189 research outputs found

    Application of Metamaterials for Multifunctional Satellite Bus Enabled via Additive Manufacturing

    Get PDF
    Space systems require materials with superior stiffness to weight ratios to provide structural integrity while minimizing mass. Additive manufacturing processes enable the design of metamaterials that exceed the performance of naturally occurring materials in addition to allowing the integration of non-structural functions. This research explored the use of a high stiffness, high density, small melt pool track width AM material, Inconel 718, to enable the production of metamaterials with finer features possible than can possibly be created using a lower density aluminum alloy material. Various metamaterials were designed utilizing thin wall triply periodic minimal surface infilled sandwich structures. The performance characteristics of these metamaterials were evaluated through modal analysis; demonstrating a 16-18% greater stiffness-to-weight ratio than 7075-T6 aluminium. These results were successfully applied to a multifunctional, lightweight, 3U CubeSat chassis design, fabricated from Inconel 718; resulting in a structurally mass efficient satellite bus. Additionally, modal analysis was conducted on the CubeSat chassis loaded with representative payload masses to evaluate the dynamic modal response of the final structure. Vibration testing was conducted in accordance with NASA General Environmental Verification Standard qualification standards, demonstrating the survivability of the chassis under launch conditions. It was shown this metamaterial based design approach could provide a lighter, stiffer chassis than manufactured from traditional aluminum alloy components

    Modelling of FG-TPMS plates

    Full text link
    Functionally graded porous plates have been validated as remarkable lightweight structures with excellent mechanical characteristics and numerous applications. With inspiration from the high strength-to-volume ratio of triply periodic minimal surface (TPMS) structures, a new model of porous plates, which is called a functionally graded TPMS (FG-TPMS) plate, is investigated in this paper. Three TPMS architectures including Primitive (P), Gyroid (G), and wrapped package-graph (IWP) with different graded functions are presented. To predict the mechanical responses, a new fitting technique based on a two-phase piece-wise function is employed to evaluate the effective moduli of TPMS structures, including elastic modulus, shear modulus, and bulk modulus. In addition, this function corresponds to the cellular structure formulation in the context of relative density. The separated phases of the function are divided by the different deformation behaviors. Furthermore, another crucial mechanical property of porous structure, i.e, Poisson's ratio, is also achieved by a similar fitting technique. To verify the mechanical characteristics of the FG-TPMS plate, the generalized displacement field is modeled by a seventh-order shear deformation theory (SeSDT) and isogeometric analysis (IGA). Numerical examples regarding static, buckling, and free vibration analyses of FG-TPMS plates are illustrated to confirm the reliability and accuracy of the proposed approach. Consequently, these FG-TPMS structures can provide much higher stiffness than the same-weight isotropic plate. The greater stiffness-to-weight ratio of these porous plates compared to the full-weight isotropic ones should be considered the most remarkable feature. Thus, these complex porous structures have numerous practical applications because of these high ratios and their fabrication ability through additive manufacturing (AM) technology.Comment: 27 pages (including references), 15 figures, 12 table

    Numerical simulations of gyroid structures under compressive loads

    Get PDF
    Numerical simulations are essential for predicting the mechanical properties of different structures like gyroids that center this study. Three different methods are explored: shell elements, solid elements, and homogenization. Results reveal that homogenization is only suitable for obtaining the properties in the elastic zone, whereas solid models can determine also the behaviors in the plateau zone and the densification point. In the case of shell elements model, it can predict the elastic behavior model and the levels of stress in the plateau zone but with a lower accuracy than the solid element, but it cannot predict the densification point

    Triply periodic minimal surface based lattices for acoustic performance

    Get PDF
    Environmental noise pollution is exacerbated by accelerated urbanization and different sources generate a unique sound spectrum. To address the aforementioned issue, triply periodic minimal surface acoustic absorbers were additively manufactured with three geometrical parameters (porosity, sample thickness, and wall thickness) patterns to absorb sound across a wide range of frequencies. TPMS absorbers made from Abs resin were manufactured using VAT polymerization additive manufacturing (SLA) technology. The acoustic properties of these absorbers were evaluated using the impedance tube technique across a frequency range of 100-6400 Hz and discussed. The four TPMS absorbers exhibit slight variations in density as a result of their distinct unit cell sizes, which are necessary to uphold constant porosity levels. This study found multiple parameters, especially the nature of the surfaces, porosity ranges, sample thicknesses, and wall thickness of the tested sound-absorbing TPMS 3D printed structure, significantly impacted the sound absorption performance. At the ideal process parameters of 80% lattice porosity, 60 mm sample thickness, and 0.8 mm wall thickness, the gyroid lattice obtained a peak sound absorption coefficient of 0.945, a noise reduction coefficient of 0.50, and an average sound absorption of 0.575. The suggested 3D-printed TPMS acoustic absorbers, inspired by nature, can be placed on construction walls or transportation applications, depending on the desired acoustic absorption range

    Behavior of 3D Printed Polymeric Triply Periodic Minimal Surface (TPMS) Cellular Structures Under Low Velocity Impact Loads

    Get PDF
    Surface-based lattice structures such as triply periodic minimal surface (TPMS) lattices are lightweight structures that are widely being investigated for applications in automotive, aerospace, military, railway, and naval structures. Due to the recent advent of three-dimensional (3D) printing (3DP) technologies, architected cellular materials such as surface- or strut-based periodic lattice cell structures have emerged as a unique class of lightweight metamaterials. These materials possess enhanced strength to weight ratio, high stiffness, exceptional capabilities in reducing noise and vibration, insulating heat, and effective impact energy absorption. Understanding the impact behavior of such materials are important so that they can be reliably employed in different applications such as helmets, armoring systems, impact absorbers, etc. The goal of this study is to replicate low-velocity impact scenarios, like that which is seen in the industry field. The main points of focus being impact response, energy absorption capability, and amount of indentation. The TMPS lattices used for this study will consist of primitive, gyroid, and diamond structures. First, the behavior of the three TPMS lattices is explored through low velocity impact loading. These results are then compared and summarized for the best performing lattice. Next, compression testing is done on a diamond TPMS lattice structure to create a homogeneous material to be used in computational modeling of impact scenario using Abaqus. The finite element modeling results are then compared with the experimental data, and further in-depth analysis of deformation history is performed

    Analytical model for the prediction of permeability of triply periodic minimal surfaces

    Get PDF
    Triply periodic minimal surfaces (TPMS) are mathematically defined cellular structures whose geometry can be quickly adapted to target desired mechanical response (structural and fluid). This has made them desirable for a wide range of bioengineering applications; especially as bioinspired materials for bone replacement. The main objective of this study was to develop a novel analytical framework which would enable calculating permeability of TPMS structures based on the desired architecture, pore size and porosity. To achieve this, computer-aided designs of three TPMS structures (Fisher-Koch S, Gyroid and Schwarz P) were generated with varying cell size and porosity levels. Computational Fluid Dynamics (CFD) was used to calculate permeability for all models under laminar flow conditions. Permeability values were then used to fit an analytical model dependent on geometry parameters only. Results showed that permeability of the three architectures increased with porosity at different rates, highlighting the importance of pore distribution and architecture. The computed values of permeability fitted well with the suggested analytical model (R2>0.99, p<0.001). In conclusion, the novel analytical framework presented in the current study enables predicting permeability values of TPMS structures based on geometrical parameters within a difference <5%. This model, which could be combined with existing structural analytical models, could open new possibilities for the smart optimisation of TPMS structures for biomedical applications where structural and fluid flow properties need to be optimised

    Design and Applications of Additive Manufacturing and 3D Printing

    Get PDF
    Additive manufacturing (AM), more commonly known as 3D printing, has grown trememdously in recent years. It has shown its potential uses in the medical, automotive, aerospace, and spare part sectors. Personal manufacturing, complex and optimized parts, short series manufacturing, and local on-demand manufacturing are just some of its current benefits. The development of new materials and equipment has opened up new application possibilities, and equipment is quicker and cheaper to use when utilizing the new materials launched by vendors and material developers. AM has become more critical for the industry but also for academics. Since AM offers more design freedom than any other manufacturing process, it provides designers with the challenge of designing better and more efficient products

    An Optimal Medium for Haptics

    Full text link
    Humans rely on multimodal perception to form representations of the world. This implies that environmental stimuli must remain consistent and predictable throughout their journey to our sensory organs. When it comes to vision, electromagnetic waves are minimally affected when passing through air or glass treated for chromatic aberrations. Similar conclusions can be drawn for hearing and acoustic waves. However, tools that propagate elastic waves to our cutaneous afferents tend to color tactual perception due to parasitic mechanical attributes such as resonances and inertia. These issues are often overlooked, despite their critical importance for haptic devices that aim to faithfully render or record tactile interactions. Here, we investigate how to optimize this mechanical transmission with sandwich structures made from rigid, lightweight carbon fiber sheets arranged around a 3D-printed lattice core. Through a comprehensive parametric evaluation, we demonstrate that this design paradigm provides superior haptic transparency. Drawing an analogy with topology optimization, our solution approaches a foreseeable technological limit. This novel medium offers a practical way to create high-fidelity haptic interfaces, opening new avenues for research on tool-mediated interactions
    corecore