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ABSTRACT 

LAND SURFACE PHENOLOGIES AND SEASONALITIES USING COOL 

EARTHLIGHT IN TEMPERATE AND TROPICAL CROPLANDS  

WOUBET GASHAW ALEMU 

2017 

In today’s world of increasing food insecurity due to more frequent and extreme events (droughts, 

floods), a comprehensive understanding of global cropland dynamics is critically needed. Land 

surface parameters derived from the passive microwave Advanced Microwave Scanning 

Radiometer on EOS (AMSR-E) and AMSR2 data enable monitoring of cropland dynamics and 

they can complement visible to near infrared (VNIR) and thermal infrared (TIR) data. Passive 

microwave data are less sensitive to atmospheric effects, cloud contamination, and solar 

illumination constraints resulting in finer temporal resolution suitable to track the temporal 

progression of cropland cover development compared to the VNIR data that has coarser temporal 

resolution due to compositing to lessen the atmospheric effects. Both VNIR and TIR data have 

moderate to fine spatial resolution compared to passive microwaves, due to the faint microwave 

flux from the planetary surface. I used AMSR, MODIS, TRMM, and simplified surface energy 

balance (SSEB) data to study cropland dynamics from 2003-2015 in North Dakota, USA, the 

Canadian Prairie Provinces, Northern Eurasia, and East Africa: a contrast between crop exporting 

regions and a food insecure region. Croplands in the temperate region are better studied compared 

to that of the tropics. The objective of this research was to characterize cropland dynamics in the 

tropics based on the knowledge gained about the microwave products in the temperate croplands. 

This study also aimed at assessing the utility of passive microwave data for cropland dynamics 

study, especially for tropical cropland regions that are often cloud-obscured during the growing 

season and have sparse in situ data networks. Using MODIS land cover data, I identified 162 

AMSR grid cells (25km*25km=625km2) dominated by croplands within the study regions. To fit 
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the passive microwave time series data to environmental forcings, I used the convex quadratic 

(CxQ) model fit that has been successfully applied with the VNIR and TIR data to herbaceous 

vegetation in temperate and boreal ecoregions. Land surface dynamics in the thermally-limited 

temperate croplands were characterized as a function of temperature; whereas, a function of 

moisture to model land surface dynamics in the tropical croplands. In the temperate croplands, 

growing degree-day (GDD), NDVI, and vegetation optical depth (VOD) were modeled as a 

convex quadratic function of accumulated GDD (AGDD) derived from AMSR air temperature 

data, yielding high coefficients of determination (0.88≤ r2 ≤0.98). Deviations of GDD from the 

long term average CxQ model by site corresponded to peak VI producing negative residuals 

(arising from higher latent heat flux) and low VI at beginning and end of growing season 

producing positive residuals (arising from higher sensible heat flux). In Northern Eurasia, sites at 

lower latitude (44o - 48o N) that grow winter grains showed either a longer unimodal growing 

season or a bimodal growing season; whereas, sites at higher latitude (48o - 56o N) where spring 

grains are cultivated showed shorter, unimodal growing seasons. Peak VOD showed strong linear 

correspondence with peak greenness (NDVI) with r2>0.8, but with a one-week lag. The AMSR 

data were able to capture the effects of the 2010 and 2007 heat waves that devastated grain 

production in southwestern Russia and Northern Kazakhstan, and Ukraine, respectively, better 

than the MODIS data. In East African croplands, the AMSR, TRMM, and SSEB datasets 

modeled as a convex quadratic function of cumulative water-vapor-days displayed distinct 

cropland dynamics in space and time, including unimodal and bimodal growing seasons. 

Interannual moisture variability is at its highest at the beginning of the growing season affecting 

planting times of crops. Moisture time to peak from AMSR and TRMM land surface parameters 

displayed strong correspondence (r2 > 0.80) and logical lags among variables. Characterizing 

cropland dynamics based on the synergistic use of complementary remote sensing data should 

help to advance and improve agricultural monitoring in tropical croplands that are often 

associated with food insecurity.  
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1.1 Statement of the Problem  

In the face of increasing concerns about the food-water-energy nexus, a better 

understanding of global cropland dynamics is urgently needed. About 10% of the earth's 

terrestrial surface (1.5 billion ha) is covered by crops, both irrigated and rainfed 

(Thenkabail et al., 2009). Wheat is one of important crops to assure global food security 

(Fischer et al., 2014). It’s among few global crops such as rice, maize and soybean in 

terms of harvested area extent, production and yield (Fischer et al., 2014). The USA is a 

major wheat producing country in the world, followed by China, the European Union, 

and India. Wheat ranked third among US field crops both in terms of planted acreage and 

farm receipts and about half of the yield is exported (USDA-ERS, 2013). In 2011, wheat 

in the USA constituted an area of about 18 million ha (FAO, 2013). About 80% of the 

wheat grown on the Canadian Prairies is exported (Qian et al., 2009).   

Northern Eurasia is the other potential region of the world with important 

croplands producing food crops to combat global food insecurity. About 80% of the 

Volga River Basin is cultivated (Golosov & Belyaev, 2007), of which 21 million ha were 

covered by wheat in 2011 (FAO, 2013). Although grain production in Russia (RU), 

Ukraine (UA), and Kazakhstan (KZ) declined significantly following the collapse of the 

Soviet Union, it has begun to recover due to favorable market conditions (Lindeman, 

2014; Lioubimtseva & Henebry, 2012; Sobolev, 2015; Whitney, 2014). If the recent 

increases in crop production continue, this region may become a key source to address 

food security crises in the coming decades, despite ongoing challenges arising from land 

use change, regional conflicts, and climatic variability, extremes, and change.  
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In contrast to the surplus crop producing and exporting temperate regions, crop 

production in East Africa is merely subsistence. Croplands in this region cover 45 million 

ha. Ethiopia (ET) and Tanzania (TZ) are the two major crop producing countries in the 

region, accounting 14 million ha and 13 million ha of croplands, respectively. South 

Sudan remains a bit of a mystery as it is still too new to appear in the FAO agricultural 

databases. The economy in East Africa is heavily dependent on traditional rain-fed 

agriculture, which is vulnerable to extreme weather events such as drought and floods 

(Becker-Reshef et al., 2010; Brown et al., 2010). Moreover, the region has mismatched 

population growth and economic development with population growth outpacing 

economic development. Rainfall trend in the region has been decreasing and is highly 

variable in space and time (Lyon & DeWitt, 2012). Thus, the region has been one of the 

most food insecure parts of the world. During the past century, shortage of rainfall in 

Ethiopia led to recurrent drought, which resulted in substantial shortfalls in agricultural 

production and recurrent famine (Rientjes et al., 2013).  

To address issues of food insecurity, we need a comprehensive understanding of 

cropland dynamics for major commodities and regionally important foodstuffs. Land 

surface phenology and seasonality play important roles in monitoring cropland dynamics. 

Phenology and seasonality are complementary aspects of ecosystem functioning: 

phenology deals with timing of biotic phenomena; whereas, seasonality concerns 

temporal patterns of abiotic variables. Land surface phenology (LSP) deals with the 

timing of vegetated land surface dynamics as observed by satellite remote sensors, 

particularly at spatial resolutions and extents relevant to meteorological processes in the 
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atmospheric boundary layer (de Beurs & Henebry, 2004, 2010). Due to the coarse spatial 

resolution of remote sensors relative to the biotic elements (e.g., leaves, individual plants, 

or crop canopies), LSP deals with the dynamics of mixtures of signals from the land 

surface as opposed to traditional species-centric plant phenology (de Beurs & Henebry, 

2008b; Reed et al., 1994). In a similar manner, land surface seasonality (LSS) describes 

the timing of abiotic phenomena occurring across the land surface as observed by remote 

sensing. Examples of LSS include albedo, temperature, soil moisture, soil freeze/thaw, 

ponding and flooding, snow cover, and other recurrent and variable aspects of land 

surface dynamics.  

Comparative studies of cropland LSPs enable the discrimination between crop 

types (Gumma et al., 2011; Thenkabail et al., 2007; Xiao et al., 2006; Xiao et al., 2005), 

provide observations which can be assimilated into process-based crop models increasing 

model prediction accuracy (Doraiswamy et al., 2004; Fang et al., 2011), enable impact 

assessment and early warning for drought (Rojas et al., 2011), and can aid forecasting of 

crop yields (Bolton & Friedl, 2013b; Moriondo et al., 2007). Phenological studies 

integrate climate-biosphere relationships because the timing of vegetation lifecycle 

events is influenced by temperature and precipitation (de Beurs & Henebry, 2008a; Los et 

al., 2001; Morisette et al., 2009; Pitt & Heady, 1978).  

The mid-latitudes are thermally limited with respect to net primary production; 

temperature is the primary constraint for crop production (Moriondo et al., 2007; Zhang 

et al., 2004). Air temperature is a key forcing for crop growth and development (Asseng 
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et al., 2011; Gordon & Bootsma, 1993; Ritchie & NeSmith, 1991; Wang et al., 2011). 

The concept of heat units or thermal time was introduced by Réaumur in 1730 (McMaster 

& Wilhelm, 1997). A common metric of thermal time is the growing degree-day (GDD), 

which weights the passage of calendar time by the temperature deemed useful for plant 

growth (de Beurs & Henebry, 2004; Goodin & Henebry, 1997; Gordon & Bootsma, 

1993). Use of GDD and accumulated GDD (AGDD) can improve phenological analyses 

(Boschetti et al., 2009; McMaster & Wilhelm, 1997; Viña et al., 2004a), and crop yield 

models (Raun et al., 2001; Sarma et al., 2008; Teal et al., 2006). On the other hand, 

tropical croplands can be moisture limited. Croplands in Africa are strongly dependent on 

rainfall and soil moisture for crop growth and development. A study in West Africa 

found that the length of sowing period depended mainly on rainfall and soil moisture 

(Brown & de Beurs, 2008).  

In most countries, observations from the network of weather stations is sparse in 

space and incomplete in time. Remote sensing offers multiple approaches to estimate 

temperature and moisture in a spatially comprehensive way at the cost of spatial precision 

and temporal resolution. The theoretical basis of using remotely sensed information to 

monitor crop growth and development was based on United States Department of 

Agriculture (USDA) research in the 1960s through the 1970s that characterized the 

optical properties of crop type and crop fields (Becker-Reshef et al., 2010). Satellite-

based studies of LSP and LSS first began with the launch of the first remote sensing 

satellite, namely Earth Resource Technology Satellite (ERTS-1; later named Landsat 1) 

launched on July 23, 1972 and operating in the VNIR spectrum (Henebry & de Beurs, 
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2013). Various research projects were conducted on agricultural monitoring and yield 

estimation through the analysis of crop phenology, benefiting from the fine spatial 

resolution of Landsat data (< 60m) but with the cost of the coarse temporal resolution 

(every 16 days) relative to crop vegetation dynamics (Henebry & de Beurs, 2013). The 

much finer temporal but coarser spatial resolution VNIR imagery from the National 

Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution 

Radiometer (AVHRR) and then the National Aeronautics and Space Administration 

(NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) compared to the 

Landsat series have been widely used for land surface phenology and land surface 

seasonality studies in later years.  

The USDA Foreign Agricultural Service now routinely uses remote sensing to 

monitor conditions in key crop production areas across the globe to generate market 

intelligence, particularly in regions where information is scarce or unreliable (USDA-

FAS, 2015b). Vegetation indices from the VNIR spectrum are developed usually using 

the red, which is strongly absorbed by green vegetation, and NIR, strongly reflected by 

green vegetation, bands (Henebry & de Beurs, 2013). Therefore, the spring-summer 

increase, for example, in NDVI is governed by increased absorption of the red 

wavelength by chlorophyll, and increased reflectance of the NIR due to the complex 

interaction with the internal leaf structure and between the leaves, canopy structure, and 

the background soil. Remotely sensed vegetation indices such as the Normalized 

Vegetation Index (NDVI; Tucker, 1979) have been widely utilized for agricultural 

mapping and monitoring (Benedetti & Rossini, 1993; Funk & Budde, 2009; Maselli et 
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al., 1992; Mkhabela et al., 2011; Rasmussen, 1992). However, such indices have 

limitation, such as the loss of sensitivity over dense canopies or soil background 

contamination in areas of sparse vegetation.  

Land surface phenology studies have long been limited to the conventional VNIR 

imagery, predominantly from AVHRR and MODIS sensors, given the free accessibility 

of the data and standard formats and products. However, imagery from the VNIR 

spectrum is affected by cloud cover, atmospheric aerosols, and solar illumination 

constraints. LSP and LSS measurements from satellite passive microwave radiometers 

are less sensitive to such adverse effects and can complement the VNIR measurements. 

Microwave radiometers measure microwave emission, expressed in terms of brightness 

temperature for vertical and horizontal polarizations. Microwave radiometers have been 

operating on various satellites since 1978, the Scanning Multichannel Microwave 

Radiometer (SMMR) being the first sensor, followed by the Special Sensor Microwave 

Imager (SSM/I), and then the Advanced Microwave Scanning Radiometer on Earth 

Observing Systems (AMSR-E), Microwave Sounding Unit (MSU), Advanced 

Microwave Sounding Unit (AMSU), Soil Moisture and Ocean Salinity (SMOS), 

Advanced Microwave Scanning Radiometer 2 (AMSR 2; Wagner et al., 2007).  

Therefore, the whole story of this research is about: 

• Assessing the utility of passive microwave data for land surface phenology 

and land surface seasonality studies, which have been dominantly 

conducted using the VNIR and TIR data; 
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• Acquiring a better understanding about the performance of the passive 

microwave data in well-characterized temperate croplands using VNIR 

and TIR data that can help us to interpret the results in the less well-

characterized tropical croplands; 

• Assessing the utility of passive microwave data in the tropical croplands, 

where VNIR data are impaired by dense cloud cover and atmospheric 

aerosols, and in situ data are sparse and of variable quality; 

• Comparing cropland dynamics in the thermally limited temperate 

croplands against the moisture limited tropical croplands; and 

• Comparing cropland dynamics in the major food crop producing and 

exporting regions of the world against that of a highly food insecure part 

of the world.    

1.2 Research Questions 

To address the above mentioned broad aims of this study, we have designed the 

following four specific research questions.  

Research Question 1: 

Can we use convex quadratic (CxQ) models of land surface phenology, which have been 

successfully used with VNIR and TIR data on herbaceous vegetation in the temperate and 

boreal regions, with AMSR-E passive microwave data products—air temperature and 

VOD—to study land surface phenology & seasonality in temperate croplands?  

Research Question 2: 
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Can the synergistic use of the VNIR MODIS NDVI and the passive microwave AMSR-E-

retrieved air temperature data enable characterization of cropland dynamics in the mid-

latitudes? 

Research Question 3: 

Can AMSR-E passive microwave derived VOD peak height (PH) phenometrics track 

cropland seasonal dynamics be complementary to the VNIR MODIS NDVI peak 

vegetation greenness? 

Research Question 4: 

Is it possible to characterize cropland dynamics in tropical eastern Africa using the 

blended AMSR-E/AMSR2 passive microwave dataset? 

1.3 Data and Methods 

1.3.1 Data Used 

1.3.1.1 Remote Sensing Data 

We used products from the satellite passive Advanced Microwave Scanning 

Radiometer on EOS (AMSR-E; Jones et al., 2010) and AMSR2 (Du et al., 2014). These 

datasets include surface air temperatures (ta; ̴ 2 m height; valid range: 240-340 k), 

fractional coverage of open water over land (fw; valid range: 0-1), vegetation canopy 

transmittance (tc) at three microwave frequencies (6.925 GHz, 10.65 GHz and 18.7 

GHz), surface soil moisture (mv; ≤ 2 cm soil depth; valid range: 0-1 cm3/cm3), and 

integrated water vapor content (V; valid range: 0-80mm) of the total column (Du et al., 
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2014; Jones & Kimball, 2011). We have also used data from the optical sensor Moderate 

Resolution Imaging Spectroradiometer (MODIS; DAAC-LP, 2014). These products 

include land surface temperature (LST) from both Terra (MOD11C2) and Aqua 

(MYD11C2) satellites and Nadir BRDF-Adjusted Reflectance, which combines 

observations from Terra and Aqua MCD43C4 satellites (DAAC-LP, 2014). The third 

dataset used in this study is rainfall from the Tropical Rainfall Measuring Mission 

(TRMM 3B42 (V7)) dataset. We have also used 1km resolution dekadal (10-day) actual 

evapotranspiration (ETa) data from the simple surface energy balance model (SSEB, 

Senay et al., 2007; Senay et al., 2013). 

To identify our specific cropland study areas, we used three datasets: the 

International Geosphere Biosphere Programme (IGBP) land cover scheme in the MODIS 

land cover product (MCD12C1; DAAC-LP, 2014), the USDA Foreign Agriculture 

Service (FAS) crop layers by oblast (for Russia: (USDA-FAS, 2011b), for Kazakhstan: 

(USDA-FAS, 2011a), for Ukraine: (USDA-FAS, 2011c)), and Google Earth images. 

Detailed descriptions of these datasets is given in the respective articles, which are 

dissertation chapters here. 

1.3.1.2 In Situ Data 

Meteorological station data from National Oceanic and Atmospheric Administration 

(NOAA) historical climate data (FEWS-NET, 2014) was also used in this study to 

compare it with the satellite retrievals.  
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1.3.2 Study Areas 

Our study areas encompass the spring wheat producing areas of the USA and the 

Canadian Prairie, the major grain producing areas of northern Eurasia, and the most food 

insecure East Africa (figure 1.1). In order to select specific study sites (size of AMSR-E 

pixels each: 25km*25km) with a high and stable percentage of cropland, we conducted a 

temporal stability analysis for cropland cover class over the study period by first 

calculating the maximum, minimum, and mean land cover percentage over the study 

period and then displaying the maximum, mean, and range in the red, green, and blue 

color planes, respectively (Henebry et al., 2013). Yellow (high maximum and high mean 

and low range) identifies land cover that is stable over the study period (figure 1-1, table 

1-1). Expanses of yellow in figure 1-1 indicate where croplands continues to be the 

dominant land cover during the study period. 

We selected the study sites within the stable core areas of cropland, but we also 

used the USDA Crop Explorer maps to identify wheat producing areas in the relatively 

bigger temperate croplands. In contrast, in the fragmented and smaller croplands of 

tropical East Africa, we have used the MODIS land cover product (MCD12C1) as a 

general guidance, while we mainly used higher resolution imagery available in Google 

Earth to select the specific study sites.  
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Figure 1-1. Cropland stability map for the study regions superimposed with the specific 

AMSR-E pixels (blue squares) selected for this study: 13 in North Dakota, USA and the 

Canadian Prairie for the first objective; 49 in northern Eurasia for the second and third 

objectives; and 100 in east Africa for the fourth objective.   

Table 1-1. Interpretative legend for figure 1-1 that displayed IGBP MODIS 0.05° land 

cover variation from 2003-2012 in the study region. The table shows how the color in the 

LC map (figure 1-1) arises from the false color composite of red, green, and blue color 

planes that display, respectively, the maximum percentage of LC class, the average 

percentage of LC class, and the range of percentages of LC class over the study period.  

 

 

  

 

  

 

Source: (Henebry et al., 2013) 

1.3.3 Methods 

For research questions one to three that were conducted in the temperate 

croplands, we used eight years—2003 through 2010 of AMSR-E and/or MODIS data. To 

Color in  
LC Map 

Red =  
Max
% LC 

Green =  
Mean% 
LC 

Blue =  
Range
% LC 

 
Interpretation 

Black None None  None Land cover (LC) class absent   

Blues Low Low High Unstable but ephemeral periphery; rare and erratic  
Magentas High Low High Unstable but persistent periphery; sometimes high, 

but usually low 
Whites High High High Unstable core; sometimes low, but usually high 
Yellows High High Low Stable core of LC; always high so low range 
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avoid the frozen season and to maintain a consistent analysis period across all study 

pixels, we restricted our focus to data from DOY 89-305, which ranges between 30 

March to 1 November for non-leap years and between 29 March to 31 October for leap 

years.  

GDDs were calculated with a base temperature of 273.15 K (=0 °C) as follows:   

GDD = max[
�	
��	��
�

�
− 273.15, 	0]                         [1] 

where tASC and tDSC are the air temperature retrievals at the ascending and descending 

passes. Accumulated GDD (or AGDD) was calculated from GDD.   

AGDDt = AGDDt-1 + GDDt                      [2] 

where GDDt is daily temperature increment of growing degree-days at time t.    

To characterize the seasonal progression of thermal time, we fitted the GDDs as a 

convex quadratic (CxQ) function of AGDD. The CxQ model has been successfully 

applied in temperate herbaceous vegetation and boreal ecosystems (de Beurs & Henebry, 

2010; Raun et al., 2001; Yang et al., 1997).           

GDDt = α + βAGDDt - γAGDDt
2                  [3] 

The intercept α is the start of observation period GDD value, the linear parameter 

β affects the slope, and the quadratic parameter γ controls the curvature. Since our model 

is convex quadratic in shape, the sign of β is positive while the sign of γ is negative.  
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Two phenometrics were derived from the fitted parameter coefficients of the CxQ 

model. The peak height (PH) (equation 4) describes the maximum GDD from the fitted 

model, and the thermal time to peak (TTP) (equation 5) describes the amount of AGDD 

needed to reach the peak GDD:   

PHGDD = α – (β2/4γ)            [4] 

TTPGDD = -β/2γ            [5] 

where α, β, γ are the fitted parameter coefficients. 

NDVI and EVI were calculated from the MODIS NBAR reflectance data using 

the formula developed by Tucker (1979) and Huete et. al (2002). We fitted NDVI as a 

function of AGDD with convex quadratic (CxQ) model (equation 3). The PH and TTP 

phenometrics for the NDVI CxQ fit were derived in a similar procedure as in equation 4 

and 5 above respectively. Vegetation Optical Depth (VOD) was derived as a negative 

logarithm of vegetation transmittance [VOD = -loge(tc) = -ln(tc)]. The transparency (or 

transmissivity) of the canopy is inversely related to canopy thickness or Vegetation 

Optical Depth (VOD; Owe et al., 2001). The VOD parameter is a frequency dependent 

measure of canopy attenuation of microwave emissions due to vegetation biomass 

structure and water content (Jones et al., 2012). Lower VOD (higher transmissivity) 

indicates lower attenuation of soil-emitted microwave radiation by overlying vegetation 

canopy and vice versa. VOD equal to 0 corresponds to a transmissivity of 1 indicating 

bare soil, and for dense vegetation the transmissivity gets close to 0 (Liu et al., 2011; 

Owe et al., 2001). 
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For research question four that was conducted in East Africa, we have used 

thirteen years (2003-2015) of passive microwave AMSR-E and TRMM and ETa from 

SSEB model product. The tropical system is moisture limited. Thus, we analyzed the 

biophysical and climatic variables time series data as a function of atmospheric 

precipitable water vapor, rather than using AGDD as in the temperate croplands. 

Cumulative water vapor days (CVD) are the summation of AMSR V throughout the 

whole year. That is, the passage of days is weighted by the quantity of V occurring that 

day (equation 6).  

 CVDt = CVDt-1 + Vt                       [6] 

where Vt is daily atmospheric precipitable water vapor at time t.     

We have accumulated annual ETa and V data (designated as CETaDd 

[Cumulative ETa Decad] and CVDd [Cumulative V Decad]) to characterize all our study 

variables as a function of CETaDd and CVDd (equation 7). Water vapor days (CVD) are 

the summation of AMSR V throughout the whole year. That is, the passage of days is 

weighted by the quantity of V occurring that day (equation 8).  

 CETaDdt = CETaDdt-1 + ETat                     [7] 

CVDdt = CVDdt-1 + Vt                      [8] 

where ETa is 10-day actual evapotranspiration; Vt is 10-day atmospheric precipitable 

water vapor at time t.     

To characterize the seasonal progression of moisture, we fitted the ETa from 

SSEB model product and V from AMSR as a convex quadratic (CxQ) function of 
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CETaDd and CVDd respectively (equation 9&10; de Beurs & Henebry, 2004, 2010; 

Henebry & de Beurs, 2013):  

ETat = α + βCETaDdt - γCETaDdt
2                                  [9] 

Vt = α + βCVDdt - γCVDdt
2                                           [10] 

where the intercept α is the start of observation period GDD value (which may not be 

zero due to the compositing), the linear parameter β affects the slope, and the quadratic 

parameter γ controls the curvature. Specific datasets and more detailed description of the 

methods is given under each chapter that hold each research question.  

1.4 Significance of the Research 

This study demonstrated the use of satellite passive microwave dataset for 

cropland land surface phenology and seasonality. Microwave radiometers can sense 

terrestrial emissions (earthlight) at night and through clouds that leads to finer temporal 

resolution relative to VNIR imagery, which must be composited to minimize cloud 

contamination and atmospheric effects. Microwave radiometers can sense emissions from 

both leaf and woody components of aboveground vegetation. The main disadvantage of 

passive microwave radiometry is its coarse spatial resolution (25 km in this study) due to 

low energy terrestrial microwave emissions (Jones et al., 2012; Liu et al., 2011), while 

VNIR datasets have fine to moderate spatial resolution. This study demonstrated the 

synergistic use of VNIR and passive microwave remote sensing datasets. Since the 
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temperate croplands are temperature limited, we have modeled LSP and LSS as a 

function of AGDD. 

The tropical croplands such as east Africa, in situ data are sparse and even the 

existing ones have poor quality. VNIR datasets usually obscured by clouds and 

atmospheric aerosols. Microwave datasets can be good alternatives to overcome such 

problems. Given the small-sized and fragmented farmlands in the tropics, using the 

coarse spatial resolution microwave datasets may have a limitation. But the synergistic 

use of the VNIR and microwaves can minimize such drawbacks. Tropical croplands are 

moisture limited. Thus, this study characterizes LSP and LSS of the tropical croplands as 

a function of atmospheric precipitable water vapor. This research makes all these efforts 

and arrive at encouraging results. Therefore, this study makes a valuable addition to the 

existing knowledge and skills of the research community concerning the use of 

microwave data products and more particularly the synergistic use of both the microwave 

and VNIR data products to monitor cropland dynamics for food security. 

1.5 Organizational Structure of the Dissertation 

 This research dissertation has six chapters, including this introductory first 

chapter. Chapter Two explores the use of microwave data for LSP and LSS studies on the 

spring wheat croplands of North America and the spring and winter wheat producing 

areas of the Volga river basin of Russia. It uses the CxQ modeling process for GDD and 

VOD. Chapter Three is about the synergistic use of passive microwave and VNIR and 

TIR satellite data to characterize cropland dynamics in the major grain producing areas of 
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northern Eurasia. It presents VNIR VIs as a function of AGDD from passive microwave 

air temperature. The chapter also describes the impact of major heatwaves of the region 

on croplands. The research presented in Chapter Four is conducted in the same study area 

as Chapter Three, but the emphasis is on different land surface parameters and 

methodology. This chapter compares peak height phenometrics of the VNIR NDVI and 

the passive microwave VOD of croplands. Chapter Five focuses on tropical east African 

croplands, using both passive microwave datasets and modeled evapotranspiration data to 

characterize tropical cropland dynamics. This chapter links LSP and LSS to crop 

production and yield statistics in the study region. It also presented the effect of ENSO 

and IOD on the LSP and LSS of the region croplands. Finally, Chapter Six presents the 

main research summaries and recommendations.   
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Research Question: Can we use convex quadratic (CxQ) models of land surface phenology, 

which have been successfully used with VNIR and TIR data on herbaceous vegetation in the 

temperate and boreal regions, with AMSR-E passive microwave data products—air temperature 

and VOD—to study land surface phenology & seasonality in temperate croplands? 

Research Answer: Yes, in part. 

• Microwave retrieved air temperature GDDs and core growing season VODs were well 

fitted using the CxQ models that have been successfully applied to optical data in many 

biomes.  

• However, the shape of the entire growing season VOD is not well represented by a 
quadratic function.  
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2.0 Abstract 

Phenology deals with timing of biotic phenomena and seasonality concerns temporal 

patterns of abiotic variables. Studies of land surface phenology (LSP) and land surface 

seasonality (LSS) have long been limited to visible to near infrared (VNIR) wavelengths, despite 

degradation by atmospheric effects and solar illumination constraints. Enhanced land surface 

parameters derived from passive microwave data enable improved temporal monitoring of 

agricultural land surface dynamics compared to the vegetation index data available from VNIR 

data. LSPs and LSSs in grain growing regions of the Volga River Basin of Russia and the spring 

wheat belts of the USA and Canada were characterized using AMSR-E enhanced land surface 

parameters for the period from April through October for 2003 through 2010. Growing degree-

days (GDDs) were calculated from AMSR-E air temperature retrievals using both ascending and 

descending passes with a base of 0° C and then accumulated (AGDD) with an annual restart each 

March 30. Tracking the AMSR-E parameters as a function of AGDD revealed the expected 

seasonal pattern of thermal limitation in mid-latitude croplands. Vegetation optical depth (VOD), 

a microwave analog of a vegetation index, was modeled as a function of AGDD with the 

resulting fitted convex quadratic models yielding both high coefficients of determination (r2 > 

0.90) and phenometrics that could characterize cropland differences between the Russian and 

North American sites. The AMSR-E data were also able to capture the effects of the 2010 heat 

wave that devastated grain production in European Russia. These results showed the potential of 

AMSR-E in monitoring and modeling cropland dynamics. 

2.1 Introduction 

Phenology and seasonality are complementary aspects of ecosystem functioning: 

phenology deals with timing of biotic phenomena; whereas, seasonality concerns 
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temporal patterns of abiotic variables. Land surface phenology (LSP) describes the timing 

of vegetated land surface dynamics as observed by remote sensing at spatial resolutions 

and extents relevant to meteorological processes in the atmospheric boundary layer (de 

Beurs & Henebry, 2004, 2010). In a similar manner, we use the term land surface 

seasonality (LSS) to describe the timing of abiotic phenomena occurring across the land 

surface as observed by remote sensing. Examples of LSS include albedo, temperature, 

soil moisture, soil freeze/thaw, ponding and flooding, snow cover, and other recurrent 

and variable aspects of land surface dynamics.  

Studies of LSP have long been limited to the visible to near infrared (VNIR) 

regions, despite degradation by atmospheric effects and solar illumination constraints 

(Jones et al., 2012). For example, the Normalized Difference Vegetation Index (NDVI; 

Tucker, 1979) is the most commonly used satellite-based vegetation index for studying 

LSP. It is limited to monitoring the top of the vegetation canopy and the signal is prone to 

degradation due both to atmospheric effects and to loss of sensitivity over vegetation with 

high leaf area index (Gitelson, 2004; Liu et al., 2011, 2013).  

Phenological studies exploiting time series from flux tower have shown the power 

of the approach, particularly in forested ecosystems (Garrity et al., 2011; Noormets, 

2009; Richardson et al., 2010). Progress has been made recently in linking flux tower 

data to land surface phenology (Gonsamo et al., 2012; Kovalskyy et al., 2012). Both 

evergreen and deciduous forested ecosystems show consistency in inter-annual and 

spatial patterns of sensitivity in annual net ecosystem productivity (NEP) as a function of 
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the carbon uptake period (CUP) characterized by flux tower data (Wu et al., 2012). 

However, the CUP was not a good indicator of NEP in non-forested ecosystems, e.g., 

croplands, grasslands, wetlands (Wu et al., 2012).   

Remote sensing of emitted microwaves, or cool earthlight, provides alternative 

means for global studies of land surface phenology and seasonality (Jones et al., 2011; 

Jones et al., 2012). Microwave radiometers can sense emissions of earthlight at night and 

through clouds, which leads to increased temporal resolution relative to VNIR imagery, 

which must be composited to minimize cloud contamination. They can sense both leaf 

and woody components of aboveground vegetation. Vegetation optical depth (VOD) is a 

measure of aboveground vegetation canopy thickness using passive microwave remote 

sensing (Owe et al., 2001). VOD is less prone to saturation in dense canopies than the 

NDVI (Liu et al., 2013). The main disadvantage of passive microwave radiometry is its 

coarse spatial resolution (25 km in this study) due to low energy emissions (Jones et al., 

2012; Liu et al., 2011, 2013).  

The question we explore here is whether it is possible to apply an LSP model used 

widely with VNIR data to the Advanced Microwave Scanning Radiometer on Earth 

Observing System (AMSR-E) products. Geophysical data products derived from passive 

microwave time series were used to study LSP and LSS in three high-latitude cropland 

areas: the Volga River Basin in the southeast European Russia, and the spring wheat belts 

in North Dakota, USA, and in the Prairie Provinces of Canada. We demonstrate that the 

convex quadratic LSP model well describes the seasonality of air temperature at each site 
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and that the VOD is also well described by the convex quadratic model form. However, 

the models fit in North America differ substantially from those in Russia. 

2.2 Methodology 

2.2.1 Remote Sensing Data 

The Advanced Microwave Scanning Radiometer (AMSR-E) was launched 

onboard the NASA-EOS Aqua satellite in May 2002. Data from AMSR-E were acquired 

at both daytime (~1330) and nighttime (~0130) overpasses from mid-June 2002 until its 

failure in early October 2011. The Numerical Terradynamic Simulation Group (NTSG) at 

the University of Montana has produced an enhanced land surface parameter suite from 

AMSR-E data for 2003 through 2010. The data product includes twice-daily air 

temperatures (ta; ~2 m height), fractional coverage of open water over land (fw), 

vegetation canopy transmittance (tc) at three microwave frequencies, surface soil 

moisture (mv; ≤ 2 cm soil depth), and integrated water vapor content of the intervening 

atmosphere (v) for the total column (Jones & Kimball, 2011).  

Soil moisture measurement was the primary land surface objective of AMSR-E. 

Accurate soil moisture retrieval is constrained by vegetation opacity as it reduces the 

observed microwave sensitivity to soil moisture. The transparency (or transmissivity) of 

the canopy is inversely related to canopy thickness or Vegetation Optical Depth (VOD; 

Owe et al., 2001). The VOD parameter is a frequency dependent measure of canopy 

attenuation of microwave emissions due to vegetation biomass structure and water 

content (Jones et al., 2012). Lower VOD (higher transmissivity) indicates lower 



35 

 

attenuation of soil-emitted microwave radiation by overlying vegetation canopy and vice 

versa. VOD equal to 0 corresponds to a transmissivity of 1 indicating bare soil, and for 

dense vegetation the transmissivity gets close to 0 (Liu et al., 2011; Owe et al., 2001). A 

long-term (1988-2008) global vegetation biomass change study on major world biomes 

found correspondence between VOD and production of major crops (Liu et al., 2013). 

We evaluated eight years (2003-2010) of the air temperature (ta) and canopy 

transmittance data in three microwave frequencies: 6.925 GHz (tc06), 10.65 GHz (tc10), 

and 18.7 GHz (tc18). Over North America, there were many gaps in the VOD retrievals 

at 6.925 GHz, likely due to radio frequency interference (RFI; Li et al., 2004; Njoku et 

al., 2005). We omitted these data from further analysis and restricted our focus to the two 

higher frequency VOD retrievals at 10.65 GHz and 18.7 GHz.  

2.2.2 Study Areas 

To select AMSR-E pixels for analysis, we used the International Geosphere 

Biosphere Programme (IGBP) global land cover classification scheme in the MODIS 

land cover product at spatial resolution of 0.05o (MCD12C1). At this coarser resolution 

each land cover class is available as a percentage cover. In Russia, we selected three 

AMSR-E pixels near Saratov and one near Volgograd, along the Volga River. For the 

USA, four pixels were selected in the major spring wheat producing state of North 

Dakota.  In the USA, we also use finer resolution USDA NASS county-level crop maps 

(http://www.nass.usda.gov/Charts_and_Maps/Crops_County/index.asp) to identify spring 

wheat areas. Five AMSR-E pixels from Canada were selected in the Prairie Provinces of 

Manitoba, Saskatchewan, and Alberta (Figure 2-1).  
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Figure 2-1.  Study area location map (upper left) and land cover map (USA and Canada 

– bottom, Russia – upper right) superimposed with AMSR-E pixels of the specific study 

sites: 1=Grafton, 2=Munich, 3=Turtle Lake, 4=Maxbass, 5=Winnipeg, 6=Prince Albert, 

7=Regina, 8=Lethbridge, 9=Edmonton, 10=Saratov 1, 11=Saratov 2, 12=Saratov 3, and 

13=Volgograd. Land cover data is from MODIS product MCD12C1 at 0.05o spatial 

resolution with the maximum of the dominant IGBP land cover class during 2003-2010.  

Red indicates grasslands; green is croplands, and blue is mixed forest. Yellow indicates a 

mixture of grasslands and croplands; cyan is a mixture of croplands and mixed forest; and 

magenta is a mixture of grasslands and mixed forest. 

2.2.3 Data Processing 

The AMSR-E parameters were analyzed from 30 March to 1 November (29 

March to 31 October for leap years) to avoid the frozen season. We applied a 10-day 

retrospective moving average filter to each parameter time series to minimize data gaps 

due to orbit and swath width. Meteorological station temperature and rainfall data from 
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NOAA National Climatic Data Center was used for comparative assessment. 

Additionally, NDVI derived from MODIS MYD09A1 was obtained from the Oak Ridge 

National Laboratory Distributed Active Archive Center (http://daac.ornl.gov/cgi-

bin/MODIS/GR_col5_1/mod_viz.html) for one AMSR-E pixel in one of the Russian 

croplands for comparison with the microwave data. 

 The thermal regime of growing season can be characterized in terms of 

accumulated growing degree-days (AGDD; de Beurs & Henebry, 2004, 2010; de Beurs et 

al., 2009). Growing degree-days were calculated from AMSR-E air temperature data (ta) 

using a base temperature of 273.15 K (0 oC) as follows:    

GDD = max	[
������� !"#$%

�
− 273.15, 0]                            [1] 

where taday and tanight are the air temperatures retrieved during the acending pass (day) and 

descending pass (night). The AGDD were derived from simple summation of the GDD: 

AGDD� 	= 	AGDD�'( 	+ 	GDD� 		                                [2] 

 where GDDt is the daily increment of growing degree-days at day t, and AGDDt-1 is the 

growing degree-days accumulated from the beginning of the study period (here April 1st) 

until day t.    

      GDD as a function of AGDD was fitted with a quadratic model:  

GDD = α + βAGDDt + γAGDDt
2                                      [3]   
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These three parameters have straightforward interpretations: (1) the intercept α indicates 

the background GDD value at the beginning of the observation period; (2) the linear 

parameter β affects the slope; and (3) the quadratic parameter γ controls the curvature. 

When the fitted model (eq. 3) is convex in shape, i.e., the sign of the β is positive and the 

sign of the γ is negative, the curve first rises and then falls as thermal time advances.  

LSP studies have shown that vegetation index time series, such as the NDVI of 

herbaceous vegetation in temperate and boreal ecosystems can be readily modeled by a 

quadratic function of AGDD (de Beurs & Henebry, 2004, 2010; Henebry & de Beurs, 

2013). Here we test if VOD can be modeled in a similar fashion:  

VODt = α + βAGDDt + γAGDDt
2                                         [4] 

The parameter coefficients of the fitted convex quadratic land surface phenology 

(CxQ LSP) model yield two phenometrics: (1) the peak height (PH), which is the 

maximum value in the fitted model or the vertex of the parabola (eq. 5); and (2) the 

thermal time to peak (TTP), which is the amount of accumulated growing degree-days 

required to reach the peak height (eq. 6):  

PH = α − (β2/4γ)                                                                [5]  

TTP = − β/2γ                           [6]  

Note that these phenometrics are derived from the parametric model fitted to the data rather 

than from the data directly.   
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The VOD time series were modeled in two phases. Convex quadratic models can 

parsimoniously link GDD as a function of AGDD (Figure 2-2). Thus, in the first phase 

the TTPGDD was used as a starting point to model VOD, but the duration of the growing 

period differed between study areas.  In the North American sites, peak VODs nearly co-

occurred with peak GDDs. Accordingly, we considered the core growing season (CGS) 

as the period from 0.5*TTPGDD through 1.5*TTPGDD, and we fitted the CxQ LSP model 

using the VOD and AGDD time series from this period.  In the Russian sites crops attain 

their peak VOD very much earlier than peak GDD. Accordingly, we considered core 

growing season in these croplands to extend from April 1st to date of TTPGDD, and we 

fitted the CxQ LSP model using the VOD and AGDD time series from this period. The 

PHVOD and TTPVOD for all sites were derived using equations 5 and 6, respectively (Table 

2-1).  Since we want to model VOD based on its own behavior, the TTPVOD derived from 

the first phase was used to refine the fit of the VOD models. In the second phase, we 

considered the CGS as the period from 0.5*TTPVOD through 1.25*TTPVOD, and we fitted 

the CxQ LSP model using the VOD and AGDD time series from this period. The PHVOD 

and TTPVOD metrics reported in Table 2-2 were derived from these second phase models.  

2.3 Results  

2.3.1 Growing Degree-Days 

GDD from AMSR-E and that from weather station data at two study sites compared 

favorably (Figure 2-2). However, there is some divergence towards the end of the season 

that likely arises from data gaps due to a lack of AMSR-E retrievals over frozen surfaces.  
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Figure 2-2. AMSR-E retrieved GDD averaged 2003-2010 (black solid line) as a function 

of  AMSR-E retrieved AGDD averaged 2003-2010 superimposed with similar timespan 

of meteorological station data (red dash-dotted line) from two study sites. Both AMSR-E 

time series show a good agreement with the station data; however, the late year 

divergences may arise from missing AMSR-E retrievals due to frozen surface conditions. 

Behavior of the GDD as a function of AGDD displayed strong seasonality with a 

convex quadratic shape at each study site (Figure 2-3a & 2-4). Given that mid-latitudes 

are temperature limited, this quasi-parabolic relationship during the frost-free period is 

expected, and the coefficients of determination are uniformly high (r2 > 0.90; Table 2-1, 

Figure 2-4). In the USA and Canada croplands, the modeled peak GDD occurred on 27 

July (DOY 208) on average; whereas, it occurred four days earlier, on average, in the 

Volga River basin of Russia (DOY 204) (Table 2-1). 

 While there is an expected inverse relationship between the thermal time at peak 

GDD (TTPGDD) and latitude, the pattern is relatively weak suggesting that other factors 

influence the seasonal progression of thermal time (Figure 2-3b). The GDDs were higher 

in Russia than in the North American sites (Figures 2-3 & 2-4, Table 2-1). The 

northernmost study sites in Canada, Edmonton and Prince Albert, experienced much 

b a 
Site= Volgograd, Volgograd, Site= Edmonton, Alberta, 
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lower GDDs. Site Saratov 1 had higher GDD compared to the other three Russia 

croplands (Figure 2-3a, Table 2-1); it is located relatively far from the Volga River, while 

the other three Russian sites are adjacent to the river. Interannual variation in GDD as a 

function of AGDD appeared higher during the transitional seasons of spring and fall 

(Figure 2-4).  

Table 2-1. Study site name, location, average fitted peak height of growing degree-days 

(PHGDD), average thermal time to peak GDD (TTPGDD), day of year at peak GDD 

(DOY@PHGDD), and average coefficient of determination for convex quadratic (CxQ) 

model fits during the period 2003-2010.  

Country Site Latitude Longitude 
PHGDD 

(oC) 
TTPGDD 

(oC) 
DOY@ 
PHGDD 

r2 

USA Turtle Lake 47.54 -101.00 21.5 1772 209 0.96 

USA Grafton 48.41 -97.35 21.1 1707 206 0.98 

USA Maxbass 48.71 -101.26 21.7 1847 211 0.97 

USA Munich 48.71 -98.92 20.4 1616 211 0.98 

        

Canada Lethbridge 49.90 -112.19 21.1 1803 207 0.92 

Canada Regina 49.90 -104.64 22.6 1836 210 0.96 

Canada Winnipeg 49.90 -97.35 20.4 1608 209 0.97 

Canada Prince Albert 53.04 -105.68 18.2 1416 207 0.98 

Canada Edmonton 53.36 -113.49 17.6 1376 206 0.97 

        

Russia Volgograd 48.71 44.77 24.0 1943 206 0.97 

Russia Saratov 1 50.82 46.85 26.9 2088 203 0.96 

Russia Saratov 2 50.82 46.07 23.4 1811 204 0.97 

Russia Saratov 3 50.82 45.81 22.9 1781 205 0.97 
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Figure 2-3. (a) Average AMSR-E GDD (2003-2010) as a function of average AMSR-E 

AGDD for all study sites. Canadian sites Edmonton and Prince Albert show lower GDD 

and AGDD due to their northernmost locations. The GDD in the Russian croplands was 

higher than that in the USA or Canada. (b) Thermal time to peak GDD calculated from 

parameter coefficients plotted as a function of latitude (hollow diamonds=USA, gray 

circles=Canada, light gray triangles=Russia). It shows a general decrease in TTPGDD as 

latitude increases. The uppermost triangle is Saratov 1, which is located relatively far 

a 

b 
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from the Volga River and shows higher TTPGDD, while the three other Russian sites are 

located along the river.  

 

Figure 2-4. Fitted (dotted lines) average GDD 

as a function of AGDD superimposed with two 

standard error GDD error bars (gray crosses) for 

three croplands. The coefficients of 

determination for Saratov 1, Grafton, and 

Edmonton are 0.96, 0.98, and 0.97, respectively. 

Interannual variability in GDD tended to be 

greater in the transitional seasons of spring and fall than in summer. Note the higher 

interannual uncertainty at the Russian site.  

2.3.2 Vegetation Optical Depth 

The behaviors of VOD as a function of AGDD exhibit distinct LSPs. During the 

growing season, VODs ascend to a unimodal peak value and then decline gradually. Peak 

VOD in the USA and Canada croplands occurred in early August for both frequencies on 

average. In contrast at the Russian sites the VOD peaks significantly earlier in mid-June 

(Figure 2-5, Table 2-2). VOD time series showed steep slopes towards their annual peak 

a 

Site= Saratov 1 Saratov, Russia 

b 

c 

Site= Grafton North Dakota, USA 

Site= Edmonton Alberta, Canada 
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and then descended gently. The shapes of these seasonal trajectories may reflect 

microwaves’ sensitivity to the timing of vegetation biomass growth and associated 

changes in canopy water content and the later season drydown and harvest. The pace of 

fractional green vegetation cover development is quicker than during its disappearance. 

TTPVOD differences between the AMSR-E two frequencies, 10.65 GHz and 18.7 GHz, 

was notably higher for Winnipeg (316 AGDD oC) (Table 2-2).  

Figure 2-5. Interannual average (2003-2010) of vegetation optical depth (VOD) as a 

function of AGDD at the highest AMSR-E frequency. Croplands in Russia attained their 

peak VOD much earlier than that of the USA and Canada, but with a lower peak and 

smaller dynamic range.  
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Table 2-2. Study site name, coefficient of determination, peak height of VOD, thermal 

time to peak VOD, and day of year at VOD peak for AMSR-E frequencies 10.65 GHz 

and 18.7 GHz, respectively, and the difference in growing degree-days between TTPVOD 

at the two frequencies.  

The fitted convex quadratic LSP models for every site for both frequencies 

showed high coefficients of determination (r2 > 0.90, Figure 2-6, Table 2-2). The Russian 

sites displayed lower peak VODs that occurred earlier; whereas, the North American sites 

displayed higher VOD peaks that occurred at higher AGDD (Figure 2-5, 2-6, Table 2-2). 

At each study site the VOD peak at the higher frequency (18.7 GHz) was higher than the 

VOD peak at the lower frequency (10.65 GHz), with the exception of the Prince Albert 

site, where the peaks were equal in magnitude (Table 2-2). This pattern accords with the 

Country Site r2 

VOD10 

PH 

VOD10 

TTP 

VOD10 

(°C) 

DOY

@PH

VOD10 

r2 

VOD18 

PH 

VOD18 

TTP 

VOD18 

(°C) 

DOY

@PH 

VOD18 

∆TTP 

VOD18-

VOD10 (°C) 

USA Turtle Lake 0.99 0.52 1679 205 0.99 0.53 1721 207 42 

USA Grafton 0.99 0.57 2219 228 0.99 0.62 2153 231 66  

USA Maxbass 0.99 0.56 1816 209 0.99 0.57 1843 209 27 

USA Munich 0.99 0.55 1741 217 0.99 0.56 1793 220 51 

           

Canada Lethbridge 0.98 0.50 1820 223 0.99 0.53 1808 207 -12 

Canada Regina 0.99 0.51 1853 210 0.99 0.54 1843 210 -10 

Canada Winnipeg 0.98 0.53 1735 215 0.99 0.62 2051 231 316 

Canada Prince Albert 0.97 0.60 1686 221 0.98 0.60 1710 223 24 

Canada Edmonton 0.98 0.52 1619 219 0.99 0.55 1629 220 10 

           

Russia Volgograd 0.97 0.41 1113 168 0.92 0.44 1004 163 -109 

Russia Saratov 1 0.98 0.44 1096 163 0.99 0.47 1067 161 -29 

Russia Saratov 2 0.97 0.42 1032 168 0.94 0.44 991 166 -40 

Russia Saratov 3 0.98 0.43 1142 174 0.98 0.45 1150 175 8 



46 

 

fact that the shorter wavelengths are more attenuated by the vegetation canopy and, thus, 

register higher VOD.   

Figure 2-6. Convex quadratic land surface phenology models for VOD in USA (a) and 

Russia (b). Green is observed VOD at 18.7 GHz and orange is observed VOD at 10.65 

GHz. Black dashed and dotted lines indicate the “core growing season” used to fit each 

LSP model. The magenta line shows the fitted CxQ model of VOD at 18.7 GHz and the 

blue line shows the fitted CxQ model of VOD at 10.65 GHz. 

2.4 Discussion 

2.4.1 VOD and Crop Type 

Peak VOD in Russia occurs much earlier (mid-Jun) compared to that of the North 

America (early August) (Figure 2-5, Table 2-2). The North American sites were planted 

to spring wheat that matures in the first half of August; whereas, the Russian sites were 

planted to winter grains and some grasses that grow and mature soon after the end of 

frozen season. Major crops that covered the Volgograd site include winter wheat, while 

the three Saratov sites were covered by winter wheat and some spring wheat. According 

to USDA Foreign Agricultural Service (FAS), each of these Russian sites was within the 

R
2

 = > 0.99  

a b 

Site= Grafton, USA Site= Saratov 1, Russia 
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five major winter wheat producing oblasts that produce more than 60% of the Russian 

winter wheat crop (USDA-FAS, 2009). The USDA FAS also indicates that these Russian 

sites had minimal cover in rye (USDA-FAS, 2003). The North America croplands had 

longer growing season and much higher VOD peaks while the Russia croplands exhibited 

shorter growing season and lower peak VODs. While the difference in peak VOD timing 

results from phenological differences in winter versus spring grains, the magnitude of the 

VOD peak suggests differences in cultivation practices and grain varieties as well. 

2.4.2 VOD and Land Cover 

Some cropland sites show distinctive VOD trajectories. For example, the 

Edmonton site exhibited higher VOD much earlier in the season compared to other 

Canadian sites.  Land cover information, gleaned from MODIS MCD12C1 IGBP 0.05o 

LC Type 1 percent, indicates that ~16% of the Edmonton study site falls within suburbs 

of Edmonton. The earlier season VOD may then result from woods, lawns, parks, and 

cemeteries in the suburban areas. Other sites having an urbanized component include 

Winnipeg and Volgograd (~12% each). A study conducted in eastern North America 

using MODIS NDVI found the effects of urbanized areas on land surface phenology to 

decay exponentially from the urban boundary to 10km into rural land covers (Zhang et 

al., 2004). Vegetation in urbanized areas can experience longer growing season and lower 

canopy density compared to those in rural areas, i.e., they have earlier green-up and later 

dormancy (White et al., 2002; Zhang et al., 2004).  
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2.4.3 VOD, GDD, and the 2010 Russian Heat Wave 

The effects of the 2010 Russian heat wave (Trenberth & Fasullo, 2012) were 

evident in the AMSR-E time series. At the three Saratov sites, the GDDs were well above 

the expectation based on the 2003-2009 period, especially at Saratov 1 (Figure 2-7a). The 

VODs were below expectation for much of the growing season as croplands were 

negatively impacted by the heat wave (Grumm, 2011). Curiously, the VOD trajectory at 

Saratov 1 was closer to expectation than the other two sites that experienced more 

modestly elevated temperatures (Figure 2-7b). At two Canadian sites at comparable 

latitude, the thermal regime was substantially lower than expectation (Figure 2-7c). The 

VODs were significantly depressed at one location (Regina) but not the other (Figure 2-

7d), despite comparable thermal regimes (Figure 2-7c), suggesting that factors other than 

the temperature affected the Regina LSP. The third Canadian site at the same latitude, 

Winnipeg, was not included in the comparison due to the influence of (sub)urban land 

uses within the AMSR-E pixel.  
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Figure 2-7. The deleterious effect of the 2010 Russian summer heat wave on VOD is 

evident in the Saratov 1, 2 and 3 time series where (a) GDD and AGDD were higher in 

2010, while (b) VODs were low compared to the two standard errors of the other years. 

In 2010 at Regina and Lethbridge, Canada, neither (c) the thermal regimes nor (d) the 

VOD exhibited distinct deviations from the other years. The general patterns are 

representative of the other study sites (data not shown). The presented Canadian sites 

display temperature drop in mid-September while the Regina site had lower VOD 

throughout the year due to other factor than heat wave.  

2.4.4 VOD Compared to NDVI and Meteorological Station Temperature Data 

Time series analysis of NDVI from Aqua MODIS (calculated from 8-day 

reflectance) and VOD from AMSR-E (8-day retrospective moving average) for the 

Saratov 1 site in Russia showed similar LSPs (Figure 2-8). Both indicators of the 

vegetated land surface displayed correspondence with temperature data from a nearby 

a c 

d b 

Russia Canada 
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meteorological station. The peak in the VOD time series lagged those in the NDVI. This 

behavior was expected since the VOD is sensitive to canopy water content; whereas, the 

NDVI is sensitive to photosynthetically active radiation (PAR) absorption (Viña et al., 

2004c). Noise in the NDVI time series likely resulted from atmospheric effects, such as 

sub-pixel cloud contamination. While the NDVI displayed a higher dynamic range than 

the VOD, the late season secondary peak in winter grains is captured more consistently 

by the VOD than the NDVI (Figure 2-8). Note how the dynamics in 2010 differ from the 

earlier years, particularly the long decline in VOD.  

Figure 2-8. Time series plots of the VOD (cyan circles) & the NDVI (black circles) 

(2003–2010) from a single AMSR-E pixel, Saratov 1, in Russia. Temperature data 

(temp.ms) from a nearby meteorological station (red line) is superimposed. The station 

and VOD data were smoothed with an 8-day retrospective moving average.  These data 

were aligned to the Aqua MODIS MYD09A1 reflectance compositing periods for 

comparison. All annual data (January 1st-December 31st) were considered. Notice that the 

seasonal bimodality of VOD is more pronounced than in the NDVI. The bimodality 

arises from the planting of winter grains in the fall, and growth and harvest in the 

subsequent early summer.  
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An important limitation of the microwave data is its relatively coarse spatial 

resolution necessitated by the earth’s surface low microwave energy emissions, limiting 

its ability to detect fine spatial scale changes (Jones et al., 2012; Liu et al., 2011, 2013). 

At the same time, the higher temporal resolution of the microwave data offers different 

insights in the land surface dynamics. Particularly useful is the retrieval of air 

temperature (rather than skin temperature) at much fine spatial resolution than ground-

based meteorological station networks over most of the planetary land surface (although 

these temperature retrievals are limited in temporal resolution). Although the VOD 

retrievals span a very large area—nominally 625 km2—the sensitivity to the water 

content in the vegetated land surface offers a different perspective that may be more 

temporally responsive to root-zone soil moisture changes than the absorption of PAR 

which the NDVI indicates. Additional research is needed to investigate how best to use 

these complementary perspectives for monitoring and modeling the dynamics of the 

vegetated land surface. 

2.5 Conclusions and Recommendations  

Land surface phenologies (LSPs) of VODs and land surface seasonalities (LSSs) 

of GDDs based on times series of the AMSR-E enhanced land parameters followed 

seasonal patterns expected from thermally limited croplands. Both the microwave 

retrieved GDDs and VODs could be well fit using the convex quadratic land surface 

phenology (CxQ LSP) model that has been successfully applied in many biomes using 

optical data. The AMSR-E data were also able to detect the impact of the severe heat 

wave that devastated Russian crops in the summer of 2010. These results show the 
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potential for passive microwave data in general and the AMSR-E enhanced land 

parameters in particular to be used for modeling cropland dynamics and, possibly, for 

forecasting agricultural productivity in data sparse regions of the world.   

Despite the loss of the AMSR-E, there is a future for information from passive 

microwave land surface products. The Advanced Microwave Scanning Radiometer 2 

(AMSR-2) onboard the Global Change Observations Mission 1st–Water (GCOM-W1), 

recently renamed SHIZUKU, was successfully launched by Japan Aerospace Exploration 

Agency (JAXA) on May 2012 and data products were released to the public in May 2013 

(https://gcom-w1.jaxa.jp/). AMSR-2 has similar functions with AMSR-E, but with some 

improvements. The NTSG plans to continue the production of the enhanced land 

parameters using AMSR-2 datastreams (John S. Kimball, personal communication). 

Extending this data record is an important step toward harnessing the power of passive 

microwave remote sensing for monitoring and modeling landscape dynamics beyond 

freeze-thaw transitions.  
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Research Question: Can the synergistic use of the VNIR MODIS NDVI and the passive 

microwave AMSR-E-retrieved air temperature data enable characterization of cropland 

dynamics in the mid-latitudes?  

Research Answer: Yes.  

• AMSR-E air temperature GDD were found to fit the convex quadratic (CxQ) model 

better than the counterpart MODIS LST GDD. 

• Synergistic use of MODIS VIs with AMSR-E air temperature GDD were able to 

differentiate spring and winter croplands. 

• AMSR-E GDD residuals were able to manifest the evaporative cooling effect from 
vegetation during the vegetation peak greenness period.  
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3.0 Abstract 

We demonstrate the synergistic use of surface air temperature retrieved from AMSR-E 

(Advanced Microwave Scanning Radiometer on Earth observing satellite) and two 

vegetation indices (VIs) from the shorter wavelengths of MODIS (MODerate resolution 

Imaging Spectroradiometer) to characterize cropland phenology in the major grain 

production areas of Northern Eurasia from 2003–2010. We selected 49 AMSR-E pixels 

across Ukraine, Russia, and Kazakhstan, based on MODIS land cover percentage data. 

AMSR-E air temperature growing degree-days (GDD) captures the weekly, monthly, and 

seasonal oscillations, and well correlated with station GDD. A convex quadratic (CxQ) 

model that linked thermal time measured as growing degree-days to accumulated 

growing degree-days (AGDD) was fitted to each pixel’s time series yielding high 

coefficients of determination (0.88 ≤ r2 ≤ 0.98). Deviations of observed GDD from the 

CxQ model predicted GDD by site corresponded to peak VI for negative residuals 

(period of higher latent heat flux) and low VI at beginning and end of growing season for 

positive residuals (periods of higher sensible heat flux). Modeled thermal time to peak, 

i.e., AGDD at peak GDD, showed a strong inverse linear trend with respect to latitude 

with r2 of 0.92 for Russia and Kazakhstan and 0.81 for Ukraine. MODIS VIs tracked 

similar seasonal responses in time and space and were highly correlated across the 

growing season with r2 > 0.95. Sites at lower latitude (≤49°N) that grow winter and 

spring grains showed either a bimodal growing season or a shorter unimodal winter 

growing season with substantial inter-annual variability, whereas sites at higher latitude 

(≥56°N) where spring grains are cultivated exhibited shorter, unimodal growing seasons. 
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Sites between these extremes exhibited longer unimodal growing seasons. At some sites 

there were shifts between unimodal and bimodal patterns over the study period. Regional 

heat waves that devastated grain production in 2007 in Ukraine and in 2010 in Russia and 

Kazakhstan appear clearly anomalous. Microwave based surface air temperature data 

holds great promise to extend to parts of the planet where the land surface is frequently 

obscured by clouds, smoke, or aerosols, and where routine meteorological observations 

are sparse or absent.     

3.1 Introduction 

About 10% of the earth’s terrestrial surface (1.5 billion ha) is covered by crops, 

both irrigated and rainfed (Thenkabail et al., 2009). In the face of increasing concerns 

about the food–water–energy nexus, a better understanding of global crop dynamics is 

urgently needed. Although grain production in Russia (RU), Ukraine (UA), and 

Kazakhstan (KZ) declined significantly following the collapse of the Soviet Union, it has 

begun to recover (Lioubimtseva & Henebry, 2012), and wheat production in Ukraine was 

largely unaffected by Russia’s annexation of Crimea, due to favorable weather 

(Lindeman, 2014; Sobolev, 2015; Whitney, 2014). If the recent increases in crop 

production continue, this region may become a key source to address food security crises 

in the coming decades, despite ongoing challenges arising from land use change, regional 

conflicts, and climatic variability, extremes, and change. 

The theoretical basis of using remotely sensed information to monitor crop 

growth and development was based on United States Department of Agriculture (USDA) 

research in the 1960s through the 1970s that characterized the optical properties of crop 



61 

 

type and crop fields (Becker-Reshef et al., 2010). The USDA Foreign Agricultural 

Service now routinely uses remote sensing to monitor conditions in key crop production 

areas across the globe to generate market intelligence, particularly in regions where 

information is scarce or unreliable (USDA-FAS, 2015b). The normalized difference 

vegetation index (NDVI; Tucker, 1979) is the most commonly used and a well-

documented vegetation index. Remotely sensed vegetation indices (VIs) such as the 

NDVI have been widely utilized for agricultural mapping and monitoring (Benedetti & 

Rossini, 1993; Funk & Budde, 2009; Maselli et al., 1992; Mkhabela et al., 2011; 

Rasmussen, 1992). The United States Agency for International Development (USAID) 

funded and United States Geological Survey (USGS) implemented Famine Early 

Warning System Network (FEWS NET) uses NDVI-based measures of cropland activity 

as part of its integrated early warning system for food security and drought monitoring 

(FEWS-NET, 2014). FAO’s Global Information and Early Warning System (GIEWS) 

uses NDVI data to detect vegetation health as a proxy for crop production. Despite the 

great advantages, the NDVI has some limitations including reduced sensitivity in denser 

vegetation, reduced detection of green vegetation in sparsely vegetated areas due to soil 

background, and reliance on just two spectral bands, the red and near infrared (NIR) 

bands (Czerwinski et al., 2014; Gitelson, 2004; Viña et al., 2004b). The enhanced 

vegetation index (EVI; [18]) was designed to overcome this loss of sensitivity over dense 

vegetation, adjust for soil background effects, and reduce atmospheric effects in the red 

band by including information from the blue portion of the spectrum (Huete et al., 2002). 

These vegetation indices—NDVI and EVI—are complementary for global vegetation 
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studies and together improve detection of changes in surface vegetation and extraction of 

canopy biophysical variables (Huete et al., 2002; Wardlow et al., 2007).  

Land surface phenology (LSP) deals with the timing of vegetated land surface 

dynamics as observed by satellite remote sensors, particularly at spatial resolutions and 

extents relevant to meteorological processes in the atmospheric boundary layer (de Beurs 

& Henebry, 2004, 2010). LSP plays an important role in monitoring cropland dynamics. 

Comparative studies of cropland LSPs enable the discrimination between crop types 

(Gumma et al., 2011; Thenkabail et al., 2007; Xiao et al., 2006; Xiao et al., 2005), 

provide observations which can be assimilated into process-based crop models increasing 

model prediction accuracy (Doraiswamy et al., 2004; Fang et al., 2011), enable impact 

assessment and early warning for drought (Rojas et al., 2011), and can aid forecasting of 

crop yields (Bolton & Friedl, 2013a; Moriondo et al., 2007).  

Phenological studies integrate climate-biosphere relationships because the timing 

of vegetation lifecycle events is influenced by temperature and precipitation (de Beurs & 

Henebry, 2008a; Los et al., 2001; Morisette et al., 2009; Pitt & Heady, 1978). The mid-

latitudes are thermally limited with respect to net primary production; temperature is the 

primary constraint for crop production (Alemu & Henebry, 2013; Moriondo et al., 2007; 

Zhang et al., 2004). Air temperature is a key forcing for crop growth and development 

(Asseng et al., 2011; Gordon & Bootsma, 1993; Ritchie & NeSmith, 1991; Wang et al., 

2011). The concept of heat units or thermal time was introduced by Réaumur in 1730 

(McMaster & Wilhelm, 1997). A common metric of thermal time is the growing degree-

day (GDD), which weights the passage of calendar time by the temperature deemed 
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useful for plant growth (de Beurs & Henebry, 2004; Goodin & Henebry, 1997; Gordon & 

Bootsma, 1993). Use of GDD and accumulated GDD (AGDD) can improve phenological 

analyses (Boschetti et al., 2009; McMaster & Wilhelm, 1997; Viña et al., 2004a), and 

crop yield models (Raun et al., 2001; Sarma et al., 2008; Teal et al., 2006).  

In most countries, observations from the network of weather stations are sparse in 

space and incomplete in time. Remote sensing offers multiple approaches to estimate 

temperature and moisture in a spatially comprehensive way at the cost of spatial precision 

and temporal resolution. Land surface temperature (LST) can be retrieved from moderate 

resolution (≤1 km) spatial resolution thermal infrared (TIR) sensors, such as MODIS 

(MODerate-resolution Imaging Spectroradiometer). Although LST is often very different 

than surface air temperature measured nominally at 2 m, some studies argue that it may 

be more relevant for modeling plant growth (Henebry & de Beurs, 2013; Henebry et al., 

2013; Still et al., 2014). However, TIR sensors cannot see through clouds to retrieve LST 

(de Beurs & Henebry, 2004; Hassan et al., 2007; Neteler, 2010). Passive microwave 

radiometers, which operate at much coarser spatial resolution (25 km) relative to TIR 

sensors, can penetrate most clouds to retrieve air temperature, although it is more 

challenging over snow covered surfaces (Jones et al., 2011; Jones et al., 2012; Liu et al., 

2013; Neteler, 2010). Although 25 km may be considered very coarse relative to many 

kinds of land surface features and phenomena, it is still a much finer spatial resolution for 

air temperature data than exists across most of the global land surface (Jones et al., 2010; 

Piper & Stewart, 1996). 
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Here we explore whether the synergistic use of vegetation indices from visible 

and near infrared (VNIR) reflectance and surface air temperature data retrieved through 

microwave radiometry can improve the characterization of cropland phenology at the 

mid-latitudes. The higher spatial but lower temporal resolution VNIR VIs are sensitive to 

green-up and brown-down dynamics of the growing season, and the coarser spatial but 

finer temporal resolution surface air temperature data provide the biometeorological 

tempo to improve modeling the land surface dynamics. In Section 2, we describe the data 

and modeling methods used. The results of our analyses appear in Section 3, including 

modeling the land surface seasonality of thermal time, latitudinal patterns in thermal 

time, and the identification of unimodal and bimodal seasonality. Section 4 discusses the 

identification of the period of canopy evapotranspiration detected from the thermal time 

residuals, and the detection of anomalous patterns arising from the impact of heat waves 

on crops. Section 5 concludes with remarks about the significance of this study and 

directions for further research.     

3.2 Data and Methodology 

3.2.1 Data 

3.2.1.1 Remote Sensing Data 

We used products from two sensors: MODIS for the VNIR and TIR data and 

AMSR-E (Advanced Microwave Scanning Radiometer on EOS) for the microwave data. 

AMSR-E, onboard the NASA-EOS Aqua satellite since May 2002, is a multi-frequency 

microwave radiometer (6.925, 10.65, 18.7, 23.8, 36.5, 89.0 GHz) that detects faint 

microwave emissions from the earth’s surface and atmosphere. The Numerical 
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Terradynamic Simulation Group at the University of Montana has produced various 

geophysical parameters from AMSR-E twice daily data records (daytime, ~13:30, and 

nighttime, ~01:30) overpasses, and 25 km spatial resolution from mid-June 2002 to 

October 2011 (antenna failure). These include surface air temperatures (ta; ~2 m height), 

fractional coverage of open water over land (fw), vegetation canopy transmittance (tc) at 

three microwave frequencies (6.925 GHz, 10.65 GHz and 18.7 GHz), surface soil 

moisture (mv; ≤2 cm soil depth), and integrated water vapor content (V) of the total 

column (Jones & Kimball, 2011). Only surface air temperature retrievals were used in 

this study (Jones et al., 2010). The average surface air temperature calculated from the 

01:30/13:30 overpass pair is quite likely to differ from average air temperature calculated 

from the daily extrema. We do not consider this potential bias to be a problem for our 

analysis because the accumulated average daily temperature serves to provide the tempo 

for growth rather than establish temperature threshold that would trigger phenophase 

transitions. In other words, the discrepancies introduced by the potential bias are 

negligible with respect to the modeling. 

MODIS is aboard the Terra and Aqua satellites launched by NASA in 1999 and 

2002, respectively. MODIS has 36 spectral bands from which different groups of data 

products are processed at different spatial and temporal resolutions tuned for specific 

applications. For this study, we used MODIS collection 5 level 3 data products in a 0.05 

degree (~5.6 km) Climate Modeling Grid (CMG). These products included 8-day 

composites of land surface temperature (LST) from both satellites (Terra: MOD11C2; 

Aqua: MYD11C2) and 16-day composites of Nadir BRDF-Adjusted Reflectance 
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(NBAR), which combines observations from Terra and Aqua (MCD43C4; DAAC-LP, 

2014). NBAR provides improved retrievals of surface reflectance through consistent 

normalization of multiple views of the surface to a nadir view using bidirectional 

reflectance distributions functions (BRDF) to model surface anisotropies (Friedl et al., 

2010; Schaaf et al., 2002).  

To identify our specific cropland study areas, we used two datasets: (1) the 

International Geosphere Biosphere Programme (IGBP) land cover scheme in the MODIS 

land cover product at a spatial resolution of 0.05° (MCD12C1; DAAC-LP, 2014); and (2) 

the USDA Foreign Agriculture Service (FAS) crop layers by oblast (for Russia: (USDA-

FAS, 2011b), for Kazakhstan: (USDA-FAS, 2011a), for Ukraine: (USDA-FAS, 2011c)). 

Details on the selection process of the study sites are presented in Section 2.2.   

3.2.1.2 In Situ Data 

Meteorological station data from National Oceanic and Atmospheric 

Administration (NOAA) historical climate data (FEWS-NET, 2014) was used to compare 

with the satellite retrievals. Among the 49 sites on which the study is conducted, we 

selected six meteorological stations within 25 km distance from the geographic centers of 

these study sites. From these six stations, a considerable amount of data was missing 

except for the year 2003 (Table 3-1). Missing data pose a problem for calculating 

accumulated growing degree-days. While there are more meteorological stations and data 

available within these countries, we restricted the analysis to what is freely available 

through WMO data-sharing agreements. In this study, we first selected our study 

cropland sites using criteria described in Section 2.2, and only then searched for 
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meteorological stations within a reasonable distance from the selected cropland study 

sites.   

Table 3-1. Percentage of days with meteorological station data missing during the 

growing season. 

Year/Site 
Simferopol, UA Odesa, UA  Mykolayiv, UA Kirovohrad, UA Kharkiv 2, UA Saratov 4, RU 

Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax Tmin 

2003 0 0 4 6 0 0 0 2 3 4 0 0 

2004 57 51 70 70 58 52 58 52 58 53 0 0 

2005 59 41 61 41 60 43 59 42 59 41 0 0 

2006 44 21 49 28 45 22 44 22 44 22 0 0 

2007 68 56 68 59 68 59 70 59 68 55 0 0 

2008 70 55 71 56 71 56 71 56 70 55 0 0 

2009 90 82 91 84 91 84 90 86 90 82 0 0 

2010 100 100 100 100 100 100 100 100 100 100 0 0 

3.2.2 Study Region  

Our study region spans the major grain producing areas of Ukraine, southern 

Russia, and northern Kazakhstan. Based on MODIS Land Cover Type 1 Percentage 

Product for the IGBP scheme (2003–2010), the dominant classes in the study region are 

Grassland (IGBP class 10 at 34%), Cropland (IGBP class 12 at 27%), Crop–Natural 

Vegetation Mosaic (IGBP class 14 at 14%), and Mixed Forest (IGBP class 5 at 11%). 

The overall land cover classification accuracy for this product is about 75%, but the range 

in class-specific accuracies is large (Friedl et al., 2010). In order to select specific 

AMSR-E study pixels with a high and stable percentage of cropland, we conducted a 

temporal stability analysis for each of the three dominant land cover classes over the 8 

years study period by first calculating the maximum, minimum, and mean land cover 

percentage over the study period and then displaying the maximum, mean, and range in 
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the red, green, and blue color planes, respectively (Henebry et al., 2013). Yellow (high 

maximum and high mean and low range) identifies land cover that is stable over the 

study period (Table 3-2, Figure 3-1). Expanses of yellow in Figure 3-1 indicate where 

Crop–Natural Vegetation Mosaic (Figure 3-1a), croplands (Figure 3-1b), and grasslands 

(Figure 3-1c) continue to be the dominant land cover during the study period. 

Table 3-2. Interpretative legend for figure 3-1 that display IGBP MODIS 0.05° land 

cover variation from 2003-2010 in the study region. The table shows how the color in the 

LC map (figure 3-1) arises from the false color composite of red, green, and blue color 

planes that display, respectively, the maximum percentage of LC class, the average 

percentage of LC class, and the range of percentages of LC class over the study period. 

Source: (Henebry et al., 2013). 

 

Color in  

LC Map 

Red =  

Max

% LC 

Green =  

Mean% LC 

Blue =  

Range% 

LC 

 

Interpretation 

Black None None  None Land cover (LC) class absent   

Blues Low Low High Unstable but ephemeral periphery; rare and erratic  

Magentas High Low High Unstable but persistent periphery; sometimes high, 

but usually low 

Whites High High High Unstable core; sometimes low, but usually high 

Yellows High High Low Stable core of LC; always high so low range 
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Figure 3-1. Land cover stability in Ukraine, southern Russia, and northern Kazakhstan as 

revealed by IGBP global land cover classification scheme MODIS 0.05° land cover 

products (resampled to AMSR-E spatial resolution: 0.25°) from 2003–2010: (a) crop–

natural vegetation mosaic (IGBP class 14); (b) cropland (IGBP class 12); and (c) 

grassland (IGBP class 10). Land cover percentage from 2003–2010 displayed as red = 

maximum percentage, green = mean percentage, and blue = range of percentages. For 

legend, refer to Table 3-2. 

We selected the study sites within the stable core areas of cropland, but we also 

used the USDA Crop Explorer maps to identify wheat producing areas. We identified 49 

AMSR-E pixels (study sites) in the three countries: 14 in Ukraine, 24 in Russia, and 11 in 

Kazakhstan (Figure 3-2, Table 3-3). Land cover percentage for each AMSR-E pixel study 

site was determined by aggregating the MCD12C1 Land cover percentage within each 

AMSR-E pixel. The collection of sites spans nearly 12° of latitude and 56° of longitude. 

a 

b 

c 
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The most extreme latitudinal sites (Cherkessk and Kazan’, both in Russia) have a 

maximum day length difference of two hours at the summer and winter solstices. The 

site-to-site multi-year average cropland cover ranges between 46% (Volgograd, Russia) 

to 100% (a number of sites mostly in Ukraine), while the mean cropland cover for all 

sites over the study period was 88%. While the sites are dominated by crops, there is 

some degree of fragmentation or heterogeneity within the 25 km pixels. However, the 

Soviet era heritage of very large field sizes persists across the region and minimizes that 

fragmentation. The rest of the land cover proportion is mainly crop–natural vegetation 

mosaic (CNVM), followed by grassland. Factors that could affect the temporal variation 

in cropland cover include class indeterminacy due to site adjacency and spectral mixing, 

drought and recovery, soil freeze-thaw state, disturbance, and land cover change.  
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Figure 3-2. Study region cropland stability map superimposed with the 49 specific AMSR-E pixels selected for this 

study. The AMSR-E pixels are numbered by latitude starting from the most southern site. Name for each site is their 

closest large settlement (cf. Table 3-3). Red squares are in Ukraine, cyan squares in Russia, and blue squares in 

Kazakhstan.  

Sites adjacent to land cover transition zones experience higher temporal variation in cropland cover (sites closer 

to the unstable peripheral areas with the magenta color in Figure 3-2 (see also Table 3-2). For example, Saratov 1 in 

Russia (site 21) had the largest grassland encroachment with 69% and 31% mean cropland and grassland cover, 

respectively, over the eight years and, thus, had the largest cropland cover range (28%). Omsk 1 in Russia (site 46), and 

Kostanay 2 in Kazakhstan (site 36) are other examples of this phenomenon.  
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Table 3-3. Description of 49 study sites named by their closest town and country, 

numbered from lower latitude (1) to higher latitude (49), their geographic coordinates, 

and average cropland (CRP) cover percent and range (2003–2010). Note sites with 100% 

average CRP cover throughout the study period (bold), and larger CRP cover percent 

range (underlined).  

3.2.3 Methods 

We used the AMSR-E and MODIS data from all eight years (2003–2010) for all 

the pixels. To avoid the frozen season and to maintain a consistent analysis period across 
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1 Cherkessk, RU 44.4 43.5 99 0.6 26 Kursk, RU 52.1 37.5 95 4.1 

2 Stavropol, RU 45.0 42.4 100 0.3 27 Orenburg, RU 52.4 55.2 94 4.7 

3 Krasnodar, RU 45.6 39.6 98 0.6 28 Kokshetau 1, KZ 52.7 69.2 91 8.5 

4 Simferopol', UA 45.6 34.1 100 1.2 29 Barnaul 2, RU 52.7 83.0 99 0.7 

5 Tulcea, UA 45.8 29.2 96 0.3 30 Kuybyskev 2, RU 52.7 50.2 91 9.6 

6 Rostov-on-Don 2, RU 46.7 39.8 100 0.2 31 Orel, RU 52.7 35.7 64 2.7 

7 Odesa, UA 47.3 30.7 100 0.0 32 Kokshetau 2, KZ 53.0 67.4 79 10.6 

8 Rostov-on-Do 1, RU 47.5 40.9 88 6.2 33 Lipetsk, RU 53.0 39.1 84 4.4 

9 Donets'k, UA 47.5 37.7 100 0.7 34 Kokshetau 3, KZ 53.7 68.2 84 10.0 

10 Mykolayiv, UA 47.5 32.3 100 0.1 35 Kostanay 1, KZ 53.7 63.3 78 8.0 

11 Zaporiyhzhya 1, UA 47.8 35.7 100 0.1 36 Kostanay 2, KZ 53.7 62.2 86 18.5 

12 Zaporiyhzhya 2, UA 48.1 34.1 100 0.0 37 Kurgan, KZ 53.7 65.6 74 17.3 

13 Luhans'k, RU 48.7 40.4 99 2.1 38 Barnaul_1, RU 53.7 79.4 82 11.3 

14 Volgograd, RU 48.7 44.8 46 13.4 39 Kokshetau 4, KZ 54.0 69.0 93 4.7 

15 Kirovohrad, UA 48.7 31.8 99 1.0 40 Kostanay 3, KZ 54.0 64.0 79 15.7 

16 Kharkiv 2, UA 49.0 36.2 91 6.6 41 Petropavlovsk 2, KZ 54.4 70.8 97 3.6 

17 Khmel'nyts'kyz, UA 49.0 26.8 88 11.0 42 Petropavlovsk 3, KZ 54.4 67.4 92 5.4 

18 Vinnytsya, UA 49.0 28.9 96 0.5 43 Kuybyskev 1, RU 54.4 50.8 95 8.8 

19 Poltava, UA 49.6 35.1 97 1.6 44 Ryazan, RU 54.4 39.3 65 13.7 

20 Kharkiv 1, UA 49.9 37.0 72 3.9 45 Petropavlovsk 1, KZ 54.7 69.5 86 4.4 

21 Saratov 1, RU 50.8 46.9 69 27.9 46 Omsk 1, RU 54.7 72.9 61 18.7 

22 Sumy, UA 50.8 34.1 85 7.1 47 Omsk 2, RU 55.0 74.5 59 14.5 

23 Semipalatinsk, RU 51.4 81.7 98 3.3 48 Cheboksary, RU 55.7 47.1 93 6.1 

24 Voronezh, RU 51.4 39.8 98 1.7 49 Kazan', RU 56.1 49.5 81 2.3 

25 Saratov 4, RU 51.8 45.3 88 3.6  
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all pixels, we restricted our focus to data from DOY 89–305, which ranges 30 March to 1 

November for non-leap years and 29 March to 31 October for leap years. For the AMSR-

E data, 8-day moving average filter was applied to the daily data to minimize data gaps 

due to orbit and swath width. Growing degree-day (GDD) is the daily thermal-time 

increment above a certain threshold (base temperature) for plant growth (de Beurs & 

Henebry, 2004; McMaster & Wilhelm, 1997; Sarma et al., 2008), and accumulated 

growing degree-days (AGDD) are the simple summation of heat units throughout the 

annual observation period (de Beurs & Henebry, 2010; Wang et al., 2001; Yang et al., 

1997); that is, “the passage of days is weighted by the quantity of growing degrees 

occurring that day, with zero (but not negative) degrees being a permissible weight” 

(Henebry, 2013). McMaster (2005) concluded that the base temperature of 0 °C is a 

robust and sufficient threshold for wheat phenology, which is the main crop in our study 

area. GDDs were calculated for both AMSR-E air temperature (ta) data and MODIS land 

surface temperature (LST) data with a base temperature of 273.15 K (=0 °C) as follows:  

GDD = max[
�	
����
�

�
− 273.15, 0]           [1] 

where tASC and tDSC are the air temperature retrievals at the ascending and descending 

passes. 

GDDs were accumulated from DOY 89–305 to generate each year’s AGDD 

trajectory. The GDDs calculated from MODIS LST 8-day composites were multiplied by 

eight to rescale them into the proper range for eight daily values, rather than a single 

value occurring in eight days. The daily AMSR-E GDDs were summed over eight days to 
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align temporally them with the particular MODIS compositing periods. GDDs from both 

sensors were compared with available nearby meteorological station (stations within 25 

km distance from the geographic centers of the AMSR-E pixel study sites) daily air 

temperature GDD to check for consistency using linear regression model. The station 

data were processed using similar methods as the AMSR-E daily air temperature data. 

We then tested whether the slopes and/or intercepts from the linear regression model fit 

were significantly different by sensor. For this test, we used analysis of covariance 

(ANCOVA; Owen & Froman, 1998)—in which sensors (AMSR-E and MODIS) were the 

independent categorical effect variables, the meteorological station GDD was the 

covariate, and satellite GDD was the response variable. In this analysis, p ≤ 0.05 was 

considered significant.  

Accumulated GDD (or AGDD) was calculated from GDD for both sensors.  

AGDDt = AGDDt−1 + GDDt           [2] 

where GDDt is daily temperature increment of growing degree-days at time t.  

During summer in the Northern hemisphere, the maximum and minimum air 

temperatures typically occur late afternoon and predawn, respectively, while data from 

AMSR-E and MODIS Aqua (N.B.: AMSR-E is onboard Aqua satellite) are recorded 

twice daily (ascending—daytime, ~13:30, and descending—nighttime, ~01:30 

overpasses), and that of Terra is on ~22:30 and ~10:30, respectively. We use MODIS 

Aqua and Terra average LST for GDD from MODIS. As a consequence, the satellite 

AGDD may be biased when compared with meteorological measurements, which in turn 
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may limit the modeling of quantitative vegetation specific AGDD that drive phenophase 

transitions.  

To characterize the seasonal progression of thermal time, we fitted the GDDs as a 

convex quadratic (CxQ) function of AGDD. The CxQ model have been successfully 

applied in temperate herbaceous vegetation and boreal ecosystems (de Beurs & Henebry, 

2010; Raun et al., 2001; Yang et al., 1997).  

GDDt = α + β×AGDDt − γ × AGDDt
2         [3] 

The intercept α is the start of observation period GDD value (which may not be 

zero due to the compositing), the linear parameter β affects the slope, and the quadratic 

parameter γ controls the curvature. Since our model is convex quadratic in shape, the sign 

of β is positive while the sign of γ is negative.  

Two phenometrics were derived from the fitted parameter coefficients of the CxQ 

model. The peak height (PH) (Equation (4) describes the maximum GDD from the fitted 

model, and the thermal time to peak (TTP) (Equation (5) describes the amount of AGDD 

needed to reach the peak GDD:  

PHGDD = α − (β2/4 × γ)           [4] 

TTPGDD = −β/2 × γ            [5] 

where α, β, and γ are the fitted parameter coefficients. 

Our consideration of the growing season from day of year (DOY) 89–305 

(roughly the beginning of April through October), allows us to characterize all the study 

cropland sites within a similar time frame. However, since our study sites have 12° 
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latitudinal range, there might be sites and years in the lower latitude winter cropland 

study sites that have above 0 °C temperature before DOY 89 or after DOY 305. 

Consequently, an underestimation of AGDD is possible for these sites or when either the 

early spring or the fall is warmer than normal. This warmer weather may affect the 

trajectory of NDVI or EVI as a function of AGDD, in particular for croplands with winter 

crops where the dormancy starts after DOY 305 and ends before DOY 89 of the 

following year, possibly biasing the TTPGDD. However, other factors such as different 

sowing dates, management practices, changes in crops under production, and field 

conditions around sowing and harvesting, may also affect cropland phenology.  

We calculated the deviation of individual years’ GDD time series from the CxQ 

model based on the average of eight years of GDD data. The root mean square deviation 

(RMSD) was used to calculate the average magnitude of the annual GDD deviation. 

Although eight years’ time span is too a short period to construct a climatology, the 

expectation based on the shorter time series still provides a useful contrast to highlight 

seasonal differences in particular years.  

NDVI and EVI were calculated from the MODIS NBAR reflectance data using 

formulas developed by Tucker (1979) and Huete et al. (2002), respectively. We have 

plotted time series of NDVI and EVI (from the VNIR MODIS) as a function of AGDD 

(from the passive microwave AMSR-E). In the result section, we have described AGDDs 

at peak VIs based on growing season VI maximum values. AGDDs at 95% of the first 

peak VIs (peak height determined using growing season maximum value) were used to 

analyze temporal and spatial LSP responses to their thermal regime. In each AMSR-E 
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pixel there are 25 to 36 corresponding MODIS pixels, depending on the latitude of the 

site. We generated corresponding MODIS and AMSR-E AGDDs for the 95% value of 

the initial seasonal peaks of NDVI and EVI. Since the peak VIs were selected based on 

the seasonal maximum value, sometimes these single peak values may occur in error. To 

avoid such errors, we use the 95% value of these peak VIs. While the NDVI, EVI and 

AGDD for the MODIS data were generated for each MODIS pixel within an AMSR-E 

pixel, the same AMSR-E AGDD was used for all the MODIS pixels within the same AMSR-

E pixel. We assume that air temperature did not significantly vary within the AMSR-E pixel, 

an assumption that is reasonable in relatively flat terrain that is distant from large bodies of 

water. Here we compare the seasonal development of MODIS VIs at the MODIS Climate 

Modeling Grid (CMG) resolution (0.05°) as a function of the AGDD derived from MODIS 

and from AMSR-E AGDDs.        

3.3 Results 

3.3.1 Land Surface Seasonalities of Growing Degree-Days 

 In this subsection, we present the comparisons of satellite GDDs with 

meteorological station GDDs for quality assessment. The convex quadratic (CxQ) models 

of GDD are followed. We then present the AMSR-E thermal time to peak (TTP) (AGDD) 

in relation to latitude. Finally, AMSR-E GDD time series deviations from the multi-year 

average GDD model are presented.    

3.3.1.1 Comparisons of GDD Derived from Satellite and Station Data  

Meteorological stations 10 km buffer zone land cover displayed a similar 

cropland (CRP) dominated average land use for 2003–2010 study period (>90% 
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cropland; Table 3-4). Saratov 4 is an AMSR-E pixel study site with considerable 

proportion of crop–natural vegetation mosaic (CNVM; 12%), while Kharkiv_2 

meteorological station buffer has 7% urban and built-up (UBU) area. Comparison 

between Satellite GDD and station GDD was made using the 2003 GDD as nearly all the 

selected stations (that are within 25 km distance from the centers of AMSR-E pixel study 

sites) had full data during this year’s growing period (Table 3-1). Root mean square 

errors/deviations (RMSE or RMSD) between AMSR-E GDD and station GDD were 

lower than those between the MODIS GDD and station GDD (14–24 °C versus 16–30 

°C; Table 3-5). Satellite GDD from both AMSR-E and MODIS showed strong linear 

correspondence with meteorological station GDD with r2 > 0.87 (the covariate station 

GDD is correlated with response variable Satellite GDD; Figure 3-3 and Table 3-5). 

Overall, r2 from the station and AMSR-E GDD fits was higher than those between the 

station and MODIS GDDs. GDDs from both satellite sensors had relatively higher 

magnitude compared to station GDDs. Based on analysis of covariance (ANCOVA), 

slopes from the linear regression fit of the two satellite sensors GDD with station GDD 

were partially significantly different (three out of six sites). That means that the covariate 

(station GDD) is not correlated to the independent variables (factor; sensors) for three 

sites while it is correlated for the rest three sites at α = 95% significance level. In 

addition, the ANCOVA model revealed that intercepts resulted from the linear regression 

fit between station GDD and satellite GDD are not significantly different by sensor in 

four sites (p > 0.05) while it is significantly different for two sites (p ≤ 0.05). Further 

analysis that incorporates many station data is needed to reach at a conclusion that linear 
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fit of station GDD with AMSR-E GDD is significantly different from that with the 

MODIS GDD. 

Table 3-4. Average (2003–2010) MODIS land cover with the 10 km buffer zone for 

meteorological stations and corresponding AMSR-E pixel study sites. Bold indicates the 

dominant land cover (all sites are in crop-dominated areas).  

Site 
LULC (Stations) LULC (AMSR-E Pixels)  

CRP CNVM UBU CRP CNVM UBU 

Simferopol, UA  97.9 0.0 2.1 99.7 0.0 0.0 

Odesa, UA  100.0 0.0 0.0 100.0 0.0 0.0 

Mykolaiv, UA  98.5 0.0 1.5 99.6 0.0 0.0 

Kirovohrad, UA 99.5 0.3 0.0 98.7 0.2 0.0 

Kharkiv_2, UA  91.5 0.7 7.4 91.0 0.3 3.4 

Saratov_4, RU  97.3 2.7 0.0 88.4 11.4 0.0 

Table 3-5. Root mean square error (RMSE), linear regression model (intercept, slope and 

r2), and analysis of covariance (ANCOVA) between station and satellite GDDs from 

AMSR-E and MODIS sensors. AMS=AMSR-E; MOD=MODIS.  

Site 
RMSE * Intercept Slope r2 ANCOVA (p Value) 

AMS MOD AMS MOD AMS MOD AMS MOD Slope Intercept 

Simferopol, UA 13.77 29.89 16.84 17.71 0.95 1.05 0.95 0.88 0.447 <0.05 

Odesa, UA 23.95 24.19 31.88 8.29 0.88 1.06 0.87 0.88 0.177 0.080 

Mykolaiv, UA 20.56 23.81 25.82 0.74 0.92 1.13 0.92 0.92 <0.05 0.224  

Kirovohrad, UA 18.34 22.25 23.58 −1.70 0.92 1.11 0.93 0.89 0.096 0.328 

Kharkiv_2, UA 17.41 18.23 28.80 −5.94 0.83 1.09 0.91 0.91 <0.05 0.231 

Saratov_4, RU 20.22 16.31 32.52 −1.76 0.84 1.06 0.96 0.92 <0.05 <0.05 

* RMSE of satellite and meteorological station GDDs (not using fitted GDDs) 
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Figure 3-3. Scatter plots and linear regression fits of station GDD with satellite GDD—

AMSR-E GDD (black circles) and MODIS GDD (blue diamonds)—at Simferopol, 

Ukraine (site 4) for 2003. The linear regression fit for the two datasets were high with r2 

of 0.93 for the AMSR-E GDD and r2 of 0.89 for the MODIS GDD.  

We further closely examined the correspondence between daily station GDDs and 

AMSR-E GDDs. AMSR-E GDD not only tracked the seasonal dynamics of the station 

GDDs, but it also tracked the finer weekly and monthly GDD dynamics (Figure 3-4 left). 

The root mean squared difference (RMSD) between these daily datasets from the two 

sources was very low (1.86–3.16 °C). This result is in line with (Jones et al., 2010) that 

found a bias of 1.0–3.5 K between the 2003 WMO weather station and AMSR-E daily air 

temperature data on vegetated lands in the Northern Hemisphere. It is also important to 

note that there are times that the magnitude of GDDs from the two data sources is 

different, despite the similarities in dynamics, and this divergence occurs earlier and later 

in the growing season (e.g. Figure 3-4 left). These GDDs display strong linear 
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correspondence with r2 > 0.82 (e.g., Figure 3-4 right). However, there is a bias in these 

correspondence (as shown by the intercept) and underestimation (displayed by the slope) 

of the AMSR-E GDD relative to that of the station.   

 

Figure 3-4. (left) Time series plot of AMSR-E (black) and station (red) daily GDD as a 

function of station AGDD for 2003 at Kirovohrad, Ukraine (site 15); and (right) linear 

regression fit of AMSR-E GDD with station GDD for the same dataset yielding strong 

correspondence with r2 = 0.95. Note also the bias (intercept) and the underestimation 

(slope < 1) of the AMSR-E GDD relative to the station GDD.  

3.3.1.2 Convex Quadratic Models of GDD 

The CxQ model fit well the relationship between GDD and AGDD for both the 

AMSR-E ta and MODIS LST, with coefficients of determination (r2) ranging from 0.88 

to 0.98. In contrast to the traditional approach of fitting GDD as a function of day of year 

(DOY), the CxQ fits for GDD as a function of AGDD displayed clear latitudinal shifts 

and more finely resolved intra-seasonal dynamics of GDD (Figure 3-5a,c versus Figure 

3-5b,d). The more northern sites displayed a shorter summer growing season with 

narrower base and shorter peak GDD curves (Figure 3-5b), while the more southern sites 
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displayed a longer growing season with broader base and larger peak GDD curves 

(Figure 3-5d). The fits for the two datasets (AMSR-E and MODIS) exhibited strong 

similar seasonalities (Figure 3-5). However, in 76% of our study sites, AMSR-E AGDD 

is larger than MODIS AGDD even though this difference is not statistically significant. 

The discrepancy may result from one or more of the following factors: (1) differences 

between surface air temperature and land surface temperature; (2) spatial scales of the 

retrievals—a single 25 km pixel versus ~25 pixels of 5.6 km; (3) differences between 

accumulating daily GDDs over eight days (AMSR-E) versus an eight-day composite 

(MODIS); and (4) residual atmospheric contamination in the MODIS retrievals.  

Generally, higher and middle latitude study sites (>49°N) have higher AMSR-E 

AGDD while those at lower latitudes have higher MODIS AGDD. This discrepancy may 

arise from the differences in LST versus surface air temperature, particularly during 

periods of low vegetation cover. All 49 study sites displayed consistently good fits with 

the CxQ model with coefficients of determination ranging from 0.88 to 0.98 (Table A.1). 

The CxQ models fitted to the AMSR-E surface air temperature data displayed higher 

coefficients of determination for almost every site (42 of 49 sites) compared to the 

MODIS LST data (Table A.1) and, considered as a group, the AMSR-E model fits were 

significantly (p < 0.00001) better than the MODIS model fits. The reasons may include 

the lower sensitivity of the microwave data to cloud contamination and atmospheric 

effects, while the MODIS data is composited to filter out degradation from these sources 

of noise, and the MODIS land surface temperature fluctuates more due to land surface 

heterogeneity, compared to the AMSR-E air temperature.  
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Figure 3-5. Average (2003–2010) MODIS (plus signs) and AMSR-E (circles) GDD and 

their fitted (solid (MODIS LST) and dashed (AMSR-E ta) lines) average GDD as a 

function of DOY (left) and AGDD (right) for two cropland sites at the latitudinal 

extremes of the study region: Cheboksary, Russia (site 48, 55.7°N; (a,b)); and Cherkessk, 

Russia (site 1, 44.4°N; (c,d)). N.B.: MODIS GDDs are multiplied by 8, while AMSR-E 

GDDs are eight-day sums.  

GDD at the beginning and end of the observational season were well above 0 °C at 

lower latitude sites (Figure 3-5c,d), but closer to zero at higher latitude sites (Figure 3-

5a,b). The end-of-season AGDD was also larger (>4000 °C) at the lower latitude sites 

(Figure 3-5d) and smaller (~3000 °C) at the higher latitude sites (Figure 3-5b). For the rest 

of the analyses, we used the GDD and AGDD calculated from the AMSR-E surface air 

temperature data (unless stated otherwise).  

a b 

c d 
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3.3.1.3 Latitudinal Distributions of Thermal Regimes 

Average daily GDD for 2003 through 2010 exhibited a strong inverse linear 

relationship with respect to latitude with r2 > 0.90, in accordance with the long-

established geographic fact that, at comparable elevation, temperature decreases as the 

absolute value of latitude increases (Figure 3-6a). The Thermal Time to Peak (TTPGDD) 

graphed as a function of latitude revealed strong significant negative linear relationship 

(Figure 3-6b). The coefficient of determination for the sites in Ukraine was 0.81 and, for 

the sites in Russia and Kazakhstan combined, it is 0.92. Saratov 1 (RU) tends to be an 

outlier with higher TTP, likely due to its location farther inland from the Volga River. 

Across the 12° latitudinal range of the study sites, there is a maximum difference in day 

length of two hours at the summer solstice.  

 

Figure 3-6. Thermal climates as a function of latitude revealed by: (a) average daily 

GDD; and (b) Thermal Time to Peak (TTPGDD). Latitudes were the geographic centers of 

AMSR-E pixels. All 49 study sites are displayed in both figures. In (b), hollow circles = 

Russia, orange diamonds = Kazakhstan, and cyan crosses on blue background = Ukraine. 

Both panels show a general decrease in (a) GDD or (b) TTP as latitude increases from 

44° to 56°N. The uppermost two hollow circles are the northernmost study sites (site 49, 

a b 
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Kazan’, Russia and site 48, Cheboksary, Russia), while the lowermost two hollow circles 

are the southernmost study sites (site 1, Cherkessk, Russia and 2, Stavropol, Russia).   

3.3.1.4 Time Series of GDD Residuals 

During warmer years, GDDs were well above the GDDs predicted by the multi-

year average model, yielding positive GDD residuals and a larger root mean squared 

difference (RMSD) (Figure 3-7, right; RMSD = 46.3 °C). The 2010 Russian heat wave 

that devastated grain production in European Russia (Dole et al., 2011), had a clear 

impact at Orenburg (Figure 3-7). During cooler years, GDDs were below the predicted 

GDDs yielding negative GDD residuals and a larger RMSD (Figure 3-7, left; RMSD = 

22.3 °C). There were also some years that had GDDs that were comparable with the 

GDDs predicted by the average model, resulting in a smaller RMSD (Figure 3-7, center; 

RMSD = 19.5 °C).  

 

Figure 3-7. Line plots of annual observed GDD (blue), annual predicted GDD based on 

multi-year average model (orange) and observed GDD residuals (green) at Orenburg 

(RU) for: a cooler year (2003) (left); a close-to-average year (2009) (center); and a hotter 

year (2010) (right). N.B: GDDs are 8-day sums. 
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3.3.2 Land Surface Phenologies of Vegetation Indices 

In this subsection we first present the general LSP characteristics of the NDVI and 

EVI time series, then describe the cropland dynamics using the VIs in space and time, and 

we conclude with the responses of peak VIs to thermal time measured by AMSR-E and 

MODIS sensors.  

3.3.2.1 NDVI and EVI  

Synergistic use of the MODIS vegetation indices (VIs) NDVI and EVI with 

AMSR-E AGDD captures well the LSP typical for crops in the mid-to-high latitudes that 

are planted in spring and harvested in the fall (Figure 3-8). Cropland NDVI and EVI start 

to rise (green-up onset) as crops start to grow in spring, ascend to their peak seasonal 

value (maturity), and then decline during senescence and crop drying before harvest. 

Winter crops are planted in the fall and grow before a period of dormancy over the 

winter, then emerge in the spring and rapidly develop, before crop drying and harvesting 

in early summer. Both spring and winter crops could be found with the study region, but 

winter crops are restricted to the south tier of the region in Ukraine and in southern 

Russia north of the Black Sea. Since vegetation in the mid-latitudes is temperature-

limited, the time series of each VI as a function of AGDD can be well fitted by the CxQ 

model (Alemu & Henebry, 2013; Henebry & de Beurs, 2013). A general unimodal pattern 

of LSP was evident across the study region. However, there were variations to this pattern, 

as detailed below.  
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Figure 3-8. Average MODIS NDVI and EVI as a function of AMSR-E AGDD for 

Petropavlovsk 3, Kazakhstan (site 42) for 2003–2010. Note that the NDVI displays a 

larger dynamic range than the EVI.   

3.3.2.2 Types of Land Surface Phenologies in Croplands 

The MODIS VIs as a function of AMSR-E AGDD revealed that lower latitude 

cropland sites (in southern Russia and Ukraine) had growing seasons that generally 

exhibited bimodal VI patterns. These sites are warmer and longer in terms of AGDD: 

first VI peaks at about AGDD = 1300 °C (Figure 3-9a) and AGDD = 900 °C (Figure 3-

9c), and second VI peaks at about AGDD = 2800 °C (Figure 3-9a) and AGDD = 2400 °C 

(Figure 3-9c). In contrast, higher latitude cropland sites (northern sites in RU) had 

unimodal, shorter growing seasons in terms of AGDD (peak VIs at about AGDD = 1200 

°C); Figure 3-9d). The middle latitude sites behave as unimodal but with a broader base 

of growing season (peak VI at about AGDD = 2000 °C; Figure 3-9b). Sites exhibiting 

bimodality in the VI curve are associated with the cultivation of both winter and spring 
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crops in one year (Figure 3-9a,c). Those sites exhibiting unimodal VI curves were 

associated with either usually with only a spring crop (Figure 3-9b,d) or, less commonly, 

with only a winter crop (Figure 3-10, 2005–2009).   

Figure 3-9. (a–d) In 2003, lower latitude sites (Cherkessk, Russia: 44.4°N (a) and 

Simferopol, Ukraine: 45.6°N (c) display bimodal growing seasons, while the higher 

latitude sites show unimodal, shorter growing seasons (Kazan’, Russia: 56.1°N (d)). The 

middle latitude sites display a longer unimodal growing season (Odesa, Ukraine: 47.3°N 

(b)).  

Winter grains grown in the region—wheat, rye, and barley—are planted and 

emerge in the fall before becoming dormant over the winter. Resuming growth in the 

early spring when the air and soil temperatures warm, they produce a rapid increase in VI 

earlier in the year. Winter grains’ ripening and senescence phase occurs in late spring 

through early summer, expressed by the rapid VI decrease by mid-summer. A second 

b 

c 
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increase in VI is due to late spring planting and emergence with the cycle peaking late 

summer with early fall harvest. For areas that grow winter grains, another smaller VIs 

peak appeared in mid-fall (Figure 3-9a), corresponding to the emergence and growth of 

the next year’s crop before winter dormancy. 

3.3.2.3 Interannual Variation in Land Surface Phenologies  

Over the eight years of study, NDVI and EVI displayed similar patterns, but with 

clear seasonal and interannual variation. In the same location, some years displayed 

growing season bimodality while others exhibited unimodality. Variation in the timing of 

peak VI was higher in some locations than others. For example, Simferopol, located in 

Crimea, had three bimodal years (2003, 2004, and 2010) and five unimodal years (2005–

2009) (Figure 3-10). Variation was evident within bimodal growing seasons: in 2003 the 

second peak was higher (peak NDVI of 0.57 versus 0.48); in 2004 peaks were wider 

apart in time (difference between first and second peak AGDD of 1900 °C in 2004 versus 

1550 °C in 2003); and in 2010 the second peak was much smaller (peak NDVI of 0.51 

versus 0.59). Years with a unimodal peak generally had peaks that were larger compared 

to the bimodal peaks (peak NDVI of >0.63 versus <0.63). In 2007 and 2008 the peaks 

were earlier; while in 2003, 2009, and 2010 the peak heights were lower. Moreover, since 

Simferopol is a southern site, the growing season can start before DOY 89, but with 

interannual variation due to weather. The effect on the VI curves in Figure 3-10 is clear: 

the early season green-up pattern in 2003–2005 has initial NDVI (EVI) at or below 0.4 (0.2). 

In contrast, initial VIs in 2006–2010 are well above 0.4 and 0.2 for the NDVI and EVI, 

respectively.  
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Figure 3-10. NDVI and EVI interannual variability in one of the southernmost study sites 

(Simferopol, Ukraine at 45.6°N) from 2003–2010. Whether due to changes in cultivation 

practice or crop failures, the VI curves change from bimodal (2003–2004) to unimodal 

(2005–2009) and back to bimodal (2010).   

Some sites exhibited changes in seasonal pattern during the study period. We 

grouped the phenological patterns into three broad categories: no change, one change, or 

two changes (Figure 3-11 and Table A.2). Supplementary Figures S1–S49 illustrate the 

interannual variation of LSPs at each site. Those sites exhibiting only a single seasonal 

pattern (either unimodal or bimodal) throughout the study period were categorized as no 

change and totaled 33 sites (these were consistently unimodal seasonal pattern throughout 
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the study period). The seven sites that changed from unimodal to bimodal or from 

bimodal to unimodal were classified as one change. Finally, nine sites changes from one 

seasonal pattern to another and then back again (unimodal→bimodal→unimodal or 

bimodal→unimodal→bimodal) were classified as two changes. A geographic pattern of 

change in seasonal pattern is evident in Figure 3-11: only sites at the lower latitudes 

displayed any changes in seasonal pattern. Details are presented in Table A.2.  

Figure 3-11. Changes in seasonal patterns by sites during 2003–2010: no change (blue 

circles), one change (white stars with pink borders), or two changes (red squares). 

Northern study sites displayed no change in seasonal pattern, while southern study sites 

experienced multiple changes.   

Croplands in Ukraine exhibited a wider range of seasonal patterns: some sites 

changed from unimodal to bimodal (three sites), some from bimodal to unimodal (three 

sites), and some others from bimodal to unimodal and then back again (three sites; Table 

A.2). Croplands in southern parts of Russia similarly experienced a cycling of seasonal 

patterns: bimodal to unimodal (one site), bimodal→unimodal→bimodal (three sites) and 

unimodal→bimodal→unimodal (three sites). All sites in Kazakhstan retained the 

unimodal seasonal pattern throughout the study period. 
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3.3.2.4 Sensor-Specific Differences in Thermal Time to Peak VI 

MODIS pixels within each AMSR-E pixel exhibit generally similar but distinct 

spatial and temporal thermal time patterns. MODIS and AMSR-E AGDDs at 95% of the 

initial peak VI values display a strong positive linear relationship across space and time 

with coefficients of determination ranging from 0.60 to 0.99 (Figure 3-12). This 

relationship was generally strong for the lower latitude sites compared to that of the 

higher latitudes. Although it could be expected that the VIs for each MODIS pixel are 

more related to the same pixel’s LST. However, the strong correlation of the two sensors’ 

AGDDs showed that the much coarser spatial resolution AMSR-E surface air 

temperature (ta) data did an excellent job of capturing the progress of finer spatial 

resolution MODIS VIs (Figure 3-12).  

Figure 3-12. (a–f) Comparison of AMSR-E AGDDta at 95% of the initial peak VIs with 

the MODIS AGDDlst at 95% of the initial peak VIs in 2003. The panels span a 

b c 

d e 
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latitudinal gradient: lowest latitude (Cherkessk, Russia (a,d)), middle latitude (Sumy, 

Ukraine (b,e)), and highest latitude (Kazan’, Russia (c,f)) for 95% of the initial peak 

NDVI (a–c) and EVI (d–f). There is strong linear relationship between AGDDs from 

AMSR-E and MODIS at 95% of initial peak VIs for these sites in 2003 with r2 ranging 

from 0.88 to >0.99. This strong positive relationship was consistent in space and time 

with r2 ranging from 0.60 to >0.99 across all study sites and years.  

3.4 Discussion 

3.4.1  Shifting Patterns of Cropping: Real or Illusory? 

How do we interpret the apparent variation between double and single seasonal 

patterns that were evident in southern Ukraine and southern Russia? Note that the 

southern tier of the study region hosts winter crops and can also support spring crops. In 

Figure 3-10, fall green-up is evident in 2007 and 2008 due to winter crops. The 2003 

European heat wave affected winter croplands in western and southern Ukraine (De Bono 

et al., 2004), while the 2007 Ukrainian heat wave devastated spring grains in 2007 

(Founda & Giannakopoulos, 2009). These impacts are evident in the VI curves of Figure 

3-10. Figures 3-8 to 3-10 give representative examples of land surface phenologies 

exhibiting unimodality and bimodality with variation in the placement of the single and 

double modes. Should we interpret a unimodal LSP as a single annual crop? Clearly, the 

answer is not always. The more northerly sites in Russia and Kazakhstan exhibit a single 

mode that peaks roughly mid-season (blue circles in Figure 3-11). These sites do have a 

single annual spring crop. In contrast, there are multiple instances of early season peaks, 

indicative of a winter crop, with no second peak, especially in the southern tier of the 

study region. These  
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patterns—such as seen for 2005–2009 in Figure 3-10—could indicate either changes in 

cultivation practices or crop failures.  

A study of cropping frequency in European Russia found areas in southern 

Russia, e.g., Stavropol (site 2 in this study) and Saratov (sites 21 and 25) were 

successfully cropped during fewer years than areas located farther north in the grain belt, 

e.g., Cheboksary and Kazan (sites 48 and 49) (de Beurs & Ioffe, 2014). Lower cropping 

frequency was a result of longer fallowing periods and hotter, drier summer conditions. 

However, they also reported widespread shifts from cereals to soybean, sunflower, and 

rapeseed as well as changes in crop rotation periods, including changes in fallow periods 

(de Beurs & Ioffe, 2014; Roland et al., 2015). Changes have been occurring across this 

vast agricultural landscape, but the proximate causes of those changes may not be readily 

accessible to remote sensing (de Beurs & Henebry, 2004; Henebry, 2009; Ioffe et al., 

2014; Ioffe et al., 2012; Kamp et al., 2011; Kuemmerle et al., 2008; Schierhorn et al., 

2013). However, there is a rich set of variations in land surface phenologies across the 

study region through the study period that the AGDD based on the AMSR-E surface 

temperature data makes more readily apparent. 

3.4.2 Growing Degree-Day Residuals Versus Vegetation Indices 

Rainfed croplands at mid-latitude croplands are thermally limited (Nemani et al., 

2003); thus, vegetation dynamics are strongly linked to the seasonal progression of 

temperature. Residuals resulting from the comparison of average GDD as a convex 

quadratic function of AGDD with average GDD time series showed clear patterns 

associated with average VI time series for 2003–2010 across sites. Negative GDD 
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residuals occurred at times of higher VIs, presumably due to higher latent heat flux; 

whereas, positive GDD residuals corresponded to the times earlier and later in the 

growing season when VIs were low, presumably due to higher sensible heat flux.  

For example, Figure 3-13a shows the average NDVI and average GDD residuals 

along with maximum and minimum values as error bars for six cropland sites and two 

cropland/natural vegetation mosaic sites both in Kazakhstan at a similar latitude. These 

sites show clear unimodality with the cropland/natural vegetation mosaic exhibiting 

distinctly higher VI earlier and later than in the croplands. However, the GDD residual 

patterns are comparable but have distinctive responses to a given heat accumulation. 

Figure 3-13b,c display the average NDVI and GDD residuals for the southernmost two 

sites that experienced bimodal and unimodal cropland pattern alternately: Figure 3-13b,c 

shows the average for the bimodal (unimodal) years. The bimodal seasonal pattern results 

in a more complicated relationship between NDVI and the GDD residuals compared to 

the sites with unimodal seasonal pattern.  

These residuals appear to track the shift from sensible heat dominated surface flux 

to latent heat dominated surface flux due to canopy development back again to sensible 

heat dominance as the canopy fades later season. Note that these are not direct 

observations of the surface but, rather, the difference between the model of average GDD 

as a quadratic function of AGDD and the average AMSR-E GDD observations. The 

information embedded in the model lack of fit arises from changes in the surface 

condition, viz., transpiring vegetation, which affects the surface air temperature. That 

such a pattern can be sensed at the coarse spatial resolution of AMSR-E grid cells is 
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remarkable and points to the need for additional work to explore how much additional 

information can be gleaned from these time series. However, to stress again, these 

informative residuals result from “filtering” the time series using a CxQ model of GDD, 

which is, in turn, motivated by the widespread pattern observed in mid-latitude 

landscapes dominated by herbaceous vegetation (e.g., grasslands and croplands) that the 

surface air temperature is primarily driven by insolation (Jones et al., 2010). 

Figure 3-13. Average GDD residuals and NDVI with error bars displaying maxima and 

minima for sites at similar latitude. (a) Sites 35–37 and 39–41 in Kazakhstan (NDVI—

blue triangles and GDD residuals—black diamonds) and sites 34 and 42 in Kazakhstan 

(NDVI—green crosses and GDD residuals—gray circles); and (b,c) sites 1 and 2 in 

Russia (NDVI—blue diamonds and GDD residuals—black circles) for selected bimodal 

cropland pattern years and unimodal years, respectively.  
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We have shown that the time series of residuals between observed GDDs and the 

GDDs predicted from the CxQ model can show distinct shifts in air temperature 

corresponding to the growth and development and eventual senescence of the vegetated 

canopy. Specifically, above average air temperatures (positive residuals) occur in the 

weeks prior to increasing vegetation indices, followed by below average temperatures 

(negative residuals) as the vegetation indices are near peak, and then back to above 

average temperatures during vegetation senescence. This sequence points to the detection 

of shifts in the surface energy balance from high values of the Bowen ratio (BR = 

sensible heat flux/latent heat flux) to low and back again to high. More study is needed to 

see how far this provocative finding can be pushed. Is it apparent over land covers other 

than croplands or in other locations? How does it compare to both coarser and finer 

remote sensing data streams? 

3.4.3 Heat Wave Impacts on LSPs 

The influence of two regional heat waves—the 2010 heat wave in Russia and 

Kazakhstan (Dole et al., 2011; Trenberth & Fasullo, 2012; Wright et al., 2014) and the 

2007 heat wave in Ukraine (Founda & Giannakopoulos, 2009)—were evident in LSP 

patterns generated from the MODIS and AMSR-E data. Western Russia experienced an 

extraordinary heat wave in 2010, in which July was the warmest month since 1980 and 

numerous locations setting all‐time maximum temperature records (Dole et al., 2011). 

The 2003 European heat wave affected western and southern Ukraine but was only 

slightly evident in the seasonal GDD pattern and not in its accumulation (De Bono et al., 
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2004). Winter grains of croplands in those areas appeared affected, displaying lower VI 

peaks for winter grains but higher VI peaks for spring grains.  

For example, Figure 3-14 presented sample areas that combine GDD and VIs. 

GDD and VIs for the 2010 and 2007 heat wave years and average years for the same 

place are presented. During the average years, peak NDVIs and EVIs were above 0.60 

and 0.35, respectively, while these peaks were attained at about 1230 °C AGDD for 

Kuybuskev 2 (Russia) and 960 °C AGDD for Mykolayive (Ukraine) (Table 3-6). Peak 

GDD for these sites was below 200 °C, which is equivalent to a daily average of ~25 °C 

over 8 days). In contrast, during the heat wave years, the maximum attained NDVIs and 

EVIs were below 0.50 and 0.25, respectively, while these maxima were attained earlier at 

about 960 °C AGDD for Kuybuskev 2 and 660 °C AGDD for Mykolayive. Peak GDD 

for these sites was at about 250 °C (≈31 °C average daily GDD), well above the average 

years’ peak GDD. Crops were devastated by the heat waves before maturity resulting in 

crop production very much reduced compared to cooler, wetter years (Grumm, 2011).  
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Figure 3-14. Comparison of VIs and GDD at similar places during heat wave years 

(Kuybuskev 2 (a), Russia in 2010 and Mykolayive (b), Ukraine in 2007) and average 

years (Kuybuskev 2 (c), Russia in 2005 and Mykolayive (d), Ukraine in 2009). N.B: 

GDDs are eight-day sums. 

  

b 

c 



100 

 

Table 3-6. Peak GDDs and VIs and corresponding AGDDs during heat wave years and 

average years at two representative sites. 

Site Weather Metric 
1st Peak 2nd Peak 

Value AGDD Value AGDD 

Kuybyskev_2, RU Average 

GDD 180.00 722 190.00 2060 

NDVI 0.59 1230   

EVI 0.34 1230   

Kuybyskev_2, RU  Heat wave 

GDD 250.00  2480    

NDVI 0.51  960    

EVI 0.26  960    

Mykolayiv, UA Average  

GDD 196.00 1910   

NDVI 0.62 960 0.63 2460 

EVI 0.38 960 0.41 2460 

Mykolayiv, UA Heat wave 

GDD 240.00 1100 230.00 2580 

NDVI 0.49 660   

EVI 0.26 660   

 

We grouped sites by the effects of the 2007 and 2010 major heat waves into four 

categories: (a) affected only in 2010; (b) affected only in 2007; (c) affected in both years; 

and (d) affected in neither year (Figure 3-15). The northern portion of the study region 

(both Russia and Kazakhstan) was strongly affected by the exceptional 2010 heat wave, 

southern Russia and eastern Ukraine croplands were affected by both heat waves, the 

southern portion of Ukraine was affected only by the 2007 heat wave, and some parts of 

western Ukraine, eastern and southern Russia were affected by neither heat wave. The 

heat wave affected areas exhibited AGDD time series were consistently higher than the 

other years (data not shown). Crop production was devastated in areas that were affected 

by these heat waves (Founda & Giannakopoulos, 2009; Trenberth & Fasullo, 2012). 
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Figure 3-15. Sites affected by: the 2010 heat wave (blue circles), the 2007 heat wave (red 

squares), both the 2010 and 2007 heat waves (white stars with pink borders), and sites 

affected by neither the 2010 nor the 2007 heat wave (cyan triangles). 

3.5 Conclusions  

Although the spatial resolution of AMSR-E data appears coarse relative to 

imaging sensors, having a time series of surface air temperature every 25 km translates 

into a significant increase in spatial coverage over the weather station networks in most 

countries in the world, including developing nations that do not have dense networks of 

meteorological stations. Moreover, due to the long wavelengths of the microwaves, 

cloudiness does not pose the problem it does at the much shorter wavelengths of the 

thermal infrared. Instead, data gaps arise over frozen surfaces, during very heavy 

precipitation events, as a result of radio frequency interference over some parts of the 

planet, and due to orbital paths. Simple retrospective smoothing of the AMRS-E data 

yielded air temperature time series that compared well with ground observations. In the 

past AGDD has been calculated from meteorological station data (point coverage), 

meteorological station reanalysis (moderate to coarse spatial resolution), model reanalysis 

(very coarse spatial resolution), and thermal remote sensing data (moderate spatial 

resolution but temporally composited). The balance of coarse spatial resolution with high 
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temporal resolution, due to the availability of nighttime acquisitions and cloud 

penetration, makes the AMSR-E data attractive as an additional source of surface air 

temperature data. 

We have demonstrated that the surface air temperature data retrieved from a 

passive microwave radiometer (AMSR-E) agrees well with the weekly, monthly, and 

seasonal oscillations of meteorological station air temperature data. AMSR-E GDD also 

showed lower RMSD from station GDD compared to the corresponding MODIS GDD. 

Both GDDs from AMSR-E and MODIS showed strong correlation with station air 

temperature GDD with slight superiority of the AMSR-E GDD, but with significantly 

different fit in some sites and not in some other. Further study using more station data is 

needed to conclude whether the agreement between the AMSR-E GDDs and the station 

GDDs significantly differs from agreement between the MODIS GDDs and the station 

GDDs.  

We have demonstrated the temporal relationship between GDD and AGDD from 

AMSR-E could be parsimoniously represented using a simple parametric convex 

quadratic (CxQ) model, which is particularly helpful to portray a climatology. Moreover, 

this relationship has a clear geographic pattern in mid-latitude croplands: decreasing 

thermal time to peak GDD (TTPGDD) as latitude increases. This concise parametric 

representation of the expected progression of thermal time may offer some advantages in 

modeling vegetation growth and development.  

We have shown how the AGDD can be combined with vegetation indices from 

MODIS to illustrate land surface phenology (LSP). What is new here is not that the CxQ 
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model works for LSP—that has been shown many times before (Alemu & Henebry, 

2013; de Beurs & Henebry, 2004, 2008a, 2010; Goodin & Henebry, 1997; Henebry, 

2013; Henebry & de Beurs, 2013; Still et al., 2014)—but rather that the surface air 

temperature data from a passive microwave source can be used to calculate the AGDD, 

which can, in turn, be used to model VIs from the moderate spatial resolution sensor 

MODIS.  

AMSR-E failed in October 2011. AMSR-2 is onboard the Global Change 

Observations Mission 1st-Water (GCOM-W1), renamed SHIZUKU. It was launched in 

May 2012 by the Japan Aerospace Exploration Agency (JAXA). Data products were 

released to the public in May 2013 (https://gcom-w1.jaxa.jp/). AMSR-2 is the improved 

version of AMSR-E that has similar functionality and data products. The NTSG group 

has continued the production of the enhanced land parameters using the AMSR-2 data 

streams (ftp://ftp.ntsg.umt.edu/pub/data/AMSR_Results/AMSR_E_2/) as well as filled 

the data gap using a Chinese microwave radiometer (Du et al., 2015; Du et al., 2014). 

Thus, the continued relevance of this approach is assured for the next several years, at 

least.  

The failure of the radar in NASA’s Soil Moisture Active Passive (SMAP) mission 

during the summer of 2015 has refocused attention on the L-band passive radiometer data 

that has a 36 km resolution. While L-band seems too long a wavelength to detect crop 

dynamics, it should work well for soil moisture monitoring as well as potentially 

providing insight on land surface dynamics in ecosystems dominated by woody species. 
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The approach developed here may also find traction with the L-band data, if it can be 

blended with the AMSR-2 data.  

Finally, although this paper has focused on the use of the air temperature data 

from AMSR-E, there is another variable from the NTSG’s dataset that is relevant to 

vegetation dynamics, the vegetation optical depth (VOD), which is a microwave analog 

to the NDVI. In a similar manner to the way that the NDVI and other vegetation indices 

look at the differential absorption of sunlight by green vegetation, the VOD looks at the 

absorption of earthlight (at specific microwave frequencies) by the water-laden 

vegetation canopy. It is beyond the scope of this paper to detail how VODs can describe 

the temporal development of the vegetated land surface, but we will describe our finding 

for VOD dynamics in the same region in a future paper.  

Although there has traditionally been little overlap between the microwave and 

VNIR communities, the time has come to explore the synergistic use of reflected sunlight 

and transmitted earthlight for potential applications in agricultural monitoring, natural 

resource management, ecosystems ecology, and earth system science. 
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3.10 Appendix A 

Table A.1. Comparison of coefficients of determination (r2) for GDD CxQ model fit 

from the AMSR-E air temperature data and the MODIS land surface temperature data. In 

almost all study sites, coefficients of determination for the AMSR-E GDD is greater than 

that for the MODIS GDD, except on seven sites (underlined) at lower latitudes.   
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1 Cherkessk, RU 44.4 43.5 0.92 0.94 26 Kursk, RU 52.1 37.5 0.96 0.88 

2 Stavropol, RU 45.0 42.4 0.95 0.95 27 Orenburg, RU 52.4 55.2 0.95 0.90 

3 Krasnodar, RU 45.6 39.6 0.89 0.91 28 Kokshetau 1, KZ 52.7 69.2 0.96 0.88 

4 Simferopol', UA 45.6 34.1 0.96 0.95 29 Barnaul 2, RU 52.7 83.0 0.97 0.89 

5 Tulcea, UA 45.8 29.2 0.94 0.95 30 Kuybyskev 2, RU 52.7 50.2 0.96 0.90 

6 Rostov-on-Don 2, RU 46.7 39.8 0.88 0.89 31 Orel, RU 52.7 35.7 0.97 0.89 

7 Odesa, UA 47.3 30.7 0.94 0.93 32 Kokshetau 2, KZ 53.0 67.4 0.96 0.87 

8 Rostov-on-Do 1, RU 47.5 40.9 0.94 0.92 33 Lipetsk, RU 53.0 39.1 0.97 0.89 

9 Donets'k, UA 47.5 37.7 0.93 0.90 34 Kokshetau 3, KZ 53.7 68.2 0.96 0.89 

10 Mykolayiv, UA 47.5 32.3 0.92 0.92 35 Kostanay 1, KZ 53.7 63.3 0.97 0.90 

11 Zaporiyhzhya 1, UA 47.8 35.7 0.91 0.89 36 Kostanay 2, KZ 53.7 62.2 0.97 0.89 

12 Zaporiyhzhya 2, UA 48.1 34.1 0.90 0.88 37 Kurgan, KZ 53.7 65.6 0.96 0.89 

13 Luhans'k, RU 48.7 40.4 0.95 0.92 38 Barnaul_1, RU 53.7 79.4 0.96 0.87 

14 Volgograd, RU 48.7 44.8 0.97 0.94 39 Kokshetau 4, KZ 54.0 69.0 0.96 0.90 

15 Kirovohrad, UA 48.7 31.8 0.94 0.90 40 Kostanay 3, KZ 54.0 64.0 0.96 0.89 

16 Kharkiv 2, UA 49.0 36.2 0.92 0.87 41 Petropavlovsk 2, KZ 54.4 70.8 0.96 0.90 

17 Khmel'nyts'kyz, UA 49.0 26.8 0.97 0.92 42 Petropavlovsk 3, KZ 54.4 67.4 0.97 0.90 

18 Vinnytsya, UA 49.0 28.9 0.96 0.92 43 Kuybyskev 1, RU 54.4 50.8 0.96 0.89 

19 Poltava, UA 49.6 35.1 0.92 0.86 44 Ryazan, RU 54.4 39.3 0.97 0.89 

20 Kharkiv 1, UA 49.9 37.0 0.95 0.90 45 Petropavlovsk 1, KZ 54.7 69.5 0.97 0.90 

21 Saratov 1, RU 50.8 46.9 0.96 0.92 46 Omsk 1, RU 54.7 72.9 0.96 0.90 

22 Sumy, UA 50.8 34.1 0.96 0.90 47 Omsk 2, RU 55.0 74.5 0.96 0.91 

23 Semipalatinsk, RU 51.4 81.7 0.96 0.90 48 Cheboksary, RU 55.7 47.1 0.95 0.96 

24 Voronezh, RU 51.4 39.8 0.95 0.88 49 Kazan', RU 56.1 49.5 0.96 0.89 

25 Saratov 4, RU 51.8 45.3 0.96 0.90  

 



121 

 

Table A.2. Cropland sites that showed no change and those with changes in cropping 

pattern in the considered study period. Sites that showed changes include those with one 

change (unimodal to bimodal or bimodal to unimodal) and those with two changes 

(unimodal-bimodal-unimodal or bimodal-unimodal-bimodal). The year(s) when these 

changes occur and the number of years with continuous similar cropping pattern were 

also identified.  

 No Change Change 

Site 

No. 
Name, Country 

Site 

No. 
Name, Country 

Site 

No. 
Name, Country 

Year 

Change 
No. of 

years 

 Unimodal  Unimodal  Unimodal ���� Bimodal  uni/bi 

15 Kirovohrad, UA 34 Kokshetau 3, KZ 7 Odesa, UA 2008 5/3 

16 Kharkiv 2, UA 35 Kostanay 1, KZ 10 Mykolayiv, UA 2009 6/2 

19 Poltava, UA 36 Kostanay 2, KZ 12 Zaporiyhzhya_2, UA 2010 7/1 

20 Kharkiv 1, UA 37 Kurgan, KZ  Bimodal ���� Unimodal  bi/uni 

21 Saratov 1, RU 38 Barnaul_1, RU 11 Zaporiyhzhya_1, UA 
2004 
 

1/7 

22 Sumy, UA 39 Kokshetau 4, KZ 13 Luhans'k, RU 2003 1/7 

23 Semipalatinsk, RU 40 Kostanay 3, KZ 17 Khmelnytskyz, UA 2009 6/2 

24 Voronezh, RU 41 Petropavlovsk 2, KZ 18 Vinnytsya, UA 2009 6/2 

25 Saratov 4, RU 42 Petropavlovsk 3, KZ  
Unimodal ���� Bimodal 

����  Unimodal 
 uni/bi/uni 

26 Kursk, RU 43 Kuybyskev 1, RU 6 Rostov-on-Don 2, RU 
2007; 
2008 

4/1/3 

27 Orenburg, RU 44 Ryazan, RU 8 Rostov-on-Do 1, RU 
2007; 
2008 

4/1/3 

28 Kokshetau 1, KZ 45 Petropavlovsk 1, KZ 14 Volgograd, RU 
2009; 
2010 

6/1/1 

29 Barnaul 2, RU 46 Omsk 1, RU  
Bimodal ���� Unimodal 

����  Bimodal 
 bi/uni/bi 

30 Kuybyskev 2, RU 47 Omsk 2, RU 1 Cherkessk, RU 
2005; 
2009 

2/4/2 

31 Orel, RU 48 Cheboksary, RU 2 Stavropol, RU 
2005; 
2009 

2/4/2 

32 Kokshetau 2, KZ 49 Kazan', RU 3 Krasnodar, RU 
2007; 
2008 

4/1/3 

33 Lipetsk, RU   
4 Simferopol, UA 

2005; 
2010 

2/5/1 

    5 Tulcea, UA 
2006; 
2010 

3/4/1 

    9 Donetsk, UA 
2006; 
2008 

3/2/3 
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CHAPTER 4 : Comparing Passive Microwave with Visible-to-Near-

Infrared Phenometrics in Croplands of Northern Eurasia 
 

 

 

 

Paper #3 

 

Alemu, W.G.; Henebry, G.M. Comparing Passive Microwave with Visible-to-Near-

Infrared Phenometrics in Croplands of Northern Eurasia.  (under review at Remote 

Sensing, submitted December 2016)  

 

Research Question: Can AMSR-E passive microwave derived VOD peak height (PH) 

phenometrics track cropland seasonal dynamics be complementary to the VNIR MODIS 

NDVI peak vegetation greenness? 

Research Answer: Yes,  

• Time series of LSP of VODs were able to capture the seasonality of croplands 

(both bimodal & unimodal patterns) similar to the NDVI. 

• Passive microwave PH VOD favorably corresponded with that of the VNIR PH 

NDVI over the study domain, but peaks occurred 1-2 weeks later.  Canopy water 

content (aboveground biomass) peaks later than canopy greenness.  

• However, more research is needed on how best to use that complementarity. 
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4.0 Abstract 

Planting and harvesting times drive cropland phenology. There are only few 

datasets that derive explicit phenological metrics, and these datasets use the visible to 

near infrared (VNIR) spectrum. Many different methods have been used to derive the 

phenometrics Start of Season (SOS) and End of Season (EOS), leading to different 

results. This discrepancy is partly due to spatial and temporal compositing of the VNIR 

satellite data to minimize data gaps resulting from cloud cover, atmospheric aerosols, and 

solar illumination constraints. Phenometrics derived from the Convex Quadratic model 

include Peak Height (PH) and Thermal Time to Peak (TTP), which are more consistent 

than SOS and EOS because they are minimally affected by snow and frost and other non-

vegetation related issues. Here, we have determined PH using the vegetation optical 

depth in three microwave frequencies (6.9, 10.7 and 18.7 GHz) and accumulated growing 

degree-days derived from AMSR-E (Advanced Microwave Scanning Radiometer on 

EOS) data at a spatial resolution of (25 km). We focus on 50 AMSR-E cropland pixels in 

the major grain production areas of Northern Eurasia (Ukraine, southwestern Russia, and 

northern Kazakhstan) for 2003 – 2010. We compare the land surface phenologies of 

AMSR-E VOD and MODIS NDVI data. VOD time series tracked cropland seasonal 

dynamics similar to that recorded by the NDVI. The coefficients of determination for the 

NDVI data CxQ model fit were high for all sites (0.78 < r2 <0.99). The 10.7 GHz VOD 

(VOD10.7GHz) achieved the best linear regression fit (r2=0.84) with lowest standard error 

(SEE=0.128); it is therefore recommended for microwave VOD studies of cropland land 

surface phenology. Based on an ANCOVA analysis, the slopes from the linear regression 
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fit are not significantly different by microwave frequency; whereas, the intercepts were 

significantly different, given the different magnitudes of the VODs. PHs for NDVI and 

VOD were highly correlated. Despite their significant strong correspondence, there was a 

general lag of AMSR-E PH VOD10.7GHz by about two weeks compared to that of MODIS 

peak greenness. To check the usefulness of the maximum value-based PH phenometrics 

determination approach, we correlated the CxQ derived and maximum value determined 

PH NDVI and found that they were highly correlated with r2 of 0.87, but with a one-week 

bias. Deducting the two methods one-week bias, PH VOD10.7GHz lags PH NDVI by one 

week. Therefore, we conclude that maximum-value based PH VOD can be a 

complementary phenometric for the CxQ model derived PH NDVI, especially in cloud 

and aerosol obscured regions of the world.   

4.1 Introduction 

Planting and harvesting times drive the phenologies of crops. A complex network 

of factors influences when farmers plant particular crops and when they harvest them, 

including: recent and forecast weather; commodity prices, situation of local markets, and 

foreign crop conditions; crop insurance and governmental policies and subsidies; 

agronomic practices; and the cold hardiness, drought tolerance, or differential maturities 

of planted crop varieties. Most of these factors cannot be observed through remote 

sensing technologies. The remote sensing of land surface phenology (LSP) can reliably 

reveal the seasonality of the vegetation in croplands in an ordinal sequence of broad 

phases: greenup onset (start-of-season, SOS), maturity onset, senescence onset, and 

dormancy onset (end-of-season, EOS). The dates or days of the year of the SOS and EOS 
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are commonly used as phenological metrics (or phenometrics) to study the land surface 

phenology of croplands in relation to climatic and hydrological variability and, to some 

extent, the variation in land management (Jones et al., 2012).  

Cropland phenology is not equivalent to crop phenology. The phenologies of 

crops describe particular observable life history events in the specific species of crop. 

Implicit in crop phenology is a human observing the crop at sufficiently close distance to 

distinguish the plant parts relevant to the phenological phases (or phenophases). In 

contrast, cropland phenologies describe the land surface phenologies of croplands 

captured through remote sensing. These may include a mixture of multiple crop types 

with non-crop elements such as roads, vegetated ditches, hedgerows, woodlots, and rural 

buildings. Crop phenologies can be quite detailed; cropland phenologies offer relatively 

few phenophases. Cropland phenologies are useful for models of land surface, weather, 

and climate. Crop phenologies are useful for models of crop growth and yield and field-

scale hydrological and biogeochemical processes.    

Few remote sensing data products are used to derive explicit phenometrics, and 

each of these datasets uses the VNIR (visible-to-near-infrared) spectrum (Henebry & de 

Beurs, 2013). Moreover, each of the phenologically explicit LSP products uses different 

methods to derive phenological metrics, resulting in different metrics for SOS and EOS 

(Henebry & de Beurs, 2013). This discrepancy is also partly due to the challenge of 

equating satellite derived LSP metrics to in situ observations of plant phenology, and the 

spatial and temporal compositing of the VNIR satellite data to minimize data gaps that 
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result from cloud cover, atmospheric aerosols, and orbital and solar illumination 

constraints (Schwartz & Hanes, 2010; Wang et al., 2005).  

Microwave remote sensing is based on the dielectric property of materials, which 

is largely governed by the material’s water content. Thus, microwave measurements are 

sensitive to vegetation and soil water content and to changes in plant biomass and soil 

moisture. The frequencies of microwaves emitted by the land surface are much lower 

than VNIR light. These longer wavelengths are less attenuated by the atmosphere, and 

the earth’s surface constantly emits microwaves. Satellite active and passive microwave 

data have been successfully applied in many LSP studies such as vegetation phenology 

assessment (Frolking et al., 2006; Jones et al., 2011; Min & Lin, 2006; Shi et al., 2008), 

vegetation drought response (Frolking et al., 2005; Frolking et al., 2011), and growing 

season variability (Kimball et al., 2004; Kimball et al., 2006). Limitations of microwave 

LSP monitoring include very coarse spatial resolution (25 km in this study) due to the 

faint microwave signal emissions of land surface materials (Jones et al., 2012; Liu et al., 

2011), sensitivity to radio frequency interference (RFI; Li et al., 2004; Njoku et al., 

2005), signal degradation or loss due to snow cover and frozen ground (Frolking et al., 

2006; Jones et al., 2011).  

Vegetation optical depth (VOD) is a measure of aboveground vegetation canopy 

thickness (Owe et al., 2001) that is less sensitive to dense biomass saturation, less 

sensitive to atmospheric contamination and solar illumination constraints, and it can have 

high temporal resolution (Jones et al., 2011; Jones et al., 2012; Liu et al., 2013). VOD is 
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directly proportional to the vegetation dielectric constant and canopy water content. VOD 

responds to vegetation seasonal dynamics similar to those recorded by the VNIR MODIS 

vegetation indices (VIs: NDVI, EVI, LAI) and an independent bioclimatic growing 

season index (GSI; Jolly et al., 2005; Jones et al., 2011; Jones et al., 2012). VOD has 

been shown to track seasonal changes in croplands in spring wheat producing regions of 

North America and winter wheat producing areas of Volga River Basin in Russia, and 

heatwaves that devastated crop production in Northern Eurasia (Dole et al., 2011; 

Trenberth & Fasullo, 2012) similar to that of NDVI and EVI (Alemu & Henebry, 2013, 

2016). VOD SOS corresponds well to MODIS NDVI and EVI green-up dates, and SOS 

estimates from flux tower gross primary production (GPP) and ecosystem respiration, but 

with temporal offsets (Jones et al., 2012).    

Phenometrics derived from the Convex Quadratic model include Peak Height 

(PH) and Thermal Time to Peak (TTP), which are more consistent than SOS and EOS 

because they are minimally affected by snow and frost and other non-vegetation related 

issues (de Beurs & Henebry, 2008a, 2010). PH  estimated through accumulated growing 

degree-days (AGDD) or accumulated relative humidity has been found to have 

significant positive correlation with agricultural production statistics for rainfed 

agriculture (Brown et al., 2012). In the application of the Convex Quadratic (CxQ) 

model, a piece of a parabola is fit to the response variable as a function of thermal time. 

The advantage of the CxQ model is the PH and TTP can be calculated directly from the 

fitted parameter coefficients. The disadvantage is that some LSP shapes are not well 

approximated by a parabolic curve. We observed in earlier work (Alemu & Henebry, 
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2013) that only the very center of the growing season VOD time series was well fitted by 

the CxQ model. In this study, we hypothesize that VOD phenometrics characterize 

cropland dynamics in a manner complementary to MODIS NDVI phenometrics, but with 

temporal lag. The aims of this study are to (1) compare the VOD TTP and PH 

phenometrics from passive microwave data using the growing season maximum value 

approach with NDVI TTP and PH phenometrics from MODIS data using the CxQ model; 

(2) quantify temporal offsets between the two sets of phenometrics; (3) interpret the 

origin of these offsets; and, importantly, (4) demonstrate the validity of the VOD 

approach so that these microwave phenometrics can be used in cloud-obscured areas. 

4.2 Data and Methodology 

4.2.1 Remote Sensing Data 

We used two very different remote sensing datasets: emitted terrestrial microwave 

radiation and reflected solar shortwave radiation. The microwave dataset was based 

Advanced Microwave Scanning Radiometer (AMSR-E) enhanced land parameters 

developed by the Numerical Terradynamic Simulation Group at the University of 

Montana (Jones & Kimball, 2011). These parameters include near surface air temperature 

(ta; ̴ 2 m height) and vegetation canopy transmittance (tc) at three microwave frequencies 

(6.925 GHz, 10.65 GHz, and 18.7 GHz). Onboard the NASA-EOS Aqua satellite, 

AMSR-E recorded data twice daily (daytime, ̴ 1330, and nighttime, ̴ 0130) from mid-June 

2002 to October 2011, when the antenna failed. The second dataset included optical 

reflectance data from the Moderate-resolution Imaging Spectroradiometer (MODIS). We 

used MODIS collection 5 level 3 data product in a 0.05 degree (~5.6 km) Climate 
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Modeling Grid (CMG), specifically the Nadir Bidirectional Reflectance Distribution 

Function (BRDF)-Adjusted Reflectance (NBAR) data that combines observations from 

Terra and Aqua (MCD43C4; DAAC-LP, 2014). NBAR provides 16-day retrievals 

(updated every 8 days) of surface reflectance is normalized to a nadir view using BRDF 

models of surface anisotropy (Friedl et al., 2010; Schaaf et al., 2002).      

Croplands for this study were identified based on the International Geosphere 

Biosphere Programme (IGBP) global land cover classification scheme in the MODIS 

land cover CMG product (MCD12C1; DAAC-LP, 2014), and the USDA Foreign 

agriculture service (FAS) crop layers by oblast (for Russia: (USDA-FAS, 2011b), for 

Kazakhstan: (USDA-FAS, 2011a), for Ukraine: (USDA-FAS, 2011c)).    

4.2.2 Study Region   

The major grain producing areas of Ukraine (UA), southern Russia (RU), and 

northern Kazakhstan (KZ) were our focal areas. The dominant land cover classes across 

the entire study region in terms of the MODIS IGBP Land Cover Type 1 Percentage 

Product were grassland (GRS, 34%, IGBP class 10), cropland (CRP, 27%, IGBP class 

12), crop-natural vegetation mosaic (CNVM, 14%, IGBP class 14), and mixed forest 

(MFO, 11%, IGBP class 5). This land cover product has an overall classification 

accuracy of about 75%, but the range of class-specific accuracies can be large (Friedl et 

al., 2010). Pixel-based land cover temporal stability analysis was made by first 

calculating the maximum, minimum, and mean land cover percentage over the study 

period (2003 – 2010) and then displaying the maximum, mean, and range of the 

percentages in the red, green, and blue color planes, respectively (Henebry et al., 2013). 



130 

 

The resulting yellow in figure 4-1 display where the particular land cover continued to be 

the dominant during the study period (Table 4-1). 

Forty-nine (49) AMSR-E pixels (study sites) were selected across the three 

countries (14 in UA, 24 in RU & 11 in KZ) (figure 4-2 & table 4-2). For comparison, we 

identified one AMSR-E pixel dominated by mixed forest cover (IGBP class 5) in the 

Mari El republic of Russia. We didn’t incorporate this MFO site in our analyses unless 

otherwise indicated in figure captions or text descriptions. The study region in which the 

specific sites were identified has nearly 12o latitudinal (44o N – 56o N) and 56o (27o E – 

83o E) longitudinal extension. The most extreme latitudinal sites have a maximum of 

daylength difference of 2 hours that occurs on the solstices. Over the 8 years, average 

cropland cover for all sites was 88%, while the mixed forest site was 93% mixed forest. 

Many sites in UA and some in RU had 100% average maximum cropland cover over the 

study time period. While Volgograd in RU had the minimum average cropland cover 

(46%). Saratov 1 in RU (site 21) had the largest grassland encroachment with 69% and 

31% mean cropland and grassland cover respectively over the eight years, and thus had 

the largest cropland cover variation (range=28%). Omsk 1 in RU (site 46), and Kostanay 

2 in KZ (site 36) are also other examples. 
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Figure 4-1. Land cover stability in Ukraine (UA), southern Russia (RU), and northern 

Kazakhstan (KZ) as revealed by IGBP global land cover classification scheme MODIS 

0.05o land cover products (resampled to AMSR-E spatial resolution: 0.25o) from 2003-

2010. (a) crop-natural vegetation mosaic (IGBP class 14); (b) cropland (IGBP class 12); 

(c) grassland (IGBP class 10). Land cover percentage from 2003-2010 displayed as 

R=max%, G=mean%, B=range of %. Yellow=stable core area; Magenta=unstable 

peripheral areas; Black=no occurrence of the given LC. For legend refer to Table 4-1 

(Alemu & Henebry, 2016). 

 

 

 

a 
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Table 4-1. Interpretive legend for Figures 4-1 that display IGBP MODIS 0.05o land 

cover variation from 2003-2010 in the study region.  

Source: (Henebry et al., 2013) 

 

 

 

 

 

 

 

 

Color in  

LC Map 

Red =  

Max% LC 

Green =  

Mean% LC 

Blue =  

Range% LC 

 

Interpretation 

Black None None  None Land cover (LC) class absent   

Blues Low Low High Unstable but ephemeral periphery; 

rare and erratic  

Magentas High Low High Unstable but persistent periphery; 

sometimes high, but usually low 

Whites High High High Unstable core; sometimes low, but 

usually high 

Yellows High High Low Stable core of LC; always high so 

low range 
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Figure 4-2. Cropland stability map overlaid by the 49 specific cropland and one MFO AMSR-E pixels (site 50 - most 

northern site) study sites. The AMSR-E pixels are numbered from lower to higher latitude. Sites are named by their 

closest town (Table 4-1). Modified from (Alemu & Henebry, 2016). 
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Table 4-2. Study sites (named by their closest town) and their country, numbered from 

lower latitude (1) to higher latitude (50), their geographic locations, and average cropland 

(CRP) cover % and range from 2003-2010. Note that sites with 100 % average CRP 

cover throughout the study period are indicated in bold, and extrema in CRP cover % 

range are indicated by underlines for high and bold italics for low. 
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1 Cherkessk, RU 44.4 43.5 99 0.6 26 Kursk, RU 52.1 37.5 95 4.1 

2 Stavropol, RU 45.0 42.4 100 0.3 27 Orenburg, RU 52.4 55.2 94 4.7 

3 Krasnodar, RU 45.6 39.6 98 0.6 28 Kokshetau 1, KZ 52.7 69.2 91 8.5 

4 Simferopol', UA 45.6 34.1 100 1.2 29 Barnaul 2, RU 52.7 83.0 99 0.7 

5 Tulcea, UA 45.8 29.2 96 0.3 30 Kuybyskev 2, RU 52.7 50.2 91 9.6 

6 Rostov-on-Don 2, RU 46.7 39.8 100 0.2 31 Orel, RU 52.7 35.7 64 2.7 

7 Odesa, UA 47.3 30.7 100 0.0 32 Kokshetau 2, KZ 53.0 67.4 79 10.6 

8 Rostov-on-Do 1, RU 47.5 40.9 88 6.2 33 Lipetsk, RU 53.0 39.1 84 4.4 

9 Donets'k, UA 47.5 37.7 100 0.7 34 Kokshetau 3, KZ 53.7 68.2 84 10.0 

10 Mykolayiv, UA 47.5 32.3 100 0.1 35 Kostanay 1, KZ 53.7 63.3 78 8.0 

11 Zaporiyhzhya 1, UA 47.8 35.7 100 0.1 36 Kostanay 2, KZ 53.7 62.2 86 18.5 

12 Zaporiyhzhya 2, UA 48.1 34.1 100 0.0 37 Kurgan, KZ 53.7 65.6 74 17.3 

13 Luhans'k, RU 48.7 40.4 99 2.1 38 Barnaul_1, RU 53.7 79.4 82 11.3 

14 Volgograd, RU 48.7 44.8 46 13.4 39 Kokshetau 4, KZ 54.0 69.0 93 4.7 

15 Kirovohrad, UA 48.7 31.8 99 1.0 40 Kostanay 3, KZ 54.0 64.0 79 15.7 

16 Kharkiv 2, UA 49.0 36.2 91 6.6 41 Petropavlovsk 2, KZ 54.4 70.8 97 3.6 

17 Khmel'nyts'kyz, UA 49.0 26.8 88 11.0 42 Petropavlovsk 3, KZ 54.4 67.4 92 5.4 

18 Vinnytsya, UA 49.0 28.9 96 0.5 43 Kuybyskev 1, RU 54.4 50.8 95 8.8 

19 Poltava, UA 49.6 35.1 97 1.6 44 Ryazan, RU 54.4 39.3 65 13.7 

20 Kharkiv 1, UA 49.9 37.0 72 3.9 45 Petropavlovsk 1, KZ 54.7 69.5 86 4.4 

21 Saratov 1, RU 50.8 46.9 69 27.9 46 Omsk 1, RU 54.7 72.9 61 18.7 

22 Sumy, UA 50.8 34.1 85 7.1 47 Omsk 2, RU 55.0 74.5 59 14.5 

23 Semipalatinsk, RU 51.4 81.7 98 3.3 48 Cheboksary, RU 55.7 47.1 93 6.1 

24 Voronezh, RU 51.4 39.8 98 1.7 49 Kazan', RU 56.1 49.5 81 2.3 

25 Saratov 4, RU 51.8 45.3 88 3.6 50 Mari El*  56.4 48.4 93 4.9 

* Mixed forest (MFO) cover. Source: Modified from (Alemu & Henebry, 2016) 
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4.2.3 Characterizing Land Surface Phenology in VODs and NDVI 

We used the AMSR-E and MODIS data from all eight years (2003–2010) for all 

the pixels.  The AMSR-E data record has winter data gaps as it was pre-filtered for snow 

covered or frozen land surfaces (Kim et al., 2011). To avoid the frozen season and to 

maintain a consistent analysis period across all pixels, we restricted our focus to data 

from DOY 89–305, which ranges 30 March to 1 November for non-leap years and 29 

March to 31 October for leap years. An 8-day forward moving average filter was applied 

to the AMSR-E data to align it with the MODIS compositing dates and to minimize data 

gaps due to orbit and swath width. Growing degree-day (GDD) is the daily thermal time 

increment above a certain threshold (or base temperature) for plant growth (de Beurs & 

Henebry, 2004; McMaster & Wilhelm, 1997; Sarma et al., 2008), and accumulated 

growing degree-days (AGDD) are the summation of daily thermal time increments 

throughout the whole growing period (de Beurs & Henebry, 2010; Wang et al., 2001; 

Yang et al., 1997). In other words, the passage of days is weighted by the quantity of 

growing degrees occurring that day, with zero (but not negative) degrees being a 

permissible weight (Henebry, 2013). McMaster (2005) concluded that the base 

temperature of 0 oC is a robust and sufficient threshold for wheat phenology, which is the 

main crop in our study region. GDD was calculated from the AMSR-E air temperature 

(ta) data with a base temperature of 273.15 K (= 0 °C) as follows:  

GDD = max[
�	
����*


�
− 273.15,  0]                [1] 

where tASC and tDES are ascending and descending pass temperatures, which roughly 

corresponds to the day and night time temperatures respectively. We applied 8-day 



136 

 

forward moving summation to the GDDs and picked up those values corresponded with 

the MODIS reflectance data (MCD43C4) acquisition dates to mimic the whole growing 

season GDD (DOY 89-305 in this case) and to align it with the MODIS data respectively. 

Thus each annual growing period has 28 GDD values. These GDD values were 

accumulated to yield AGDD.   

AGDDt = AGDDt-1 + GDDt                  [2] 

where GDDt is daily temperature increment of growing degree days at time t.    

Daily GDD from AMSR-E tracked seasonal, weekly and monthly dynamics of 

corresponding weather station GDD (Alemu & Henebry, 2016). The root mean square 

deviation (RMSD) between these daily datasets from the two sources was very low, 1.86 

– 3.16 oC (Alemu & Henebry, 2016). Linear regression of AMSR-E GDD with weather 

station GDD on these cropland sites yielded r2 > 0.82 (Alemu & Henebry, 2016). This 

result is in line with Jones et al. (2010) who found a bias of 1.0 – 3.5 K between WMO 

weather station and AMSR-E daily air temperature data on vegetated lands across the 

Northern Hemisphere.  

NDVI was calculated from the MODIS NBAR reflectance data using the standard 

formula by Tucker (1979). We fitted the MODIS NDVI as a function AMSR-E AGDD 

using the CxQ model.            

NDVIt = α + βAGDDt - γAGDDt
2          [3] 
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The intercept α is the background NDVI at the start of observation period, the linear 

parameter β affects the slope, and the quadratic parameter γ controls the curvature. Since 

the model is convex quadratic, the sign of β is positive and γ is negative.  

Two phenometrics were derived from the fitted parameter coefficients of the CxQ 

model. These are Peak Height NDVI (PH; equation 4) and Thermal Time to Peak NDVI 

(TTPNDVI; equation 5):  

PH = α – (β2/4γ)                        [4] 

TTPNDVI = -β/2γ            [5] 

where α, β, γ are the fitted parameter coefficients. 

Vegetation Optical Depth (VOD) was derived as a negative natural logarithm of 

vegetation transmittance [VOD = -loge(tc) = -ln(tc)]. In a previous study (Alemu & 

Henebry, 2013), we fitted the core growing season VODs from the three microwave 

frequencies (6.9 GHz, 10.7 GHz, and 18.7 GHz) using the CxQ model in a two-step 

process. The fits were good and from these fits we derived two phenological metrics, 

namely the PH and TTP VODs. However, here we consider a larger fraction of the 

growing season, and thus another approach was needed. The VOD shapes for the entire 

growing season are not well fit using CxQ models. VOD is sensitive to aboveground 

biomass structure, including crop residues, and to the vegetation water content found in 

entire aboveground biomass, while NDVI is sensitive primarily to vegetation greenness. 

Thus, VOD has a different seasonal progression shape that is not suitably captured by a 
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quadratic curve compared to that of NDVI. Therefore, we used the maximum VOD value 

approach to determine cropland vegetation PH and TTP. That is, the observed maximum 

VOD value was taken as PH VOD, while the corresponding AGDD was taken as TTP. 

Similar approach was also used for the NDVI for a direct comparison with the CxQ 

model fit derived PH and TTP NDVI. The PH NDVI and PH VOD values were regressed 

to see the relationship between cropland vegetation peak greenness and peak biomass and 

water content. We then used analysis of covariance (ANCOVA) to test whether the 

slopes and/or intercepts from of the linear regression model fit were significantly 

different by microwave frequency: the microwave frequencies (6.9, 10.7, 18.7 GHz) were 

the independent categorical effect variables, the peak greenness was covariate, and PH 

VOD was the response variable. The first statistical assumption for ANCOVA is that the 

covariate (peak greenness in our case) is uncorrelated with other independent variables 

(microwave frequencies), and the second assumption is that the covariate (peak 

greenness) is correlated with the dependent variable (PH VOD; Owen & Froman, 1998). 

In all cases, p ≤ 0.05 was considered significant.  

4.3 Results 

4.3.1 Time Series Land Surface Phenologies of NDVI and VODs 

All three VOD time series were able to capture the seasonality of croplands (both 

bimodal patterns and unimodal patterns), similar to MODIS NDVI (figure 4-3). The 

bimodality arises from the planting of winter grains in the fall, and growth and harvest in 

the subsequent early summer. After snow melts, croplands are primarily barren or contain 

crop residuals (non-photosynthetic biomass) prior to tilling and planting. Greenup occurs 



139 

 

at seed germination (initiation of visible above-ground photosynthetic vegetation growth) 

that occurs prior to significant biomass occurrence. This pattern is evident in figure 4-3 & 

4-4 where the rise in VOD occurs later than NDVI. Cropland LSP peak VODs (that 

measure vegetation water content and biomass) consistently lagged in time and space 

from the peak NDVI (that measure vegetation greenness) (figure 4-3 & 4-4). 

Furthermore, the VODs showed slower senescence likely a consequence of residual 

biomass (crop residue) following harvest (McNairn et al., 2001; McNairn et al., 2002; 

figure 4-3 & 4-4). The higher microwave frequency has larger VOD signatures since the 

shorter wavelengths are more attenuated by vegetation canopy (figure 4-3 & 4-4).  

LSPs at the lower latitudes exhibit longer and/or bimodal patterns due to cultivation of 

winter grains (figure 4-4a&b). On the other hand, LSPs at the higher latitudes exhibit 

shorter unimodal growing season due to cultivation of spring grains (figure 4-4c&d). At 

each study site the VOD and NDVI exhibit similar seasonal patterns, amid interannual 

variation. For example, in Petropavlovsk 3, KZ (figure 4-4c), in 2003 there was high and 

earlier peak LSPs in fewer AGDD, while in 2010 there was lower & flatter peak in more 

AGDD due to the 2010 heatwave in Russia (Dole et al., 2011; Trenberth & Fasullo, 

2012). Note the 2007 VOD in Kirovohrad, UA (figure 4-4b) is almost flattened compared 

to other years due to the devastation of crops by the 2007 heatwave in Ukraine (Founda 

& Giannakopoulos, 2009). The heatwave effect is more evident on the VODs compared 

to their counterpart NDVI (figure 4-4b), due to the sensitivity of VODs to vegetation 

water content. As Mari El in Russia is a mixed forest (MFO) site, it displayed a distinct 

LSP in magnitude and shape compared to the rest of the 49 cropland sites (figure 4-4e). 
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Both VOD and NDVI were larger in magnitude (note the y-scale) and flatter in shape. 

The VODs in particular showed a much delayed senescence compared to the NDVI.  

Figure 4-4 shows time series of VODs and NDVIs in a southern study site (Simferopol, 

UA) that experienced alternate unimodal and bimodal patterns over the 8 years of the 

study.  All the three microwave frequencies VOD were able to capture these LSP patterns 

similar to their counterpart NDVI, despite some differences in magnitude and shape.    

Figure 4-3. VOD time series for the three microwave frequencies: green pluses=18.7; 

purple circles=10.7; orange triangles=6.9 GHz; and blue diamonds=NDVI. Selected 

series arranged from south to north of our study region: (a) Cherkessk, RU, 44.4o; (b) 

Kirovohrad, UA, 48.7o; (c) Petropavlovsk 3, KZ, 54.4o; (d) Kazan, RU, 56.1o; and (e) 

Mari El, RU, 56.4o (MFO site included for comparison). Note that the y-axis scaling for 

the MFO site (0.2-1.9) is different from the cropland sites (0.2-1.6).    

e 

d 

c 

b 

a 
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Figure 4-4. VODs in three microwave frequencies (green squares = 18.7, purple circles = 

10.7, & orange triangles = 6.9 GHzs) and NDVI (blue diamonds) interannual variability 

of a southern study site (Simferopol, UA, 45.6o N) for 2003-2010. The 6.9 GHz 

vegetation transmissivity was missing from the source dataset in 2004. Seasonal patterns 

change from bimodal (2003-2004) to unimodal (2005-2009) and back to bimodal (2010). 

There is also seasonal variability within the bimodal and unimodal growing seasons.   

 

 

 

 

  



142 

 

4.3.2 Thermal Time to Peak and Peak Height NDVI and VOD Phenometrics  

In this section, we present TTP and PH NDVI derived from the CxQ model, 

followed by VODs and NDVI determined from the growing season maximum value 

approach.  

4.3.2.1 The CxQ Model Derived NDVI Phenometrics 

The NDVI CxQ model fit for all sites perform great in time and space with 

0.78<r2<0.99. Sample fitted plots across latitudes appear in figure 4-5. Sites in the lower 

latitudes that can support double growing season attain their first peaks at the earliest (< 

1000 AGDD, e.g. figure 4-5d, Cherkessk, RU, 44o); moving farther north, the seasonal 

pattern changes from bimodal to unimodal, and the TTP NDVI pushed up further to the 

growing season (between 1000 – 2000 AGDD, e.g. figure 4-5c, Zaporiyhzhya 1, UA, 48o 

& 4-5b, Kokshetau 1, KZ, 53o). Moving towards the northern study sites, the TTP starts 

to decrease to 1000 AGDD due to the thermal limitation and shorter growing season 

(e.g., figure 4-5a, Cheboksary, RU, 56o). Figure 4-6 presented the general relationship of 

TTPNDVI as a function of latitude for all sites. Note also the NDVI CxQ fit intercept in the 

different latitudes in figure 4-5 that the growing season in the lower latitudes (e.g. figure 

4-5d) starts a bit earlier than the time we considered in this study (DOY 89 = March 30 

(March 29 for leap years)).   
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Figure 4-5. Average NDVI (2003–2010) as a function of AGDD for cropland sites that 

encompass the whole latitudinal range: (a) 48, RU; (b) 28, KZ; (c) 11, UA, and (d) 1, RU. 

The coefficients of determination (R2) for these sites ranged from 0.88 to 0.97.    
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Figure 4-6. Scatterplot for TTP NDVI as a function of latitude fitted with a quadratic 

model. There is a significant positive relationship (R2 = 0.5) that as latitude increases 

TTP NDVI increases in the lower latitudes to certain limit and then declines in the 

northernmost study sites (44o – 56o N latitude).     

Average (2003–2010) NDVI PH phenology metric in our study croplands ranges 

between 0.58 – 0.84 (figure not shown here). NDVI at half-TTP as a function of PH 

NDVI display a distinct trend indicating that NDVI in these sites is driven by local 

climates (figure 4-8a). Generally, lower latitude study sites have gentler NDVI gradient 

time series with longer growing season compared to the steeper NDVI gradient of the 

shorter summer growing season higher latitudes. Thus, the difference between PH NDVI 

and NDVI at half-TTP increases as latitude increases yielding a strong linear fit with R2 

0.81 (figure 4-7a). However, PH NDVI as a function of latitude did not show a clear 

trend (figure 4-7b). The NDVI at half-TTP as a function of PH NDVI for some selected 

sites showed a positive correspondence (figure 4-8b). The two phenometrics for the 
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mixed forest in the most northern study site Mari El, Russia (site 50 appears as the 

outlying green circles in upper right corner) displayed strong correspondence with r2 = 

0.94. In contrast the correspondence between these phenometrics for croplands exhibited 

more interannual variability due to the fact that crops are annual vegetation and due to 

possible crop and land rotation annually or every few years. Moreover, croplands are 

more vulnerable to climatic variability compared to the perennial mixed forests. The 

southern study sites showed smaller NDVI at half-TTP and PH NDVI phenometrics in 

2003 due to minimal effect of the European heatwave on croplands in our study area (De 

Bono et al., 2004). As the winter grains were affected in this year, many croplands were 

sown spring grains and therefore many southern study croplands in 2003 supported 

double cropping. The affected winter croplands (first peak) exhibit smaller NDVI at half-

TTP and PH NDVI (figure 4-8b sites 1, 2, 4, and 13). However, the smaller values for the 

two phenometrics were recorded in 2010 for the northern study sites due to the effect of 

the 2010 Russian and Kazakhstan heatwave (Dole et al., 2011; Trenberth & Fasullo, 

2012; figure 8b, sites 13, 24, and 36). As forests are perennial and resilient to climatic 

variability, the two phenometrics in Mari El, Russia were not that affected by the 2010 

Russian heatwave and displayed closer values consistent trend throughout the study 

period. The 2010 half-TTP NDVI as a function of PH NDVI value for this MF site was 

just about at an average position of the other 7 years of values (figure 4-8b).    
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Figure 4-7. Scatterplot for PH NDVI and NDVI at half-TTP phenometrics (a) as a 

function of latitude, and (b) as a function of latitude (b). Both are fitted with linear trend 

line yielding strong correspondence for the former (R2 = 0.81), but no clear 

correspondence for the latter (R2 = 0.07).  

Figure 4-8. Annual phenometrics of NDVI at half-TTP as a function of PH NDVI (a) for 

all study sites and (b) for some selected study sites for 2003 – 2010. Sites are numbered 

according to their latitudinal position from south (1) to north (50) as in table 4-2 (not 

shown for 8a).    

4.3.2.2 The Maximum Value Approach VOD Phenometrics 

For the VOD LSP, PH VOD as a function of the corresponding TTP VOD for all 

sites is presented in figure 4-9. In our study croplands, VOD PHs range between 0.85 – 

1.74, while the NDVI PH (also calculated using the maximum value approach) ranged 

a b 

a b 
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between 0.60 – 0.83. VOD by microwave frequency was proportional to the magnitude of 

VOD PH metric, i.e., the ordering of the VOD PH from high to low was 18.7 GHz > 10.7 

GHz > 6.9 GHz. The higher the frequency (the shorter the wavelength), the higher the 

attenuation by cropland vegetation, and thus the larger the VOD magnitude. One would 

expect that longer wavelength VOD may be more sensitive to higher biomass level while 

shorter wavelength VOD may attain its peak early in time due to saturation issue. 

However, the VOD microwave frequencies for the AMSR-E data are less sensitive to 

saturation. The VOD PH, which is responsive to vegetation water content and biomass, 

lags the NDVI PH, which is responsive to vegetation greenness or absorption of 

photosynthetically active radiation. Generally, the shorter the microwave wavelength, the 

later in terms of AGDD the VOD PH would be, i.e., the 18.7 GHz VOD PH lags the 10.7 

GHz VOD PH which, in turn, lags the 6.9 GHz (shorter wavelength) PH VOD. The lag 

between the 10.7 and 18.7 GHz VOD PHs was narrower than the 6.9 GHz VOD PH from 

the other two. We have presented a quantified lag graph (figure 4-11b) among the 

maximum value determined PH VODs and the CxQ model derived PH NDVI in section 

4.4.1.     



148 

 

Figure 4-9. Scatter plot of the maximum value approach determined PH VODs and 

NDVI as a function of their corresponding TTP. Note the magnitude of the VODs and 

NDVI PHs; VODs PH lagged their counterpart NDVI PH; and also the lag among the 

VODs PH relative to their microwave frequency. 

4.4 Discussions 

4.4.1 VOD and NDVI Peak Heights: Correlations and Biases  

Peak heights are less sensitive to snow and other non-vegetation related issues 

compared to the start-of-season (SOS; de Beurs & Henebry, 2008a, 2010). PH NDVI has 

significant positive correlation to agricultural production (Brown et al., 2012). The 

microwave based VOD PH derived using the maximum value approach favorably 

corresponded with the VNIR based NDVI PH derived using the CxQ model over the 

study domain. The 10.7 GHz VOD PH achieved the highest correspondence with the 

NDVI PH with a high coefficient of determination (r2 = 0.84) and the lowest standard 

error (SEE = 0.127; Table 4-3, figure 4-10). PH for the eight years’ average VOD and 
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NDVI for all the study cropland sites except Saratov 1, which had a significant 

proportion of grassland (31%), were considered in this correspondence analysis.   

Table 4-3. Regression parameters for the linear relationships between peak greenness 

(PH NDVI) and PH VOD. 

Frequency n Intercept Slope R2 SEE* 

6.9 GHz 48 -0.10648 1.73519 0.770 0.14005 

10.7 GHz 48 -0.09882 2.00788 0.844 0.12754 

18.7 GHz 48 0.17280 1.66521 0.7814 0.12984 

* indicates standard error of the estimate  

The two assumptions for analysis of covariance (ANCOVA) were achieved in our 

analysis: first, the covariate (peak greenness) was not correlated to the independent 

variables (factor=microwave frequency) at α = 0.05 significance level; and, second,  the 

covariate NDVI PH was correlated with response variable VOD PH as described in the 

previous paragraph and in Table 4-3 and figure 4-10. The ANCOVA model revealed that 

slopes resulted from the linear regression fit between NDVI PH and VOD PH were not 

significantly different while intercepts were significantly different between pairs of 

microwave frequencies at 95% significance level (α = 0.05; p<0.001). The interpretation 

is peak greenness (NDVI PH) had a significant and positive effect on VOD PH and the 

effect is similar for all three microwave frequencies (the effect of NDVI PH on VOD PH 

did not depend on microwave frequency).  
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Even though NDVI PH and VOD PH have significant positive correspondence, 

the latter lagged the former (figure 4-11b). This behavior was expected since microwaves 

are differentially sensitive to aboveground biomass and canopy water content; in contrast, 

the VNIR is differentially sensitive to photosynthetically active radiation (PAR) 

absorption (Viña et al., 2004c). The peak VOD lags the peak greenness by several weeks 

following delayed increases in vegetation water content and development of aboveground 

biomass. Average VOD lag for all study years and sites was about two to three weeks, 

but it varied in time and space, and by microwave frequency (figure 4-11b). We have also 

presented the PH VOD and NDVI as a function of their respective TTP metric in figure 

4-11a for ease of interpretation of the lags in figure 4-11b. The temporal and spatial 

average PH VOD lag increases as microwave frequency increases. The 6.9, 10.7, and 

18.7 GHz VOD PH average lags are 2.1, 2.3 and 2.8 weeks relative to the peak greenness 

(figure 4-11b and appendix 4-1). PH NDVI lags PH VOD 6.9 GHz on 3 sites only There 

were only few sites that showed NDVI PH temporal average lag to that of the PH VOD – 

three sites for the 6.9, one site for the 10.7 and one site for the 18.7 GHz VOD PH over 

the study period (all lags less than a week). The 6.9, 10.7, and 18.7 GHz VOD PH 

temporal average lag ranges between (-) 0.8 – 5.1, (-) 0.1 – 6.7, and (-) 0.9 – 7.2 weeks 

by site, respectively. These are VOD PH to NDVI PH temporal average lag ranges 

among the 50 study sites for the three microwave frequencies. The minus signs in 

parenthesis (-) indicates the PH VOD lead time to the PH NDVI. To check the usefulness 

of the maximum value-based PH phenometrics determination approach, we correlated 

NDVI PH determined using this approach with that of the CxQ model. The PH NDVI 
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from the two methods showed a strong linear relationship with an r2 of 0.88 (figure 4-12). 

However, the CxQ model derived peak greenness lags the maximum-value determined 

peak greenness. On average, the CxQ model derived PH NDVI lags the maximum-value 

determined PH NDVI by one-half week. Therefore, there was a general underestimation 

of the PH VOD lags by about one week. On an ecoregional scale, studying AMSR-E 

SOS and MODIS green-up dates in North America, Jones et al. (2012) found a 

correspondence between VOD SOS and greenup dates with r2=0.45 for VOD and NDVI, 

and r2=0.48 for VOD and LAI. In cropland dominated ecoregions (63% cropland) in 

North America, VOD SOS lagged by 5.7 to 12.9 weeks (mean=8.6) compared to the 

NDVI greenup date (Brown & de Beurs, 2008).  

 Figure 4-10. Scatterplots and linear regression fits of the CxQ model derived NDVI PH 

and maximum value determined VOD PH at three microwave frequencies (6.9 GHz 

[orange triangles], 10.7 GHz [purple circles], & 18.7GHz [green plus]) for 2003-2010. 
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The PH linear fit for two datasets were high with r2 of 0.77, 0.84, and 0.78 for the 6.9, 

10.7, and 18.7 GHz frequencies, respectively.         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11. Scatter plot of (a) the maximum-value determined PH VODs and CxQ 

model derived PH NDVI phenological metrics as a function of their corresponding TTP, 

(b) PH VOD lags relative to their corresponding peak greenness as a function of the 

respective TTP VODs. Note that the PH VODs for all sites except three sites for the 6.9 

GHz and one site for the 10.7 and 18.7 GHz PH VODs were lagged from their 

corresponding PH NDVI (PH VOD lags are above the zero line, b).    

 

a 
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Figure 4-12. Scatter plot and linear fit of the CxQ model derived and maximum-value 

determined NDVI PH from the same MODIS dataset for 2003-2010. The linear fit for PH 

phenometrics from the two approaches of the same dataset was high with r2 0.88.  

4.4.2 Heatwave Responses of VODs and NDVI 

We have noted the 2010 heatwave affecting Russia and Kazakhstan (Dole et al., 

2011; Trenberth & Fasullo, 2012) and the 2007 heatwave affecting Ukraine (Founda & 

Giannakopoulos, 2009) in our previous work (Alemu & Henebry, 2013, 2016). Here, we 

have presented these heatwave effects on croplands as revealed by the time series of 

VODs and NDVIs, the relative comparison of the two LSP measures, and also CxQ 

model derived NDVI PH and NDVI at half-TTP metrics. During the heatwave years the 

VODs and NDVIs were well below the average VOD and NDVI for non-heatwave years, 

as croplands were negatively impacted by the heatwave (figure 4-13). Heatwave years are 

more evident in the VODs compared to their counterpart NDVI, as VOD strongly 

responds to vegetation water content. The CxQ model derived NDVI at half-TTP as a 

function of PH NDVI for sites affected by the 2010 heatwave was lower relative to the 
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other non-heatwave years (figure 4-14). The marker in the upper-right corner marker is 

the mixed forest site in Mari El, Russia, showing little effect of the heatwave on that site.  

Figure 4-13. VOD and NDVI plots for sample sites (a) Mykolayiv, UA, and (b) 

Voronezh, RU, affected by the 2007 and 2010 Ukrainian and Russian heatwaves, 

respectively. In both plots, purple circle represents VOD10.7GHz and blue diamond 

represent NDVI plots average (2003 – 2010) excluding the respective heatwave years 

with relative maximum and minimum error bars. The red circle and orange diamond plots 

represent heatwave year VODs and NDVIs respectively for both sites. Note the PH in 

both the average and heatwave affected years. Note also the shapes and magnitudes of the 

time series in the heatwave years relative to the average of the other years.  

a b 
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Figure 4-14. Scatterplot of NDVI at half-TTP as a function of NDVI PH derived from a 

CxQ model for the 2010 heatwave affecting Russia and Kazakhstan. Note the position of 

the 2010 phenometrics presented by red diamonds relative to the other years in their 

respective sites. Note also the 2010 marker for the upper-right corner which is for the 

MFO site in Russia (Mari El).  

4.5 Conclusions and Recommendations 

In this paper we have compared and contrast the peak timing of cropland 

vegetation maturity using two complementary remote sensing datasets. Time series of 

LSP of VOD (in three microwave frequencies – 6.9, 10.7, and 18.7 GHz) from the 

passive microwave Advanced Microwave Scanning Radiometer on EOS (AMSR-E) was 

able to capture the seasonality of croplands (both bimodal and unimodal seasonal 

patterns) similar to that of the MODIS NDVI. The higher microwave frequency generates 
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higher VOD due to the fact that smaller wavelengths are more quickly attenuated by 

vegetation.  

The timing and magnitude of the growing season peak (TTP, PH) are more 

consistent quantitative cropland phenometrics, in large part because they are minimally 

affected by snow or frost, unlike the common phenometrics of Start of Season and End of 

Season. The vegetation optical depth (VOD) retrieved from passive microwave data is 

more robust to atmospheric effects and biomass saturation than phenometrics based on 

NDVI.  

We have also demonstrated the application of the convex quadratic (CxQ) 

function to model cropland dynamics using MODIS NDVI yielding strong fits (0.78 < r2 

<0.99). The passive microwave AMSR-E VOD PH determined using the maximum value 

of the growing season approach favorably corresponded with that of the VNIR MODIS 

peak greenness (NDVI PH) derived using the CxQ model over the study domain. The 

10.7 GHz VOD PH achieved the best linear regression fit (R2=0.84) and with lowest 

standard error (SEE=0. 128) with the NDVI peak greenness and, therefore, recommend 

for further exploration of VOD-based land surface phenology studies. However, based on 

an ANCOVA model, the slopes from the linear regression fit are not significantly 

different by microwave frequency, and thus it is possible to make analysis using anyone 

of the three microwave frequency VOD. The intercepts from the ANCOVA analysis were 

significantly different, given the different magnitudes of the VODs in the three 
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frequencies resulting from the difference in microwave emission attenuation by crop 

vegetation.  

Despite the strong correspondence between peak LSPs of the two datasets, there 

was a general lag of AMSR-E PH VOD by two – three weeks compared to that of 

MODIS peak greenness. Based on peak greenness analysis of same dataset using the two 

procedures, we found a one-week bias of the two methods. We concluded that maximum 

value based PH VOD can yield phenometrics complementary to those from the CxQ 

model based on NDVI, especially in cloud and aerosol obscured parts of the world. 

We included one representative mixed forest (MFO) site in our analysis to 

compare it with croplands LSP and LSS. The peak height croplands were found to have 

more interannual dynamics compared to that of the MFO, due to the more resilience of 

the MFO for climatic variability and interannual crop and land rotations of croplands.  

Even though AMSR-E ceased to function in October 2011 due to antenna failure, 

its legacy has been continued by AMSR2, which is the improved version of AMSR-E but 

with similar functionality since May 2012 (Du et al., 2014). In this dataset, the data time 

gap between the two sensors was filled by the Microwave Radiation Imager (MWRI) 

sensor data on-board the Chinese FengYun 3B (FY3B) satellite (Du et al., 2015; Du et 

al., 2014).    
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4.10 Appendix A 

Appendix 4-1. Study sites average GDD, and PH VOD lags (in weeks) relative to their 

counterpart PH NDVI 
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1 Cherkessk, RU 44.4 43.5 2.7 2.4 4.4 26 Kursk, RU 52.1 37.5 5.1 3.8 7.0 

2 Stavropol, RU 45.0 42.4 2.6 3.3 3.1 27 Orenburg, RU 52.4 55.2 1.4 1.2 1.1 

3 Krasnodar, RU 45.6 39.6 4.8 6.7 7.2 28 Kokshetau 1, KZ 52.7 69.2 2.7 2.5 2.6 

4 Simferopol', UA 45.6 34.1 1.7 1.8 1.3 29 Barnaul 2, RU 52.7 83.0 1.0 1.7 1.9 

5 Tulcea, UA 45.8 29.2 2.5 3.5 4.6 30 Kuybyskev 2, RU 52.7 50.2 1.1 2.3 4.0 

6 Rostov-on-Don 2, RU 46.7 39.8 1.5 2.5 2.3 31 Orel, RU 52.7 35.7 2.7 2.9 3.5 

7 Odesa, UA 47.3 30.7 3.1 3.7 4.4 32 Kokshetau 2, KZ 53.0 67.4 1.7 1.7 1.6 

8 Rostov-on-Do 1, RU 47.5 40.9 4.7 3.5 4.5 33 Lipetsk, RU 53.0 39.1 1.6 2.0 2.3 

9 Donets'k, UA 47.5 37.7 3.6 3.9 5.0 34 Kokshetau 3, KZ 53.7 68.2 0.9 0.8 1.2 

10 Mykolayiv, UA 47.5 32.3 4.4 4.9 5.4 35 Kostanay 1, KZ 53.7 63.3 1.0 0.9 0.7 

11 Zaporiyhzhya 1, UA 47.8 35.7 -0.3 0.3 1.1 36 Kostanay 2, KZ 53.7 62.2 0.9 0.5 0.5 

12 Zaporiyhzhya 2, UA 48.1 34.1 1.4 2.4 2.4 37 Kurgan, KZ 53.7 65.6 1.5 1.0 1.0 

13 Luhans'k, RU 48.7 40.4 0.7 1.0 0.6 38 Barnaul_1, RU 53.7 79.4 1.5 1.6 1.9 

14 Volgograd, RU 48.7 44.8 -0.1 -0.1 -0.9 39 Kokshetau 4, KZ 54.0 69.0 1.1 1.8 1.9 

15 Kirovohrad, UA 48.7 31.8 1.8 1.0 2.2 40 Kostanay 3, KZ 54.0 64.0 1.3 0.9 0.7 

16 Kharkiv 2, UA 49.0 36.2 1.8 2.2 2.6 41 Petropavlovsk 2, KZ 54.4 70.8 1.5 2.3 2.4 

17 Khmel'nyts'kyz, UA 49.0 26.8 3.9 4.3 4.4 42 Petropavlovsk 3, KZ 54.4 67.4 1.1 1.4 1.6 

18 Vinnytsya, UA 49.0 28.9 2.3 3.1 5.8 43 Kuybyskev 1, RU 54.4 50.8 2.8 3.0 2.8 

19 Poltava, UA 49.6 35.1 1.3 2.7 3.0 44 Ryazan, RU 54.4 39.3 2.5 2.8 3.0 

20 Kharkiv 1, UA 49.9 37.0 0.0 0.8 1.1 45 Petropavlovsk 1, KZ 54.7 69.5 1.5 1.7 1.8 

21 Saratov 1, RU 50.8 46.9 0.1 -0.3 -0.7 46 Omsk 1, RU 54.7 72.9 1.3 1.9 2.2 

22 Sumy, UA 50.8 34.1 -0.8 0.6 1.2 47 Omsk 2, RU 55.0 74.5 0.3 1.8 2.0 

23 Semipalatinsk, RU 51.4 81.7 0.6 0.8 1.4 48 Cheboksary, RU 55.7 47.1 3.0 3.0 5.1 

24 Voronezh, RU 51.4 39.8 2.9 3.2 3.7 49 Kazan', RU 56.1 49.5 2.3 2.8 2.4 

25 Saratov 4, RU 51.8 45.3 1.7 2.2 2.0 50 Mari El*  56.4 48.4 -0.7 4.7 6.9 

 Max*          5.1 6.7 7.2 

 Min*          -0.8 -0.1 -0.9 

 Average*          2.7 2.9 3.1 

*excludes Saratov 1 and Mari El 
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CHAPTER 5 : Land Surface Phenology and Seasonality Using Cool 

Earthlight in Croplands of Eastern Africa 

 

Paper #4 

Alemu, W.G.; Henebry, G.M.; Senay G.B. Land Surface Phenology and Seasonality 

Using Cool Earthlight in Croplands of Eastern Africa. To be submitted in February, 2017 

 

Research Question: Is it possible to characterize cropland dynamics in tropical eastern 

Africa using the blended AMSR-E/AMSR2 passive microwave dataset?  

Research Answer: Yes,  

• Croplands in eastern Africa displayed distinct spatio-temporal dynamics tracked 

in moisture time (CVD) rather than in thermal time (AGDD). 

• The passive microwave blended AMSR dataset was revealed effects of the El 

Niño/Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) climate 

modes on croplands in eastern Africa 

• Linkages to crop production statistics were uncertain, due to significant 

discrepancies between data officially reported to FAO and the interannual 

variability of growing season conditions.  

• More reliable crop production and yield data, perhaps available at lower 

administrative levels  or independent sources are needed to verify these linkages.  
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5.0 Abstract 

Across eastern Africa, croplands cover 45 million ha. The traditional rain-fed 

agriculture in the region is moisture limited, which is vulnerable to extreme weather 

events that leads to food insecurity. Weather station data are scarce and access is limited, 

while optical satellite data are obscured by heavy clouds limiting their value to study 

cropland dynamics. Here, we characterized cropland dynamics in eastern Africa for 

2003-2015 using precipitation data from Tropical Rainfall Measuring Mission (TRMM) 

and a passive microwave dataset of land surface variables that blends data from the 

Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System 

(AMSR-E) from 2002-2011 with data from AMSR2 from 2012-2015 with a Chinese 

microwave radiometer to fill the gap.  These time series were analyzed in terms of either 

cumulative precipitable water vapor-days (CVD) rather than as day of year. Time series 

of the land surface variables displayed unimodal seasonality at study sites in Ethiopia and 

South Sudan, in contrast to bimodality at sites in Tanzania. Interannual moisture 

variability was at its highest at the beginning of the growing season affecting planting 

times of crops, while it was lowest at time of peak moisture. Actual evapotranspiration 

(ETa) from the simple surface energy balance (SSEB) model was sensitive to track both 

unimodal and bimodal rainfall patterns. ETa as a function of cumulative ETa days 

(CETaD) was fitted  by a convex quadratic model (r2>0.8) better than precipitable water 

vapor (r2>0.6). Moisture time to peak (MTP) for the land surface variables showed strong 

and logical correspondence among variables (all r2>0.73). Land surface parameters 

responded to El Niño-Southern Oscillation and the Indian Ocean Dipole forcings. Area 
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under curve of the diel difference in vegetation optical depth) showed strong 

correspondence to crop production and yield data at the woreda (or district) level.    

5.1 Introduction 

Across eastern Africa, croplands cover 45 million ha. Ethiopia (ET) and Tanzania 

(TZ) are the two major crop producing countries in the region, accounting for 14 million 

ha and 13 million ha of croplands, respectively. The African economy is heavily 

dependent on smallholder traditional rain-fed peasant agriculture (up to 90% in East 

Africa), which is vulnerable to extreme weather events such as drought and floods 

(Adhikari et al., 2015; Becker-Reshef et al., 2010; Brown et al., 2010). Food crops 

mainly produced in the region include maize, sorghum, wheat, barley, millet, rice, teff 

(produced only in Ethiopia), beans and peas (Dixon et al., 2001). Farming systems in 

Ethiopia are mainly highland temperate mixed and maize mixed, while in Tanzania it is 

mainly maize mixed, and in South Sudan cereal-root crop mixed (Dixon et al., 2001). The 

highland temperate mixed farming system produces small grains, such as wheat, barley, 

teff, and livestock. The maize mixed farming system mainly produces maize and 

livestock. In the cereal-root crop mixed farming system, production is based on cereals 

(e.g., maize, sorghum, millet), vegetables, and animal products. Moreover, sluggish 

economic development in the region has been unable to feed the fast growing population, 

leading to chronic risk of regional food insecurity (Funk et al., 2008; Korotayev & 

Zinkina, 2015).  
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In Ethiopia, there is a minor rainy season in March called belg, while the main 

rainy season falls between June and September, known as kiremt). Tanzania experiences 

a short rainy season between October and December and longer rains between March and 

May; while in South Sudan, the rainy season spans May to October. Regional rainfall 

trends have been decreasing but they are highly variable in space and time (Lyon & 

DeWitt, 2012). Thus, the region has been one of the most food insecure parts of the 

world. A study in western Africa found that the timing and length of the sowing period 

depend on the arrival of rains and soil moisture (Brown & de Beurs, 2008). During the 

past century, shortage of rainfall in Ethiopia led to recurrent drought, which has resulted 

in substantial shortfalls in agricultural production and recurrent famine (Rientjes et al., 

2013). However, highland regions get excess rainfall concentrated into the few months of 

their rainy season, which leads to flooding and soil erosion that, in turn, deplete soil 

nutrients and reduce crop productivity.  

To address issues of food insecurity, we need a comprehensive understanding of 

cropland dynamics for major commodity crops. Land surface dynamics in tropical eastern 

Africa are less well characterized than those in the major crop growing regions of 

developed nations. We used our previous experience using passive microwave data to 

track temperate cropland dynamics in the spring wheat belts of the Northern Hemisphere 

(Alemu & Henebry, 2013, 2016, 2017) as reference areas to contrast with the cropland 

dynamics of tropical East Africa.  
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Many studies have used vegetation indices (VIs) derived from visible and near 

infrared (VNIR) sensors to study land surface phenology (LSP) in terms of day of year 

(Ganguly et al., 2010; Sakamoto et al., 2006; Zhang et al., 2004), but far fewer using 

thermal time (Alemu & Henebry, 2013, 2016, 2017; de Beurs & Henebry, 2004; 

Henebry, 2013; Henebry & de Beurs, 2013). However, tropical croplands generally do 

not have temperature constraints; rather, they are strongly dependent on rainfall and 

moisture for crop growth and development. In addition, the skies over eastern Africa are 

obscured by heavy seasonal clouds and dust contamination, limiting intensive 

observation of the vegetated land surface by VNIR sensors as well as reducing insolation 

and surface air temperature. To characterize cropland dynamics in eastern Africa, 

specifically in Ethiopia, Tanzania, and the new nation of South Sudan, we used rainfall 

data from TRMM (Tropical Rainfall Measuring Mission) and a blended dataset (Du et 

al., 2014) of enhanced land surface variables from the passive microwave radiometers 

AMSR-E (Advanced Microwave Scanning Radiometer on EOS) and AMSR2 (hereafter 

simply AMSR). These variables were characterized in terms of cumulative precipitable 

water vapor days, which is a continuous field in space and time, in contrast to rainfall. 

These products are critical in regions where meteorological stations are sparse and high 

quality rainfall measurements are missing or unavailable (Bolten & Crow, 2012; Bolten 

et al., 2010), such as eastern Africa. The finer temporal resolution of passive microwave 

datasets is also another significant advantage to monitor cropland dynamics, given the 

rapid pace of plant growth and development. The major drawback of passive microwave 
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datasets is their coarse spatial resolution (25 km) relative to the region’s small field sizes 

and fragmented croplands. 

5.2 Study Region, Data, and Methodology 

5.2.1 Study Region 

Across eastern Africa, croplands cover 45 million ha. Our study focuses on 

croplands in the two major crop producing countries in the region, Ethiopia (ET) and 

Tanzania (TZ), and in the new nation of South Sudan (SS). Ethiopia and Tanzania 

contain 14 million ha and 13 million ha of croplands, respectively. South Sudan, 

however, remains a bit of a mystery; it is still too new and torn by civil war to appear in 

the FAO agricultural databases.    

Specific AMSR pixels were selected in these countries in a two-step process. We 

first developed cropland cover stability map in eastern Africa for cropland class (12) 

from the International Geosphere Biosphere Program (IGBP) land cover scheme using 

the MODIS fractional land cover layer in MCD12C1 for 2003-2012. We calculated the 

maximum, minimum, and mean land cover percentage over the study period and then 

displayed the maximum, mean, and range in the red, green, and blue color planes, 

respectively (Henebry et al., 2013). Thus, yellow shows temporally stable core areas of 

the cropland class; white shows temporally unstable core areas; magenta displays 

unstable peripheral areas; and black shows where the croplands class did not occur 2003-

2012 (figure 5-1, table 5-1). The MODIS land cover product could not resolve finely 

fragmented croplands in the study region and, therefore, while we used the MODIS data 

as general guidance, we used the finer resolution imagery available in Google Earth 
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Image to select and check visually our study sites. We have identified 100 study AMSR 

cropland pixels, 14 in Tanzania, 6 in South Sudan and 80 in Ethiopia (figure 5-1).     

Figure 5-1. Cropland class stability map in East Africa for 2003–2012. Yellow shows 

stable core cropland areas; white displays unstable core areas; magenta displays unstable 
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peripheral areas; and black shows where croplands do not occur in the study period. 

Superimposed are 100 AMSR pixels (red dots) selected on dominant cropland areas. 

Pixels are numbered from S to N and then from W to E (all numbers are not labeled due 

to space limitations).  

Table 5-1. Interpretive legend for Figures 5-1 that display IGBP MODIS 0.05o land 

cover variation from 2003-2012 in the study region. Modified from (Henebry et al., 2013) 

We subset the Landsat 7 ETM+ 30m resolution Global Land Cover data layer 

(tree cover, bare ground, and waterbodies; USGS, 2016) by each study AMSR pixels and 

calculate the proportions of these land cover within each AMSR pixel. The tree cover and 

bare ground were raster layers with proportion of these covers per pixel (1-100%) in 

2010, while the water layer was a thematic layer where the ground was persistently water 

from 2000-2012. The tree cover and bare ground that were within the AMSR study pixels 

were averaged separately. Proportion of waterbodies within the AMSR pixel were also 

calculated. Thus, a given AMSR pixel can have proportional tree cover, bare ground, 

Color in  

LC Map 

Red =  

Max% LC 

Green =  

Mean% LC 

Blue =  

Range% LC 

 

Interpretation 

Black None None  None Land cover (LC) class absent   

Blues Low Low High Temporally unstable but ephemeral 

periphery; rare and erratic  

Magentas High Low High Temporally unstable but persistent 

periphery; sometimes high, but 

usually low 

Whites High High High Temporally unstable core; sometimes 

low, but usually high 

Yellows High High Low Temporally stable core of LC; always 

high, so range is low 
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water, and other residual land covers. Any residual percentage land cover could be 

croplands, shrubs, and other land covers. In our case, since we purposely selected 

cropland dominated AMSR pixels for this study, residual land covers should be mainly 

croplands, but at some of these locations there could be a mixture of grasslands and 

shrublands. Among our study pixels, there are two sites (92 and 98) that have a 

considerable proportion of waterbody, 25% and 30%, respectively (figure 5-2). These 

sites are located near Lake Tana, the biggest lake in Ethiopia. There are some other sites 

with up to 30% of tree cover and bare ground combined.  
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Figure 5-2. Percent tree cover, bare ground, and waterbody from the Landsat ETM+ 30m resolution Global Land 

Cover product. Data from (USGS, 2016).  
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5.2.2 Remote Sensing Data 

Here, we have primarily used variables retrieved from the passive 

microwave data of AMSR-E and AMSR2. The AMSR-E was launched onboard 

the NASA-EOS Aqua satellite in May 2002 and operated successfully for more 

than 9 years before it stopped properly functioning in October 2011, due to failure 

of the rotational antenna spin mechanism. Its measurement legacy has been 

effectively continued since May 2012 by AMSR2, which is the improved version 

of AMSR-E, but with similar functionality. AMSR2 is onboard the Japan 

Aerospace Exploration Agency (JAXA) Global Change Observation Mission 1st-

Water (GCOM-W1) “SHIZUKU” satellite. We used the blended AMSR-

E/AMSR2 dataset developed by the Numerical Terradynamic Simulation Group 

(NTSG) at the University of Montana (Du et al., 2014). The NTSG filled the gap 

between the AMSR-E and AMSR2 sensors using brightness temperature 

observations from the Microwave Radiation Imager (MWRI) onboard the Chinese 

FengYun 3B (FY3B) satellite that was launched in November 2010 (Du et al., 

2014). The AMSRs record observations twice daily (daytime  ̴ 1330 and nighttime 

 ̴ 0130). The gridded data products have a spatial resolution of 25 km. The NTSG 

blended AMSR dataset includes up to twice daily observations from June 2002 to 

December 2015 of surface air temperatures (ta; ̴ 2 m height), fractional open water 

inundation (fw), vegetation canopy transmittance (tc) at 10.65 GHz, volumetric 

soil moisture (vsm; ≤ 2 cm soil depth), and atmosphere precipitable water vapor 

(V) for the total column (Du et al., 2014; Jones & Kimball, 2011). The data set 

will continue to be extended as long as the AMSR2 continues to produce data 

(J.S. Kimball, personal communication).  
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The second dataset used in this study is rainfall data from TRMM, which 

combines active and passive microwave sensors. A joint US-Japan space mission, 

TRMM was launched in November 1997 to monitor and study tropical rainfall 

(50o N – 50o S latitude), and officially concluded on April 15, 2015. Its 

measurement legacy is continued by the Global Precipitation Measurement 

(GPM) mission that was launched on February 2014. The TRMM Multi-satellite 

Precipitation Analysis (TMPA) version 7 (TRMM 3B42 (V7)) is a 3-hourly 

temporal resolution and a 0.25-degree by 0.25-degree spatial resolution rainfall 

dataset developed by NASA. It provides TRMM-adjusted gridded rainfall rate 

(mm/hr) data from multiple satellite independent precipitation estimates (TRMM, 

2011b). Here, we have used the daily accumulated rainfall product that is derived 

from the 3-hourly product (TRMM 3B42 (V7)-daily; TRMM, 2011a).   

We also used actual evapotranspiration (ETa) data estimated from the 

simple surface energy balance model (SSEB, Senay et al., 2007; Senay et al., 

2013). These data have 1 km spatial resolution and 10 day (dekadal) temporal 

resolution. The datasets used as input for the SSEB model include (1) MODIS 

Land Surface Temperature (MOD11A2), (2) MODIS 16-day NDVI product at 

250-m resolution (MOD13Q1), and (3) global 1-degree reference 

evapotranspiration (ETo) based on NOAA’s 6-hourly Global Data Assimilation 

Systems (GDAS) model output.  

We chose AMSR pixels dominated by croplands. We used the 30 m 

Global Land Cover data developed by USGS and the University of Maryland, 

Department of Geographical Sciences (USGS, 2016). It includes land cover 
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classes derived from Landsat 7 ETM+ data: tree cover (ca. 2010), open water (as 

persistent surface water layer 2000-2012) and bare ground (ca. 2010) (USGS, 

2016). We used these data to calculate the proportions of these classes within our 

study sites.   

For specific cropland study area identification, we mainly used two 

datasets: the International Geosphere Biosphere Programme (IGBP) global land 

cover classification scheme in the MODIS land cover product at spatial resolution 

of 0.05o (MCD12C1; DAAC-LP, 2014), and the USDA Foreign agriculture 

service (FAS) crop layers (USDA-FAS, 2015a). Since the croplands are 

fragmented across the study region, we also used finer spatial resolution imagery 

available through Google Earth for a close visual check to select the specific 

cropland sites. 

5.2.3 Methods  

We analyzed 14 full years (2003–2015) of twice-daily AMSR data. We 

applied an 8-day retrospective moving average filter to daytime and nighttime 

AMSR data separately to minimize data gaps due to orbit and swath width. We 

then averaged the daytime and nighttime values for all variables except surface air 

temperature (ta) to get one value per 24 hours. The ta time series were processed 

into growing degree-days (GDD), the daily thermal-time increment above a 

certain threshold (base temperature) for plant growth (de Beurs & Henebry, 2004; 

McMaster & Wilhelm, 1997; Sarma et al., 2008). GDD were calculated from the 

AMSR air temperature (ta) data with a base temperature of 0 °C (=273.15 K) as 

follows:  
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GDD = max[
�	
����*


�
− 273.15,  0]                     [1] 

where tASC and tDES are ascending and descending pass temperatures, which 

roughly corresponds to the maximum and minimum daily temperatures. 

We previously modeled the seasonal course of NDVI in temperate 

croplands as a convex quadratic function of accumulated growing degree-days 

(Alemu & Henebry, 2013, 2016, 2017). However, for the moisture limited 

croplands of tropical eastern Africa, this approach is not appropriate: temperature 

is not the key limiting factor in the timing and progress of crop growth.  

To illustrate the differential seasonality of croplands, Figure 5-3 displays 

growing degree-days (GDD) and precipitable water vapor (V) at two cropland 

sites, one in Zegie, Ethiopia and the other in Saratov, Russia, showing the quasi-

periodic behavior of GDD      versus V in both croplands. At the tropical site, a 

larger dynamic range of V and smaller dynamic range of GDD within the year is 

evident compared to the temperate site (figure 5-3). This pattern reflects that 

moisture is the key limiting factor in the tropical croplands, and temperature is 

limiting in the temperate croplands. Brown & de Beurs (2008) successfully 

applied a convex quadratic model in western Africa croplands to characterize 

cropland NDVI as a function of accumulated relative humidity.  
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Figure 5-3. Scatterplot of 30-day retrospective moving average of mean AMSR-E 

atmospheric water vapor (V) as a function of average growing degree-days 

(GDD) for Zegie, Ethiopia (maroon circles), and Saratov, Russia (blue diamonds) 

for 2003 to 2010. Blue arrows indicate initial points in January, while magenta 

arrows indicate end points of the annual cycle in December.  Red arrows show 

intra-annual cycles of V for Zegie, ET and cyan arrows for Saratov, RU. Note the 

relative dynamical range of the variables.  

Rainfall in eastern Africa is erratic and sporadic. In contrast, precipitable 

water vapor (V), is a continuous spatiotemporal field. Thus, we analyzed the time 

series of biophysical and climatic variables as a function of precipitable water 

vapor. Cumulative water vapor days (CVD) are the simple summation of AMSR 

V throughout the whole year. That is, the passage of days is weighted by the 

quantity of V occurring that day:  

CVDt = CVDt-1 + Vt                       [2] 

where Vt is daily precipitable water vapor at time t.     



183 

 

  Vegetation Optical Depth (VOD) was calculated as a negative logarithm 

of vegetation transmittance [VOD = -loge(tc) = -ln(tc)]. From a daily TRMM 

rainfall data, we calculated 8-day retrospective cumulative rainfall for our study.  

The actual evapotranspiration (ETa) estimates were a retrospective 

summation for every 10 days (dekad). To match the time scale, we produced 

comparable AMSR and TRMM dekadal datasets by summing the daily data. We 

compare the ETa data with the AMSR and TRMM datasets. We have cumulative 

annual ETa and V data (designated as CETaDd [Cumulative ETa Dekad] and 

CVDd [Cumulative V Dekad]) to characterize all our study variables as a function 

of CETaDd and CVDd:   

CETaDdt = CETaDdt-1 + ETat                          [3] 

CVDdt = CVDdt-1 + Vt                      [4] 

where ETa is dekadal actual evapotranspiration, and Vt is dekadal atmospheric 

precipitable water vapor at time t.    

To characterize the seasonal progression of moisture, we fitted the ETa 

from SSEB model product and V from AMSR as a convex quadratic (CxQ) 

functions of CETaDd and CVDd, respectively:  

ETat = α + βCETaDdt - γCETaDdt
2                                   [5] 

Vt = α + βCVDdt - γCVDdt
2                                              [6] 

where the intercept α is the start of observation period ETa/V value, the linear 

parameter β affects the slope, and the quadratic parameter γ controls the 
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curvature. Since our model is convex quadratic in shape, the sign of β is positive 

while the sign of γ is negative.  

At sites with two rainfall seasons, the ETa and V time series display 

bimodal patterns. At these sites, we fitted two separate CxQ models, one for each 

rainfall season. From the observed data, the breakpoints for these two rainfall 

seasons were more or less similar in time and space, but different between the 

northern and southern hemispheres. Therefore, for the CxQ model fit, we divided 

the observations into two growing season phases. The first phase for Ethiopia and 

South Sudan ran from DOY 001 – 201 (January 1st - July 20th) and the second 

phase ran from DOY 202-365 (July 21st - December 31st). In Tanzania, the phases 

ran from DOY 182-052 (July 1st – February 21st) and DOY 053-181 (February 

22nd – June 30th).       

We modeled characteristics of each biophysical and climatic variable in 

terms of cumulative moisture time. We determined Peak Height (PH) of each 

variable using the seasonal maxima, and the corresponding moisture time to peak 

(MTP) measured in CVDs. We also calculated the PH lag time between 

biophysical and climatic variables.   
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5.3 Results  

5.3.1 Land Surface Seasonalities of Precipitable Water Vapor   

Precipitable water vapor (V) in the northwestern and central parts of the 

croplands in the Ethiopian highlands displayed weak unimodal seasonality and 

stronger intra-seasonal variation (figure 5-4). Croplands in the drier lowlands of 

northern South Sudan experienced strong unimodal V seasonality and minimal 

intra-seasonal variation. Croplands in Tanzania showed clear bimodal V 

seasonality as well as strong intra-seasonal variation.   

 

Figure 5-4. V time series graphs for ET (a, 

site #60), TZ (b, #6), and SS (c, #85) for 2003 

– 2015. Note differences in scaling of axes. 

 

5.3.2 Land Surface Seasonality and Phenology of AMSR Land Parameters & 

TRMM Rainfall 

AMSR land surface parameters and TRMM rainfall time series displayed 

a unimodal seasonality in Ethiopia and South Sudan, while there is clear 

bimodality for sites in Tanzania. In Ethiopia, there is a minor rainy season in 

b a 

c 
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March called belg, while the main rainy season, locally known as kiremt, falls 

between June and September. Study sites in Tanzania experience a short rainy 

season between October and December and longer rains between March and May.  

In the drier lowlands of South Sudan, there was high intra-annual dynamic 

range of V and soil moisture (vsm) and higher magnitude of V and GDD (figure 

5-5b, #78) compared to the highlands of Ethiopia (figure 5-5a, #73) or Tanzania 

(figure 5-5c, #14). Rainfall and VOD had higher magnitude in the humid 

highlands of Ethiopia followed by Tanzania. In Ethiopia vsm rose as the rainy 

season starts, and sharply dropped as VOD increased due to soil moisture 

drawdown by growing vegetation, and finally bounced back as the canopy 

senesced.  

GDD dropped during the rainfall and active vegetation growing season, 

despite the overhead sun during this time of the year. First, the rainfall season in 

this part of the world is characterized by a heavy cloud deck that reflects back 

much of the insolation, thereby reducing the amount of light available at the 

surface for plant growth (Dagg et al., 1970; Woodhead, 1966, 1967). Second, 

evapotranspiration from actively growing crops cools down the surrounding air 

(evaporative cooling) (lower Bowen Ratio;  Alemu & Henebry, 2016).  
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The behavior of VOD as a function of CVD exhibited distinctive land 

surface phenology trajectories. During the growing season, VODs rapidly 

ascended to a unimodal peak value and declined gradually. The pace of fractional 

green vegetation cover development was quicker than during its disappearance 

(figure 5-6). The diel difference in the VOD (VODdd = VODDSC – VODASC) was 

highest during the rainy season due to high evapotranspiration in daytime by 

actively growing crop vegetation. 

Figure 5-5. Line graphs and bars of multiyear average (2003-2015) of AMSR V, 

GDD, vsm, fw and VOD (10.65GHZ) with TRMM rainfall (Rf) as a function of 

cumulative vapor days (CVD) for an AMSR pixel at sites in Ethiopia (a, #73), 

South Sudan (b, #78) and Tanzania (c, #14). Note axes scaling differs.  

a b 

c 
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Figure 5-6. Average GDD, 

vsm, and (VODdd) VOD diel 

difference (#93, Ethiopia) time 

series graphs for 2003 - 2015. 

Purple indicates VODdd, while 

legend for others is similar to 

figure 5-5.     

5.3.3 Land Surface Seasonality of Soil Moisture  

Interannual moisture variability was at its highest at the beginning of the 

growing season affecting planting times of crops, while it was at its lowest at the 

time of peak moisture. Variability was higher for South Sudan sites (figure 5-7c, 

#91) followed by Tanzania (figure 5-7b, #5), while it was lower for Ethiopia 

(figure 5-7a, #35).  

 

 

 

 

 

 

 

 

 

Figure 5-7. Average (2003 – 2015) vsm superimposed with its interannual CV 

(%) and standard error bars for site #35 (a, Ethiopia), #5 (b, South Sudan), & #91 

(c, Tanzania). Note axes scaling differs.  
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vsm CV 
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5.3.4 Land Surface Seasonality of Actual Evapotranspiration 

 

Actual evapotranspiration (ETa) from the simple surface energy balance 

model closely tracked the rainfall pattern in time and space. ETa was very 

sensitive to track both the unimodal and bimodal rainfall patterns (figure 5-8). 

ETa increased while there was sufficient soil moisture for evapotranspiration 

demand and reached its peak slightly later than the peak rainfall period (~ two 

weeks; table 5-2). The ETa from the active growing vegetation and the wet 

ground in the rainfall season cooled down the surrounding surface air 

(evaporative cooling) resulting in lower GDD. The relationship among these land 

surface and atmospheric variables held true for both the unimodal and bimodal 

growing season dynamics. ETa was higher at lowland cropland sites that received 

enough moisture for evapotranspiration demand.   

 Figure 5-8. Time series of MODIS rainfall, SSEB ETa, and AMSR GDD and 

VOD for (a) #87, Ethiopia and (b) #14, Tanzania for 2003–2015. Note 

relationships among variables.  

The CxQ model fits for ETa and V for sites with unimodal growing season 

were strong (figure 5-9a&b). The CxQ fits of ETa and V at sites with bimodal 

growing seasons were fitted with two separate models, one for each growing 

a b 
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season (figure 5-9c&d). These fits were generally strong, but the fits of the second 

(main) growing season were better (r2>0.8) than the first growing season (r2>0.6). 

ETa fits were better than the V fits. ETa displayed sharp seasonal dynamics, being 

more responsive to rainfall and soil and vegetation moisture compared to V.   

Figure 5-9. Convex quadratic model fit of average ETa (unimodal [a, r2=0.97] 

and bimodal [c, r2=0.93&0.96]) and V (unimodal [b, r2=0.79] and bimodal [d, 

r2=0.63&0.38]) growing season for 2003-2015. Blue bars are rainfall (rf) graphs 

for the same period. (a&b) are for site #48, Ethiopia, while (c&d) are for site #14, 

Tanzania. Note the relative dynamics of ETa and V in relation to rf; and also axis 

value differences for the given variables by site.  

 

 

a 

c 

b 

d 
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5.3.5 Seasonal Peak and Moisture Time to Peak (MTP) for Land Surface 

Phenologies and Seasonalities 

Moisture time to peak (MTP) for LSPs and LSSs showed strong correspondence 

between and among land surface parameters derived from AMSR, rainfall from 

TRMM, and ETa from SSEB with r2>0.73 for most variables in the Ethiopian 

study sites (figure 5-10). Furthermore, lags between variables were logical. For 

example, MTP rainfall lagged MTP precipitable water vapor by about five weeks, 

since the precipitable water vapor has to pass through the process of condensation 

(figure 5-10; table 5-2). MTP volumetric soil moisture leads MTP rainfall due to 

earlier achievement of wetting and saturation period of the soil ahead of peak 

rainfall period. In addition, soil moisture was drawn down by actively growing 

crop vegetation, decreasing the soil moisture. The soil moisture saturation period 

depends, in part, on soil texture and type, land cover type, and land use. MTP 

VOD lags the MTP rainfall and volumetric soil moisture by about seven and 

eleven weeks, respectively. In Ethiopia VOD attained its peak in mid-October, 

while rainfall peaks in mid-August. The MTP for some variables occurred about 

the same time, e.g., MTP VOD diel difference & MTT GDD (Moisture Time to 

Trough, which is the CVD to the seasonal lowest GDD). GDD dropped to its 

lowest point due to evaporative cooling from the growing crop. There was no 

relationships of MTP among variables in the South Sudan sites due to few data 

points and different land covers of cropland and crop-natural vegetation mosaic 

sites. The same holds true for the Tanzanian sites where some sites support a 

double growing season while others support single growing season.   
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Figure 5-10. Moisture Time to Peak (MTP) or Moisture Time to Trough (MTT) for cropland land surface variables in Ethiopia for 2003 to 2015 (r2 > 0.8). The variables 
listed in the diagonal of the figure from top-left to bottom-right include moisture time to peak or trough for MTP for growing degree-days (MTP GDD), precipitable 
water vapor (V), volumetric soil moisture (vsm), fractional open water (fw), rainfall (rf), actual evapotranspiration (ETa), vegetation optical depth diel difference 
(VODdd), MTT for growing degree-day (MTT GDD), and vegetation optical depth (VOD). Note that peak rf lags peak V, peak soil moisture, and peak VOD; but 
VODdd lags peak rf. Upper panel shows the Pearson correlation coefficients. All correlations were significant with p<0.01. To identify variables combination for any 
given plot or r-value, make horizontal and vertical lines towards the diagonal line of the square matrix containing the variables.
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Table 5-2. MTP lag in weeks between each variable averaged in space and time (2003-

2015) for Ethiopian sites. Note that these lags can vary in space and time for particular 

sites.  

5.4 Discussion 

5.4.1 Climate Modes  

Primary climate variables, such as pressure, temperature, and precipitation, are 

forced in part by intrinsic dynamical modes of the climate system. These modes include 

the Arctic Oscillation (AO) and its Southern Hemisphere counterpart the Antarctic 

Oscillation (AAO), also known as the Northern and Southern Annular Mode (NAM and 

SAM, respectively), the El Niño-Southern Oscillation (ENSO), the Pacific Decadal 

Oscillation (PDO), and the Indian Ocean Dipole (IOD), among others (Behera et al., 

2005; Wang & Schimel, 2003).  

Due to these dynamic modes, climatic variability in one part of the planet can be 

teleconnected to a geographically distant part of the planet. Many observed climatic 

changes can be related to one of more of the leading modes (Wang & Schimel, 2003). 

Crop production in eastern Africa is traditional and rainfed, which therefore is susceptible 

to climatic mode anomalies, particularly to extremes of the ENSO and IOD modes.  

 

 MTPGDD MTPV MTPvsm MTPfw MTPRf MTPETa MTPVODdd MTTGDD MTPVOD 

MTPGDD  11 12 15 16 18 20 20 24 

MTPV    1 4 5 7 9 9 12 

MTPvsm  
   3 4 6 7 8 11 

MTPfw  
    1 3 4 5 8 

MTPRf  
     2 3 4 7 

MTPETa  
      2 2 5 

MTPVODdd  
       0 4 

MTTGDD  
        3 

MTPVOD          
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5.4.1.1 El Niño/Southern Oscillation and the Indian Ocean Dipole 

Rainfall over eastern Africa responds to global scale circulation patterns linked to 

conditions in both the Pacific and Indian oceans, such as the ENSO and the IOD (Behera 

et al., 2005;  Black, 2005; Nicholson, 2015; Owiti et al., 2008; Williams & Hanan, 2011). 

Rainfall in the region is influenced more by IOD than ENSO (Behera et al., 2005; Hoell 

& Funk, 2014; Hoell et al., 2016; Marchant et al., 2007; Williams & Hanan, 2011). 

Niño3, one of many complementary ENSO indices, is the sea surface temperature (SST) 

anomaly averaged over the region spanning 150°–90°W, 5°S–5°N (Meyers et al., 2007). 

El Niño events have usually produced anomalously drier conditions in eastern Africa, 

while La Niña events are associated with wetter conditions (Nicholson & Kim, 1997; 

Schreck & Semazzi, 2004; Souverijns et al., 2016). IOD is represented by an anomalous 

SST gradient between the western equatorial Indian Ocean (50E-70E and 10S-10N) and 

the southeastern equatorial Indian Ocean (90E-110E and 10S-0N; Saji et al., 1999; 

Webster et al., 1999). This gradient is named as Dipole Mode Index (DMI). When the 

DMI is positive, the phenomenon is referred to as a positive IOD, and vice versa. Positive 

IOD is associated with wetter periods in eastern Africa; whereas, negative IOD means 

drier periods (Black, 2005; Nicholson & Kim, 1997; Pervez & Henebry, 2015; Schreck & 

Semazzi, 2004; Williams & Hanan, 2011).  

Here we used the monthly time series of the Optimum Interpolation Sea Surface 

Temperature (OISST.v2) Niño3 index from NOAA National Weather Service Climate 

Prediction Center (NOAA, 2015b) to identify El Niño and La Niña events during our 

study period. To identify positive and negative Indian Ocean Dipole (IOD) phenomena, 

we used the Dipole Mode Index (DMI) time series from Japan Agency for Marine-Earth 
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Science and Technology (JAMSTEC), which is based on the Hadley Centre Sea Ice and 

Sea Surface Temperature (HadISST) dataset (JAMSTEC, 2016).   

For the ENSO analysis, we standardized the Niño3 index data using a 30-year 

(1986 – 2015) climatology to obtain the average and standard deviation (Meyers et al., 

2007; NOAA, 2015a). We then filtered the standardized data using a 5-month 

retrospective moving average (Meyers et al., 2007; figure 5-11). If the index value 

exceeded ±1 for at least two consecutive months in the rainy season, that year was 

labeled as El Niño for positive deviations or La Niña for negative deviations (Meyers et 

al., 2007). A similar approach was applied to the DMI time series with the positive (or 

negative) IOD mode indicated by the DMI remaining above 1 (or below -1) for at least 

two consecutive months in the rainy season (Meyers et al., 2007). Any given year may 

experience a positive (El Niño) or negative (La Niña) or neutral ENSO mode and a 

positive or negative or neutral IOD mode. Therefore, there were nine possible 

combinations of these events in a given year. Five of the nine possible ENSO/IOD events 

combinations were observed during the study period, and no instance of a negative IOD 

was observed (table 5-2). 

Figure 5-11. Thirty years (1986-2015) standardized anomaly five months retrospective 

smoothed time series plots of NIÑO3 (blue) and DMI (black) for 2002–2016. Pink 

horizontal lines represent ± standard deviation.  
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Table 5-3. Classification of years when El Niño or La Niña and/or positive or negative 

Indian Ocean dipole occurred.  

IOD/ENSO -ve IOD Neutral +ve IOD 

El Niño -- -- 2015 

Neutral -- 2003-2005, 2008-2009, 2013-2014 2006, 2012 

La Niña -- 2007, 2010 2011 

In 2006, a positive IOD year, brought heavy rainfall to the region (figure 5-12, 

table 5-2), resulting in major nationwide flooding in Ethiopia (DPPA, 2006; Gashaw & 

Legesse, 2011; IFRC, 2006; Jury, 2011; UN-OCHA, 2006). Moreover, the rainfall was 

concentrated in few months of the rainy season causing unprecedented flooding. The 

flood affected eight out of the country’s eleven administrative regions and led to acute 

food insecurity for at least for 10 million people (IFRC, 2006; UN-OCHA, 2006). This 

extreme event caused internal mass displacement and considerable damage to property 

and infrastructure. In addition, the floods contributed to an increased incidence of water-

borne diseases, including acute watery diarrhea (UN-OCHA, 2006).  

In 2010, a La Niña year, there was heavy rainfall and flooding in Ethiopia (IFRC, 

2010). The flooding affected nearly 1 million people across several administrative 

regions (UNCIEF, 2011). Rainfall in 2010 was above normal but distributed throughout 

the rainy season. Thus, the flooding and associated damage in Ethiopia were not as severe 

as in 2006 (IFRC, 2006, 2010). Soil moisture and fractional water were high in these 

positive IOD and La Niña years compared to the neutral years, while the VOD looked 

similar to the neutral years (figure 5-12).  

The worst drought in over 30 years occurred in 2015. It claimed human and 

animal life and devastated crop production, especially in eastern Ethiopia (FEWS-NET, 
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2016; GEOGLAM, 2016; IFPRI, 2015; UN-OCHA, 2016; UN-WFP, 2016). More than 

10 million people (~10 % of Ethiopia’s population) were in need of food assistance (UN-

OCHA, 2016; UN-WFP, 2016). This year was both an El Niño and a positive IOD year 

(figure 5-11; table 5-2). Even though the effect of El Niño and positive IOD may have 

been expected to cancel out each other (Pervez & Henebry, 2015; Williams & Hanan, 

2011), the severe drought of 2015 might be due to the three months of the El Niño event 

occurring before the positive IOD mode (in 2015 NINO3>1 occurred three months earlier 

than DMI>1; figure 5-12). In figure 5-12, soil moisture (a) and fractional water (b) in 

2015 (both represented by red dashed color) were well below the minimum boundary 

envelope of the neutral years (gray color). Since the severe drought devastated crop 

production, VOD in 2015 (figure 5-12c; red color) was well below to that of the 

minimum boundary of the neutral years. In 2016, a La Niña year, most parts of eastern 

Africa received heavy rainfall (FEWS-NET, 2016). 

Figure 5-12. Time series 

cumulative vsm (a), fw (b), and VOD (c) in central 

Ethiopia. The neutral ENSO/IOD years are 

represented by the black line, while the maxima 

and minima of this combination are represented by 

gray. The rest shows other possible combinations of 

ENSO/IOD.  

a b 

c 

v
sm

 c
m

3
/c

m
3
 



198 

 

5.4.2 Crop Production Responses to Biophysical Factors  

We gathered agricultural sample survey reports for Ethiopia for 2003 to 2014 at 

zone level (CSA, 2015a, 2015b; HarvestChoice, 2015) organized by Ethiopian Central 

Statistical Agency (CSA). The reports are for “private peasant holdings” by season of 

production organized at three levels (national, regional and zonal levels) and each level 

includes crop area, crop production and yield by crop type. More than 85% of Ethiopian 

population is a rural resident dependent mainly on small holding subsistence agriculture. 

Commercial farms in Ethiopia are few and are limited to the remote peripheral lowlands 

of the country. We also obtained woreda (district) level crop production and yield data 

for 2014 from the Amhara National Regional State Bureau of Agriculture (ANSR BoA) 

organized by the Zonal agricultural offices. 

We used the assumption that crop biomass and crop evapotranspiration are linked 

to crop production to link cropland LSP to crop production and yield statistical data in the 

region. We calculated the area under the curve (AUC) for the growing season VOD as a 

proxy for crop biomass and the AUC for the growing season VOD diel difference 

(VODdd) as a proxy for crop evapotranspiration.  We calculated separate AUCs for the 

VODs derived from the ascending and descending orbits in addition to the average VOD. 

We assessed the relationship between the growing season maximum VOD and the crop 

production data, since growing season maximum NDVI has corresponded with crop 

production data in past research (Bolton & Friedl, 2013b). Actual evapotranspiration data 

from the simplified surface energy balance (SSEB) model was used to link it with crop 

production and yield data. One way to determine the AUC cut points (points to start and 

end the integration) was by using volumetric soil moisture (vsm) dynamics. The vsm 
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started to rise continuously as the main rainfall season began, and then started to drop as 

moisture was drawn down by growing crops. The moisture started to rise again as the 

crop dried out (figure 5-13). The AUC was integrated between the cut points, and the 

crop production and yield data were linked to AUCs using simple linear regression.  

 

 

 

 

 

 

 

 

Figure 5-13. AUC of VODdd (green area under purple curve) at AMSR pixel cropland 

site in Ethiopia (Site 82). The cut points were determined based on the seasonality of 

volumetric soil moisture.   

Even though crop production statistical data lower level of aggregation and 

AMSR data spatial resolution were comparable in size, they may not necessarily overlap 

each other. Therefore, before trying to link crop production and the derived LSP and LSS 

metrics (AUC, maximum VOD, and rainfall), we normalized these variables as follows.  

Crop production:  CAs/TAA*CPs             [7] 

where CAs is cultivated area in a given administrative division at season s, TA is 

administrative division total area, and CPs is crop production at season s. This 

formulation presumes that the crop production is evenly distributed across the 
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administrative division, but while we know that agriculture is not evenly distributed, it is 

a reasonable first-order assumption given the scale differences of these data.  

LSP or LSS metric:  OA/TPA*PSM             [8] 

where OA is overlap area of AMSR pixel and administrative division, TPA is total 

sampled AMSR pixel(s) area, and PSM is the LSP or LSS metric.  

We examined crop production and yield data for the Amhara Region of Ethiopia 

at two administrative levels: woreda (smaller) and zone (larger). Some zone were also 

included from Oromia Region, Ethiopia. The woreda level data were collected by 

Amhara National Regional State Bureau of Agriculture (ANRS BoA) for 2014. These 

data were better fit (r2=0.60) by a logarithmic curve (figure 5-14a) than a line (r2=0.57; 

data not shown). This fit may be attributable to VOD saturation, exaggerated crop 

production reports, and/or spatial extent disagreement between the satellite product and 

the crop production areal unit unresolved by the normalization. Jones et al. (2011) found 

that there is little evidence of VOD signal saturation at higher biomass levels. VODdd 

AUC showed a weak but significant correspondence to crop yield data with r2 of 0.25 

(figure 5-14b). The woredas for which crop production and yield data were analyzed 

included Dejen, Enemay and Enbise Sar Midir in West Gojjam Zone, Simada and Lay 

Gaint in South Gondar Zone, Jama, Legehida, Legambo and Delanta in South Wollo 

Zone, and Wadla and Gidan in North Wollo Zone.  
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Figure 5-14. Relationships between area under VODdd curve and crop production (a) and 

yield (b) statistical data at the woreda level in the Amhara Region in northwestern 

Ethiopia for 2014. Both fits are significant at p<0.01. 

The Zone level CSA data in the highland agricultural areas of Amhara and 

Oromia Regions for 2003 to 2008 and 2010 (2009 data were not available) displayed that 

crop production was substantially increased (figure 5-15). There is weaker  evidence of 

cultivated area increase during the same period in these zones. VODdd AUC also showed 

that there is very little change during this period, except in 2010. Even though 2010 was 

flood year in some parts of Ethiopia, rainfall was distributed throughout the rainy season, 

which in turn supported good crop growth and production. North Wollo zone showed 

consistently lower crop production, cultivated area, and VODdd AUC time series:  it is 

the drier and more degraded  part of the study sites. North Wollo  is one of the more food 

insecure zones in Ethiopia. The zones in figure 5-15c were clustered into two general 

groups. The lower VODdd AUC value clusters were North Wollo, South Wollo, and East 

Gojjam, while the remaining four zones make up the higher VODdd AUC value clusters. 

The lower VODdd AUC values for North and South Wollo make sense, as these zones 

are known to be among the lowest crop producing zones among the study sites. The 

a b 
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VODdd AUC displayed weak but significant correspondence with crop production data 

at zone level in five of seven zones. Significant relationships were found in West Shewa, 

North Shewa, East Gojjam, South Wollo and North Wollo Zones with coefficients of 

determination ranging from 0.25 to 0.72. No significant relationship was found in either 

Arsi or South Gondar Zones (data not shown). The VODdd AUC also showed significant 

correspondence with rainfall data in the same five zones (0.29<r2<0.73) but not in South 

Gondar or Arsi. Maximum VOD showed a significant correspondence with crop 

production data in four of seven zones (West Shewa, East Gojjam, South Wollo, and 

North Wollo). In general, rainfall, VODdd AUC, of VOD AUC, and VODmax did not 

show noticeable increases during the study period (2003 – 2015). However, smallholder 

agricultural crop production data from the Ethiopian CSA in these zones has reportedly 

more than doubled in just eight years. Based on this governmental report, crop production 

has grown at an annual rate of 6.5%, while the population growth was 2.6% for the same 

period. Yet, a paradox arises in that millions have been food insecure every year during 

the study period, including more than 10 million in the 2015 drought year (IFPRI, 2015; 

UN-WFP, 2016).  

Uncertainties in the National statistical data are not well characterized. In 

Ethiopia, administrative offices below the federal level lack organized historical datasets, 

and access to data at these offices is difficult. However, we also acknowledge that 

uncertainties also arise in the remote sensing data due to the mixture of other land covers 

with croplands within the 625 km2 of each AMSR-E pixel, and potential biases arising 

from differences in the areal distribution of croplands within woredas that were not 

attenuated by the normalization procedures. FAO crop production data (FAO, 2013, 
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2014) for Ethiopia show a strong upward exponential trend since 2008; whereas, 

comparable data from Tanzania show only weak linear growth with high interannual 

variation (figure 5-16).  

VODmax showed strong correspondence with NDVI max (r2 > 0.8) in sites in 

northern Eurasia (Alemu & Henebry, 2017). A long-term (1988-2008) global vegetation 

biomass change study on major world biomes found correspondence between VOD and 

production of major crops (Liu et al., 2013). Passive microwave data were found to be 

relevant to study tropical cropland dynamics, but additional study is needed for these data 

to be used effectively.  

Figure 5-15. Time series graphs of 

cultivated area (a),crop production (b), 

and VODdd AUC (c) in five zones 

(SW=South Wollo, EG=East Gojjam, 

NW=North Wollo, SG=South Gondar, 

NS=North Shewa, WS=West Shewa, and 

Ar=Arsi. Note the rate of change 

difference of the crop production data particularly relative to the VODdd AUC satellite 

derived data. 

a b 

c 



204 

 

 

 

 

 

 

 

 

 

Figure 5-16. Time series graphs of national annual crop production data in Ethiopia and 

Tanzania for 1993-2015. Source: (FAO, 2013). Note the exponential growth rate of crop 

production data in Ethiopian relative to the lower linear growth rate in Tanzania.   

5.5 Conclusion and Recommendations 

The economies of east Africa are heavily dependent on traditional rain-fed 

agriculture that is vulnerable to extreme weather events, such as drought and floods. Even 

in the absence of conflict, this region has been one of the most food insecure parts of the 

world over the past three decades or more. Weather station data are scarce and difficult to 

obtain, while optical satellite data are limited by obscuring clouds. Satellite passive 

microwave data are less sensitive to clouds and atmospheric effects. Therefore, we 

explored using passive microwave data to study cropland dynamics in Ethiopia, 

Tanzania, and South Sudan. Since crop production in the region is moisture limited, 

seasonal dynamics of the microwave datasets were characterized as a function of 

cumulated precipitable water vapor, in contrast to the commonly used day-of-year or 

accumulated growing degree-days in temperate areas. 
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The microwave data were able to track cropland dynamics in time and space. Soil 

moisture was sensitive to rainfall and crop cover. It started to rise when rainfall 

commenced, and attain its peak during the peak rainfall season, then sharply dropped 

during the active vegetation growth period due to soil moisture drawdown by growing 

vegetation, and finally started to rise once the vegetation senesced. Soil moisture 

interannual variability was higher during the beginning of the growing season affecting 

planting times of croplands. Precipitable water vapor was able to capture seasonal and 

intra-seasonal atmospheric water vapor across cropland sites. It was also able to 

differentiate unimodal and bimodal growing seasons in the study region.  

Actual evapotranspiration (ETa) derived from simple surface energy balance 

model was sensitive to rainfall dynamics. ETa tracked well both the unimodal and 

bimodal rainfall dynamics in space and time compared to precipitable water vapor. Both 

the unimodal and bimodal ETa time series were fitted by the convex quadratic model 

better than that of precipitable water vapor. Moisture times to peak (MTP) showed strong 

correspondence between and among land surface variables. The lags and co-occurrences 

between and among these land surface variables occurred in logical sequences. 

Global circulation patterns and climate modes linked to the Pacific and Indian 

oceans, such as El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) 

modes affect rainfall in eastern Africa. The biophysical and geophysical variables derived 

from passive microwave data responded to ENSO and IOD events occurring during the 

study period, including major floods (2006, 2010) and an extreme drought (2015).   
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The correspondence between passive microwave land surface parameters and 

crop production and crop yield was more complicated. The spatial resolution of satellite 

passive microwave data and crop production statistical data in Ethiopia is roughly 

similar. We addressed the spatial overlay mismatch between the AMSR pixel and crop 

production area through data normalization. However, a major problem with the crop 

production data is data uncertainty and the lack of high quality, long-term data at woreda 

level. Data access is highly centralized at federal level. Crop production data from the 

Ethiopian Statistical Agency (CSA) is not well characterized, and access to data below 

the Zone level is restricted. The correspondence between the passive microwave data 

metrics and crop production data at the woreda level was encouraging, but these data 

were made available from a regional agricultural office through personal communication. 

In contrast, the correspondence between passive microwave data metrics with crop 

production data at zone level (using data from CSA) was very weak with no 

correspondence at some sites. Note that the woreda level analysis is correspondence 

across space in one year (2014), while the zone level analysis is correspondence in time 

(2003-2008 & 2010). According to the CSA, smallholder peasant agricultural crop 

production data in the study Zones in northwestern Ethiopia has reportedly more than 

doubled in just eight years. This figure strains credulity given the interannual variation in 

precipitation. However, we acknowledge that the mixture of other land covers with 

croplands within the 25 km AMSR-E pixel may contribute to the discrepancies of the 

LSP product with crop production data. While the passive microwave products are found 

to be relevant for the study of cropland dynamics, additional study is needed to 

understand how they can best be used. Access to crop production and yield statistical data 
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at village level and the synergistic use of VNIR vegetation index data might complement 

such research efforts.   
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6.1 Summary of the Research Results 

In this study, I have characterized land surface phenologies (LSPs) and land 

surface seasonalities (LSSs) in the temperate spring wheat growing regions of North 

Dakota, USA and the Canadian Prairies and the major grain production areas of Eurasia 

(Ukraine [UA], southwestern Russian [RU] and northern Kazakhstan [KZ]) and the grain 

producing areas of eastern Africa (Ethiopia, Tanzania, and South Sudan). The temperate 

study regions are important cropland sites to insure global food security, while eastern 

Africa is one of the most food insecure regions of the world. Moreover, cropland 

dynamics in eastern Africa are less well characterized. Thus I was aiming to transfer the 

knowledge and experience gained from our Eurasian studies to the croplands of eastern 

Africa.  

Many studies have used vegetation indices (VIs) and land surface temperature 

data derived from visible to near infrared (VNIR) and thermal infrared (TIR) sensors, 

respectively, to study LSP and LSS, despite the confounding effects of cloudiness, 

aerosols, and smoke, and, especially at high latitudes, solar illumination constraints. 

Passive microwave data are less sensitive to these effects resulting in finer temporal 

resolution data including nighttime acquisitions, albeit at coarse spatial resolution (25 

km). In contrast, VNIR data have finer spatial resolution at coarser temporal resolution (8 

to 16 day) due to compositing to minimize cloud effects. I selected cropland study sites 

using the MODIS land cover percentage data, the USDA Foreign Agricultural Service 

(FAS) crop maps, and Google Earth Images. From the MODIS land cover data, I 

developed cropland stability maps in the study period to select sites that were persistently 

croplands. This selection was supported by USDA FAS crop maps and visual assessment 
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of imagery in Google Earth. Cropland “sites” are in this case Advanced Microwave 

Scanning Radiometer on EOS (AMSR-E) pixels with 25 km spatial resolutions (625 

km2). In this study I have addressed four research questions that translated into four 

manuscripts of which two are now published, one is in review, and another will soon be 

in review. The key findings of the research are summarized below.  

Research Question 1. 

Can we use convex quadratic (CxQ) models of land surface phenology, which have been 

successfully used with VNIR and TIR data on herbaceous vegetation in the temperate and 

boreal regions, with AMSR-E passive microwave data products—air temperature and 

VOD—to study land surface phenology & seasonality in temperate croplands?  

The answer to this research question was partially yes. The passive microwave air 

temperature retrieved AMSR-E GDD as a function of AGDD was well fitted with a CxQ 

model in time and space with r2 > 0.90. LSP of the VODs were able to differentiate 

cropland seasonalities between the spring wheat producing sites in North America and 

the winter and spring grain producing sites in the Volga river basin of Russia. The shape 

of the VODs was not suitable to fit a CxQ model. However, the core-growing season of 

VODs were well fitted with CxQ model with r2 > 0.90.  

Research Question 2. 

Can the synergistic use of the VNIR MODIS NDVI and the passive microwave AMSR-E-

retrieved air temperature data enable characterization of cropland dynamics in the mid-

latitudes? 
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GDD from AMSR-E air temperature able to track cropland seasonal dynamics, 

including finer weekly and monthly GDD oscillations. AMSR-E air temperature and 

MODIS LST GDD as a function of their respective AGDDs were perfectly fitted with a 

CxQ model (0.88≤ r2 ≤0.98), and were able to track similar cropland dynamics. The CxQ 

model fit for the AMSR-E GDD was superior for most sites, compared to that of the 

MODIS LST derived GDD. GDD residuals resulting from the comparison of observed 

and modeled GDD were able to manifest the evaporative cooling effect from a growing 

crop vegetation during the vegetation peak greenness period.   

MODIS VIs (NDVI and EVI) as a function of AMSR-E AGDD were able to 

differentiate winter and/or spring grain producing areas latitudinal gradient in the study 

region. Middle latitude and northern study sites (>48o N) supported spring grains while 

southern sites (≤48o N) supported winter and/or spring grains. The former sites exhibit 

shorter unimodal growing season, while the latter exhibit unimodal or bimodal growing 

season. This synergistic use of the VNIR MODIS NDVI and the passive microwave 

AMSR-E AGDD was able to capture cropland sites interannual shifts between unimodal 

and bimodal growing season patterns. This synergistic analysis was also able to manifest 

the effect of regional heat waves that devastated grain production in 2007 in Ukraine and 

in 2010 in Russia and Kazakhstan. The answer for the research question is “yes” given 

the findings.  

Research Question 3. 

Can AMSR-E passive microwave derived VOD peak height (PH) phenometrics track 

cropland seasonal dynamics complementary to that of the VNIR MODIS NDVI peak 

vegetation greenness? 
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Time series of LSP of VODs at three microwave frequencies (6.925 GHz, 10.65 

GHz, and 18.7 GHz) from the passive microwave AMSR-E were able to track unimodal 

and bimodal seasonal patterns of croplands similar to the VNIR MODIS NDVI. NDVI 

was favorably fitted with CxQ model with 0.88 < r2 <0.99. Peak NDVI phenometrics 

ranged between 0.88 < r2 <0.99, while it was 0.58 – 0.84 for the VOD.   

Spatial patterns of PH VOD phenometrics favorably corresponded with that of the 

NDVI peak greenness phenometrics over the study domain with r2 > 0.77, but with a 

general temporal lag of the former by one to two weeks than the latter. A plausible 

explanation for this lag effect is that canopy water content bound in the aboveground 

biomass, which VOD senses, peaks later than canopy greenness that the NDVI senses. 

Therefore, the answer to the research question 3 is “yes”. The peak height of VOD can be 

a complementary phenological metric for peak NDVI greenness, especially in  parts of 

the world often obscured by clouds and aerosols. However, more research is needed on 

how best to use that complementarity. 

Research Question 4. 

Is it possible to characterize cropland dynamics in tropical eastern Africa using the 

blended AMSR-E/AMSR2 passive microwave dataset? 

The AMSR passive microwave blended dataset captured the distinct spatio-

temporal dynamics of eastern African croplands when tracked in moisture time (CVD) 

rather than in thermal time (AGDD) as was useful in temperate croplands. The AMSR 

land surface variables tracked cropland seasonalities similar to the independent datasets 

of TRMM rainfall and SSEB ETa, including the unimodal growing season patterns in 
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South Sudan and Ethiopia that have one strong rainfall season, as well as the bimodal 

growing seasons in Tanzania that have a distinct short and long rainy seasons.  

AMSR volumetric soil moisture was sensitive to other data variables (TRMM 

rainfall and AMSR VOD) that in the humid highland croplands of Ethiopia, it rises as the 

rainfall season starts, sharply drops (before the peak rainfall season) due to drawdown of 

soil moisture by growing vegetation as revealed by the VOD, and then bounces back 

(despite the rainfall season ends) due to crop vegetation senescence. Interannual soil 

moisture variability is at its highest at the start of the growing season affecting when 

crops are planted. The moisture times to peak (MTP) showed strong correspondences (r2 

> 0.80) among the biophysical variables and showed logical lag sequences. The answer 

for the fourth research question is “yes” given the findings. 

AMSR datasets were able to show the effects of the ENSO and IOD global 

circulation modes on eastern African croplands. The 2006 and 2010 major flood years in 

Ethiopia were associated with positive IOD and La Niña events, respectively. The 2015 

severe drought year in Ethiopia was associated with a long duration El Niño, which is 

linked to dry periods. Even though this was a positive IOD occurrence year too, the El 

Niño event occurred far ahead of the positive IOD event and, therefore, the latter state 

was unable to lessen the effect of the former event resulting in the most severe drought in 

the region in the last three decades. The drought left more than 10 million people (~10% 

of the country’s total population) in acute need of food aid. 

Land surface phenology and land surface seasonality linkages to crop production 

statistics were uncertain, due to significant discrepancies between the data officially 

reported to FAO and data reported at the local level. Thus, crop production and yield data 
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from local offices or other independent sources are needed to verify the linkages 

identified in my research.  

6.2 Recommendations and Future Directions 

The creation of long-term passive microwave dataset by combining AMSR-E 

(June 2002 - October 2011) and AMSR2 (May 2012 - present), is a great resource for 

studies on land surface phenology and seasonality.  I observed that in Ethiopia, there are 

some gaps on the AMSR data on important cropland sites that are located on a relatively 

level terrain that might be due to contamination from neighboring water bodies at certain 

times of year. More refinement of the AMSR data in this regard will enhance the 

suitability of this dataset for agricultural cropland studies, at least in the regions that I 

have studied.  

Passive microwave data, in general, need increased spatial resolution to be 

effectively used for cropland monitoring. Fields are very much smaller in area compared 

to the 625 km2 of the microwave pixels. This scaling mismatch is more prevalent in the 

tropics where croplands are very small in size, fragmented, and the surrounding terrain is 

rugged. The effort made on the NASA’s Soil Moisture Active Passive (SMAP) mission is 

a great example in this regard. The data produced from the L-band combined passive 

microwave radiometer (36km) and the active microwave radar (3 km) was to yield 

products with a spatial resolution of 9 km. Unfortunately, the radar on SMAP failed in 

the summer of 2015, but the L-band passive radiometer is still functional. The soil 

moisture data from the SMAP radiometer should work well for cropland  monitoring.  

 Although there has traditionally been little overlap between the microwave and 

VNIR communities, the time has come to explore the synergistic use of reflected sunlight 
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and emitted earthlight for potential applications in agricultural monitoring, natural 

resource management, ecosystems ecology, and Earth system science. My dissertation 

research offers a small but definite step in that direction.  
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Supplementary Figures  
Figures S1–S49. NDVI and EVI interannual variability for all the 49 study sites described in  

chapter 3 for 2003–2010. Whether due to changes in cultivation practice or to crop failures, the 

VI curves showed no, one, or two changes during the study period.    
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