4,268 research outputs found

    Towards Urban General Intelligence: A Review and Outlook of Urban Foundation Models

    Full text link
    Machine learning techniques are now integral to the advancement of intelligent urban services, playing a crucial role in elevating the efficiency, sustainability, and livability of urban environments. The recent emergence of foundation models such as ChatGPT marks a revolutionary shift in the fields of machine learning and artificial intelligence. Their unparalleled capabilities in contextual understanding, problem solving, and adaptability across a wide range of tasks suggest that integrating these models into urban domains could have a transformative impact on the development of smart cities. Despite growing interest in Urban Foundation Models~(UFMs), this burgeoning field faces challenges such as a lack of clear definitions, systematic reviews, and universalizable solutions. To this end, this paper first introduces the concept of UFM and discusses the unique challenges involved in building them. We then propose a data-centric taxonomy that categorizes current UFM-related works, based on urban data modalities and types. Furthermore, to foster advancement in this field, we present a promising framework aimed at the prospective realization of UFMs, designed to overcome the identified challenges. Additionally, we explore the application landscape of UFMs, detailing their potential impact in various urban contexts. Relevant papers and open-source resources have been collated and are continuously updated at https://github.com/usail-hkust/Awesome-Urban-Foundation-Models

    Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites

    Get PDF
    Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation endeavours. In particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G, Non-Terrestrial Networks aimed at deploying satellite systems either as a stand-alone solution or as an integration to terrestrial networks in mobile broadband and machine-type communication scenarios. However, typical satellite channel impairments, as large path losses, delays, and Doppler shifts, pose severe challenges to the realisation of a satellite-based NR network. In this paper, based on the architecture options currently being discussed in the standardisation fora, we discuss and assess the impact of the satellite channel characteristics on the physical and Medium Access Control layers, both in terms of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB) and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis shows that the main technical challenges are related to the PHY/MAC procedures, in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic Repeat reQuest (HARQ) and, depending on the considered service and architecture, different solutions are proposed.Comment: Submitted to Transactions on Vehicular Technologies, April 201

    THE COLUMBUS GROUND SEGMENT – A PRECURSOR FOR FUTURE MANNED MISSIONS

    Get PDF
    In the beginning the space programs were self standing national activities, often in competition to other nations. Today space flight becomes more and more an international task. Complex space mission and deep space explorations are not longer to be stemmed by one agency or nation alone but are joint activities of several nations. The best example for such a joint (ad-) venture at the moment is the International Space Station ISS. Such international activities define complete new requirements for the supporting ground segments. The world-wide distribution of a ground segment is not any longer limited to a network of ground stations with the aim to provide a good coverage of the space craft. The coverage is sometimes – like for the ISSanyway ensured by using a relay satellite system instead. In addition to the enhanced down- and uplink methods a ground segment is aimed to connect the different centres of competence of all participating agencies/nations. From the space craft operations point of view such transnational ground segments are required to support distributed and shared operations in a predefined decision/commanding hierarchy. This has to be taken into account in the technical topology as well as for the operational set-up and teaming. Last not least increases the duration of missions, which requires a certain flexibility of the ground segment and long-term maintenance strategies for the ground segment with a special emphasis on nonintrusive replacements. The Russian space station MIR has been in the orbit for about 15 years, the ISS is currently targeted for 2020, to be for over 20 years in space

    New Design Techniques for Dynamic Reconfigurable Architectures

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Image data processing system requirements study. Volume 1: Analysis

    Get PDF
    Digital image processing, image recorders, high-density digital data recorders, and data system element processing for use in an Earth Resources Survey image data processing system are studied. Loading to various ERS systems is also estimated by simulation

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
    • …
    corecore