented in the following
definition.

Definition 7 Let κ be the epistemic dependency

∀x̄.K(∃z̄.
∧
i

φi(x̄, z̄))→ ∃ȳ.K(∃w̄.ψ(x̄, ȳ, w̄)).

The queries bκ(x̄) and hκ(x̄) are defined as follows:
• bκ(x̄) = ∃z̄.φ(x̄, z̄);
• if ψ is a conjunction of relational atoms, then hκ(x̄, ȳ) =
∃w̄.ψ(x̄, ȳ, w̄);

• if ψ is a conjunction of equality atoms
∧
i(x

i
1 = xi2), then

hκ(x̄) = bκ(x̄) ∧
∧
i(x

i
1 = xi2);

• if ψ(x̄) = ⊥, then hκ is the empty query.

Given an epistemic dependency κ, bBκ (x̄) will denote the
UCQ Rew(bκ(x̄),B) and hBκ (x̄) will denote the UCQ
∃ȳ.Rew(hκ(x̄, ȳ)). Due to Lemma 1, bBκ (x̄) and hBκ (x̄) can
be used to test the satisfaction of κ over B. We formalize this
claim in the following lemma.

Lemma 2 Let B be a lightweight OBDM specification. A
satisfiable OBDM system with constraints 〈BC , D〉 satisfies
an epistemic dependency κ if and only if ans(bBκ (x̄), D) is
contained in ans(hBκ (x̄), D).

With Lemma 2 in place, we are now ready to prove the
complexity of checking satisfiability of lightweight OBDM
systems with constraints. We present this result in the
following theorem.

Theorem 1 Let B be a lightweight OBDM specifications
and let C be a set of epistemic dependencies. For input
〈BC , D〉, Satisfiability is Πp

2-complete. If BC is fixed and the
only input is D, Satisfiability is in AC0.

To prove membership in Πp
2, we can show an non-

deterministic algorithm that guesses a tuple c̄ that satisfies
a disjunct in bBκ (x̄) and checks whether c̄ does not satisfy
any of the disjuncts in hBκ (x̄). For hardness, we can show
a reduction from the problem of checking the satisfaction
of tgds ((?)). To prove membership in AC0, observe that
∀x̄.∃ȳ.bBκ (x̄) ∧ hBκ (x̄, ȳ) is a first-order formula that can be
evaluated directly over D.

Protection. First, we observe that, given a specification
BC , protection can be tested separately over B and C.
To formalize this intuition, we need to introduce some
additional notation. Given an OBDM specification BC =
〈T ,M,ΣS , C〉 and a database schema S , we say that
S protects BC from B if S protects the specification
〈T ,M,ΣS , ∅〉. Moreover, we say that S protects BC from
χ ∈ C if S protects the specification 〈T ,M,ΣS , {χ}〉. With
these definitions in place, we can prove the following.

Lemma 3 A database schema S protects an OBDM
specification BC if and only if S protects BC from B, and
S protects B from χ, for every χ ∈ C.

Lemma 3 will be the basic building block of our algorithm
for Protection. Assume a specification BC , where B is
lightweight and C is a set of epistemic dependencies.
Informally, while a technique to check whether S protects
BC from B is known in the literature (?), checking whether
S protects BC from κ can be done via query containment.
This intuition is formalized in the following lemma.
Lemma 4 A database schema S = 〈ΣS , CS〉 protects
the lightweight OBDM specification BC from the epistemic
dependency κ ∈ C if and only if the following hold:
• S protects BC from B, and
• ans(bBκ (x̄), D) ⊆ ans(hBκ (x̄), D), for every D |= CS .

With Lemma 4 in place, we can finally prove
the complexity of Protection for lightweight OBDM
specifications and epistemic dependencies.

Theorem 2 For input BC and S, where B is a lightweight
OBDM specifications, C is a set of epistemic dependencies,
and S is a database schema with weakly acyclic tgds, egds,
and dens, Protection is 2EXPTIME-complete.

Intuitively, the proof of Theorem 2 relies on the finiteness
of the chase of weakly-acyclic sets of weakly acyclic tgds,
egds, and dens.

Constraint Implication and Faithfulness As we briefly
discussed at the beginning of this section, both Constraint
Implication and Faithfulness are undecidable even for
the class of OBDM specifications that we called trivial.
To prove these claims, we need to introduce some
additional notation and some preliminary results. A k-tgd
is an epistemic dependency of the form ∀x̄.K(φ(x̄)) →
∃ȳK(ψ(x̄, ȳ)), where ψ is a conjunction of relational atoms.
Given a k-tgd κ, by κ⊥ we denote the tgd obtained by
removing from κ every occurrence of K, i.e., κ⊥ =
∀x̄.φ(x̄)→ ∃ȳψ(x̄, ȳ). Intuitively, κ can be used to simulate
κ⊥, as the following lemma shows.

Lemma 5 Let B be a trivial OBDM specification and let C
be a set of k-tgds. The OBDM system 〈BC , D〉 satisfies its
constraints if and only if D satisfies κ⊥, for every κ ∈ C.

Informally, Lemma 5 shows that epistemic dependencies
can simulate binary database dependencies. To prove
undecidability of Constraint Implication, we can use this
result to show a reduction from the Finite Implication
problem, i.e., given a schema S = 〈ΣS , CS〉 and a tgd τ ,
check whether every S-database satisfies τ . Undecidability
of Finite Implication was proved in (?) even for binary tuple-
generating dependencies.

Theorem 3 Constraint Implication is undecidable for
trivial OBDM specifications and epistemic dependencies.

Let κ⊥ be a binary tgd, and let κ be the associated k-tgd.
To prove Theorem 3, given an instance of Finite Implication
〈S, κ⊥〉, we can construct a specification BC , where B is
trivial, such that BC implies κ if and only if S finitely entails
κ⊥. A similar construction proves the following.



Theorem 4 With input BC and τ , where B is a trivial
OBDM specification, C is a set of epistemic dependencies,
and τ is a tgd, Faithfulness is undecidable.

5 Conclusions
We provided a framework for integrity constraints in OBDM
systems based on the notion of what such systems know
and should know about the real world. In this framework,
we defined a language for constraints and studied the
complexity of satisfaction and different forms of static
analysis. As future directions, we would like to study
the decidability and complexity of different languages for
ontologies, mappings, and constraints.
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