235 research outputs found

    Retrievals of All-Weather Daily Air Temperature Using MODIS and AMSR-E Data

    Get PDF
    Satellite optical-infrared remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides effective air temperature (Ta) retrieval at a spatial resolution of 5 km. However, frequent cloud cover can result in substantial signal loss and remote sensing retrieval error in MODIS Ta. We presented a simple pixel-wise empirical regression method combining synergistic information from MODIS Ta and 37 GHz frequency brightness temperature (Tb) retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) for estimating surface level Ta under both clear and cloudy sky conditions in the United States for 2006. The instantaneous Ta retrievals showed favorable agreement with in situ air temperature records from 40 AmeriFlux tower sites; mean R2 correspondence was 86.5 and 82.7 percent, while root mean square errors (RMSE) for the Ta retrievals were 4.58 K and 4.99 K for clear and cloudy sky conditions, respectively. Daily mean Ta was estimated using the instantaneous Ta retrievals from day/night overpasses, and showed favorable agreement with local tower measurements (R2 = 0.88; RMSE = 3.48 K). The results of this study indicate that the combination of MODIS and AMSR-E sensor data can produce Ta retrievals with reasonable accuracy and relatively fine spatial resolution (~5 km) for clear and cloudy sky conditions

    Inter-Calibration of Satellite Passive Microwave Land Observations from AMSR-E and AMSR2 Using Overlapping FY3B-MWRI Sensor Measurements

    Get PDF
    The development and continuity of consistent long-term data records from similar overlapping satellite observations is critical for global monitoring and environmental change assessments. We developed an empirical approach for inter-calibration of satellite microwave brightness temperature (Tb) records over land from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Microwave Scanning Radiometer 2 (AMSR2) using overlapping Tb observations from the Microwave Radiation Imager (MWRI). Double Differencing (DD) calculations revealed significant AMSR2 and MWRI biases relative to AMSR-E. Pixel-wise linear relationships were established from overlapping Tb records and used for calibrating MWRI and AMSR2 records to the AMSR-E baseline. The integrated multi-sensor Tb record was largely consistent over the major global vegetation and climate zones; sensor biases were generally well calibrated, though residual Tb differences inherent to different sensor configurations were still present. Daily surface air temperature estimates from the calibrated AMSR2 Tb inputs also showed favorable accuracy against independent measurements from 142 global weather stations (R2 ≥ 0.75, RMSE ≤ 3.64 °C), but with slightly lower accuracy than the AMSR-E baseline (R2 ≥ 0.78, RMSE ≤ 3.46 °C). The proposed method is promising for generating consistent, uninterrupted global land parameter records spanning the AMSR-E and continuing AMSR2 missions

    Characterizing Cropland Phenology in Major Grain Production Areas of Russia, Ukraine, and Kazakhstan by the Synergistic Use of Passive Microwave and Visible to Near Infrared Data

    Get PDF
    We demonstrate the synergistic use of surface air temperature retrieved from AMSR-E (Advanced Microwave Scanning Radiometer on Earth observing satellite) and two vegetation indices (VIs) from the shorter wavelengths of MODIS (MODerate resolution Imaging Spectroradiometer) to characterize cropland phenology in the major grain production areas of Northern Eurasia from 2003–2010. We selected 49 AMSR-E pixels across Ukraine, Russia, and Kazakhstan, based on MODIS land cover percentage data. AMSR-E air temperature growing degree-days (GDD) captures the weekly, monthly, and seasonal oscillations, and well correlated with station GDD. A convex quadratic (CxQ) model that linked thermal time measured as growing degree-days to accumulated growing degree-days (AGDD) was fitted to each pixel’s time series yielding high coefficients of determination (0.88 ≤ r2 ≤ 0.98). Deviations of observed GDD from the CxQ model predicted GDD by site corresponded to peak VI for negative residuals (period of higher latent heat flux) and low VI at beginning and end of growing season for positive residuals (periods of higher sensible heat flux). Modeled thermal time to peak, i.e., AGDD at peak GDD, showed a strong inverse linear trend with respect to latitude with r2 of 0.92 for Russia and Kazakhstan and 0.81 for Ukraine. MODIS VIs tracked similar seasonal responses in time and space and were highly correlated across the growing season with r2 \u3e 0.95. Sites at lower latitude (≤49°N) that grow winter and spring grains showed either a bimodal growing season or a shorter unimodal winter growing season with substantial inter-annual variability, whereas sites at higher latitude (≥56°N) where spring grains are cultivated exhibited shorter, unimodal growing seasons. Sites between these extremes exhibited longer unimodal growing seasons. At some sites there were shifts between unimodal and bimodal patterns over the study period. Regional heat waves that devastated grain production in 2007 in Ukraine and in 2010 in Russia and Kazakhstan appear clearly anomalous. Microwave based surface air temperature data holds great promise to extend to parts of the planet where the land surface is frequently obscured by clouds, smoke, or aerosols, and where routine meteorological observations are sparse or absent

    Land Surface Phenologies and Seasonalities Using Cool Earthlight in Temperate and Tropical Croplands

    Get PDF
    In today’s world of increasing food insecurity due to more frequent and extreme events (droughts, floods), a comprehensive understanding of global cropland dynamics is critically needed. Land surface parameters derived from the passive microwave Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and AMSR2 data enable monitoring of cropland dynamics and they can complement visible to near infrared (VNIR) and thermal infrared (TIR) data. Passive microwave data are less sensitive to atmospheric effects, cloud contamination, and solar illumination constraints resulting in finer temporal resolution suitable to track the temporal progression of cropland cover development compared to the VNIR data that has coarser temporal resolution due to compositing to lessen the atmospheric effects. Both VNIR and TIR data have moderate to fine spatial resolution compared to passive microwaves, due to the faint microwave flux from the planetary surface. I used AMSR, MODIS, TRMM, and simplified surface energy balance (SSEB) data to study cropland dynamics from 2003-2015 in North Dakota, USA, the Canadian Prairie Provinces, Northern Eurasia, and East Africa: a contrast between crop exporting regions and a food insecure region. Croplands in the temperate region are better studied compared to that of the tropics. The objective of this research was to characterize cropland dynamics in the tropics based on the knowledge gained about the microwave products in the temperate croplands. This study also aimed at assessing the utility of passive microwave data for cropland dynamics study, especially for tropical cropland regions that are often cloud-obscured during the growing season and have sparse in situ data networks. Using MODIS land cover data, I identified 162 AMSR grid cells (25km*25km=625km2) dominated by croplands within the study regions. To fit the passive microwave time series data to environmental forcings, I used the convex quadratic (CxQ) model fit that has been successfully applied with the VNIR and TIR data to herbaceous vegetation in temperate and boreal ecoregions. Land surface dynamics in the thermally-limited temperate croplands were characterized as a function of temperature; whereas, a function of moisture to model land surface dynamics in the tropical croplands. In the temperate croplands, growing degree-day (GDD), NDVI, and vegetation optical depth (VOD) were modeled as a convex quadratic function of accumulated GDD (AGDD) derived from AMSR air temperature data, yielding high coefficients of determination (0.88≤ r2≤0.98) Deviations of GDD from the long term average CxQ model by site corresponded to peak VI producing negative residuals (arising from higher latent heat flux) and low VI at beginning and end of growing season producing positive residuals (arising from higher sensible heat flux). In Northern Eurasia, sites at lower latitude (44° - 48° N) that grow winter grains showed either a longer unimodal growing season or a bimodal growing season; whereas, sites at higher latitude (48° - 56° N) where spring grains are cultivated showed shorter, unimodal growing seasons. Peak VOD showed strong linear correspondence with peak greenness (NDVI) with r2\u3e0.8, but with a one-week lag. The AMSR data were able to capture the effects of the 2010 and 2007 heat waves that devastated grain production in southwestern Russia and Northern Kazakhstan, and Ukraine, respectively, better than the MODIS data. In East African croplands, the AMSR, TRMM, and SSEB datasets modeled as a convex quadratic function of cumulative water-vapor-days displayed distinct cropland dynamics in space and time, including unimodal and bimodal growing seasons. Interannual moisture variability is at its highest at the beginning of the growing season affecting planting times of crops. Moisture time to peak from AMSR and TRMM land surface parameters displayed strong correspondence (r2 \u3e 0.80) and logical lags among variables. Characterizing cropland dynamics based on the synergistic use of complementary remote sensing data should help to advance and improve agricultural monitoring in tropical croplands that are often associated with food insecurity

    Surface water inundation in the boreal-Artic: potential impacts on regional methane emissions

    Get PDF
    Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (45° N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003-11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr-1 from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr-1 compared to the 2003-1 mean, but this was mainly offset by decreasing emissions (-0.38 Tg CH4 yr-1) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate

    Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions

    Get PDF
    Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (>= 45 degrees N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003-11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr(-1) from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr(-1) compared to the 2003-11 mean, but this was mainly offset by decreasing emissions (-0.38 Tg CH4 yr(-1)) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate

    Surface water inundation in the boreal- Arctic: potential impacts on regional methane emissions

    Get PDF
    Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (≥45° N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003–11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr−1 from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr−1 compared to the 2003–11 mean, but this was mainly offset by decreasing emissions (−0.38 Tg CH4 yr−1) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate

    SATELLITE MICROWAVE MEASUREMENT OF LAND SURFACE PHENOLOGY: CLARIFYING VEGETATION PHENOLOGY RESPONSE TO CLIMATIC DRIVERS AND EXTREME EVENTS

    Get PDF
    The seasonality of terrestrial vegetation controls feedbacks to the climate system including land-atmosphere water, energy and carbon (CO2) exchanges with cascading effects on regional-to-global weather and circulation patterns. Proper characterization of vegetation phenology is necessary to understand and quantify changes in the earthÆs ecosystems and biogeochemical cycles and is a key component in tracking ecological species response to climate change. The response of both functional and structural vegetation phenology to climatic drivers on a global scale is still poorly understood however, which has hindered the development of robust vegetation phenology models. In this dissertation I use satellite microwave vegetation optical depth (VOD) in conjunction with an array of satellite measures, Global Positioning System (GPS) reflectometry, field observations and flux tower data to 1) clarify vegetation phenology response to water, temperature and solar irradiance constraints, 2) demonstrate the asynchrony between changes in vegetation water content and biomass and changes in greenness and leaf area in relation to land cover type and climate constraints, 3) provide enhanced assessment of seasonal recovery of vegetation biomass following wildfire and 4) present a method to more accurately model tropical vegetation phenology. This research will establish VOD as a useful and informative parameter for regional-to-global vegetation phenology modeling, more accurately define the drivers of both structural and functional vegetation phenology, and help minimize errors in phenology simulations within earth system models. This dissertation also includes the development of Gross Primary Productivity (GPP) and Net Primary Productivity (NPP) vegetation health climate indicators as part of a NASA funded project entitled Development and Testing of Potential Indicators for the National Climate Assessment; Translating EOS datasets into National Ecosystem Biophysical Indicators

    The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    Get PDF
    Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent discrepancy introduced by the difference between SSM/I and AMSR-E frequencies, incidence angles, and calibration has been assessed. Significantly greater standard deviation of estimated emissivities compared to SSM/I land emissivity product was found over desert regions. Large differences between emissivity estimates from ascending and descending overpasses were found at lower frequencies due to the inconsistency between thermal IR skin temperatures and passive microwave brightness temperatures which can originate from below the surface. The mismatch between day and night AMSR-E emissivities is greater than ascending and descending differences of SSM/I emissivity. This is because of unique orbit time of AMSR-E (01:30 a.m./p.m. LT) while other microwave sensors have orbit time of 06:00 to 09:00 (a.m./p.m.). This highlights the importance of considering the penetration depth of the microwave signal and diurnal variability of the temperature in emissivity retrieval. The effect of these factors is greater for AMSR-E observations than SSM/I observations, as AMSR-E observations exhibit a greater difference between day and night measures. This issue must be addressed in future studies to improve the accuracy of the emissivity estimates especially at AMSR-E lower frequencies

    Synthesis of Satellite Microwave Observations for Monitoring Global Land-Atmosphere CO2 Exchange

    Get PDF
    This dissertation describes the estimation, error quantification, and incorporation of land surface information from microwave satellite remote sensing for modeling global ecosystem land-atmosphere net CO2 exchange. Retrieval algorithms were developed for estimating soil moisture, surface water, surface temperature, and vegetation phenology from microwave imagery timeseries. Soil moisture retrievals were merged with model-based soil moisture estimates and incorporated into a light-use efficiency model for vegetation productivity coupled to a soil decomposition model. Results, including state and uncertainty estimates, were evaluated with a global eddy covariance flux tower network and other independent global model- and remote-sensing based products
    • …
    corecore