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Numerical simulations of gyroid structures under compressive loads  

Numerical simulations are essential for predicting the mechanical properties of 

new materials, structures, and final products. In the case of triple periodic 

minimal surface structures, particularly gyroids, predicting the mechanical 

behaviors beyond the elastic region is difficult, especially under high strains. This 

work addresses this issue and introduces a method to predict the mechanical 

behaviors of gyroid structures using the finite element method. In addition, the 

mechanical properties of the constitutive material are determined experimentally. 

Furthermore, different methods are explored, including the use of shell elements, 

solid elements, and homogenization. Results reveal that homogenization is more 

suitable for obtaining the properties in the elastic zone, whereas solid models are 

better for determining the behaviors in the plateau zone and the densification 

point. 

Keywords: gyroid; lattice; numerical; finite elements method; compression; 

Triple periodic minimal surface.  

1. Introduction and literature review 

Triple periodic minimal surface (TPMS) structures are lightweight structures generated 

by unit cells that repeat in different directions. This unit cell is defined by a 

mathematical equation that ensures the internal surface is minimal; the surfaces are then 

thickened to generate a solid structure. Consequently, the final structure maximizes the 

mechanical properties per unit weight[1]. These structures are generated by additive 

manufacturing (AM) technologies that also use different types of materials, 

multimaterial configurations[2], graded structures[3] and products with different TPMS 

configurations depending on the zone. Hence, the possibility of customizing mechanical 

properties is infinite. 

Studies have revealed that these structures can be used as substitutes for other materials 

such as foams in energy absorption applications (including helmets, bumpers, and good 

envelopes)[4, 5] or the core of sandwich structures[6]. 

There are many different types of TPMSs, but the most common are gyroid, diamond, 

Schwarz-P, Split-P, Neovius, and lidinoid[7]. One of the most studied structures is the 

gyroid; therefore, this study focuses on this structure. These structures have been 



studied mainly under compression and using experimental tools[3–5, 8] in addition, 

TPMSs under compression have stress–strain curves similar to that of a foam, which 

was observed and described by Gibson-Ashby, who also identified three well-defined 

zones that are described subsequently. 

Although experimental methods have been extensively used to characterize TPMSs[8, 

9], other methods should also be studied to simulate these structures without 

manufacturing and testing physical prototypes. Because the TPMS stress–strain curve is 

similar to that described by Gibson-Ashby for foams[10], the Gibson-Ashby material 

models and their equations have also been used to predict the mechanical properties of 

solid materials[10]. However, some studies[11, 12] have revealed that the main 

parameters of the Gibson-Ashby equation must be obtained experimentally. 

Furthermore, the anisotropy of a TPMS as a function of its internal properties (cell size, 

thickness of the walls, volume fraction) can predict different mechanical behaviors and 

undesirable failure modes depending on the load direction[13].  

The finite element method (FEM) is another approach for simulating these structures 

and predicting the mechanical properties and stress–strain curves under compression. 

There are different approaches for simulating these structures: the simulation of the 

TPMS using its actual geometry and three-dimensional (3D) shell elements or solid 

elements[14], the voxel model[15], the super-element model[16] and the simulation of a 

unit cell and the homogenization process to obtain equivalent mechanical properties for 

use in the complete structure simulated as a solid, instead of employing the TPMS 

geometry[17]. 

Studies by various authors[17–19] have revealed that the homogenization method is 

useful for determining elastic properties with a relatively low computational cost. 

Additionally, the equivalent mechanical properties can be used in the simulation of a 

full-scale product, but only for the elastic properties. Hence, this method can be used to 

simulate a sandwich structure to predict the stiffness, but this method cannot be used to 

simulate an impact or to predict the failure or strength[20, 21]. 

In the case of voxel solids, they can also be used to simulate lattice structures owing to 

the relatively lower computational cost of solid elements and ease of meshing[21, 22], 

but there are not many investigations of TPMSs.  



Finally, super-elements have not been used[21] in TPMS simulations, although this 

topic could be interesting. 

2. Materials and methods 

2.1. Materials 

Acrylic styrene acrylonitrile (ASA) manufactured by LEON3D (Leòn, Spain) was used 

in this study. The experimental specimens were generated with fused filament 

fabrication (FFF) using a LION 2 printer from LEON3D (Leòn, Spain) with a 4 mm 

nozzle to print all the specimens with a layer height of 0.19 mm. The material supplier 

provided some technical data for the material; however, these data were insufficient, 

thus solid specimens were manufactured and tested under different conditions and 

printing orientations to analyze the influence of these parameters.  

There are many types of TPMS structures, but gyroids are the most studied 

because of their low anisotropy[13] and high-energy absorption capability per unit 

mass[4]. This structure has a similar stress–strain curve under compression as a foam 

and is consistent with the Gibson-Ashby model[10]. TPMS structures are defined by a 

mathematical equation that describes the 3D surface of a unit cell that repeats along 

different directions of the specimen. Gyroid structures are defined by Equation 1[23]:  
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where a is the cell size; x, y, and z are the coordinates; and t is a constant adjusted for 

the desired wall thickness/volume fraction. 

There are diverse ways to generate TPMS specimens, but the most common is the 

generation of the surface of a flat unit cell; afterwards, this process is repeated along 

different directions to fill the entire volume. In the next stage, the surface is thickened 

using implicit methods to obtain a solid structure. However, there are some cases that 

require maintaining the surface structure, such as in numerical simulations with shell 

elements[17, 24].  

Instead of using thickness (t), lattice structures are defined by the volume 

fraction (ρ*). ρ* is the percentage of volume of the solid material (Vstruct) inside the 

volume of the structure (Vsolid) (Equation 2), and this parameter is related to the 

measured densities of the structure (ρstruct) and solid material (ρsolid).  
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Consequently, both a and ρ*  are adjustable. In addition, the dimensions of the gyroid 

specimen to be tested experimentally must be defined. The dimensions of the specimen 

depend on those defined by the standard employed for the compression experimental 

test, load capability of the testing machine, and number of unit cells that would be 

placed inside the specimen. Additionally, the resolution of the printing machine should 

be considered to obtain a specimen that follows the theoretical shape of the gyroid 

structure. However, specimens with small unit cells imply that the edge effects 

influence the mechanical behavior of the structure[19]. Further, specimens with 

significantly small thicknesses/volume fractions cannot be printed because of the 

resolution of the printer. 

Finally, 40 mm × 40 mm × 40 mm cubic specimens with a unit cell of 10 mm and three 

volume fractions, 20%, 30%, and 40%, were selected for this study. 

The printing orientation could influence the mechanical properties of the final 

material[8, 25]; thus, cubic specimens were tested in the printing direction that would 

have higher mechanical properties[25, 26]. In the case of the specimens, the 

compression specimens were also tested in the layer direction (Z of Fig. 1), but shear 

and traction were tested under different printing directions (X and Y of Fig. 1). Printing 

machines have two main printing directions that are usually used in subsequent layers to 

create 0−90° layers, and the specimens can be reoriented to generate ±45° layers.  

 
Fig. 1. Left: typical stress–strain curve of a material that follows the Gibson-Ashby 

material behavior with the main properties; right: obtained stress–strain curve for 

acrylonitrile butadiene styrene (ABS). Table: main mechanical properties.  



2.2. Methods 

Different software can be used to generate the TPMS, such as MATLAB, MathMod, or 

nTopology. In this study, nTopology (version 3.23.3, New York, NY, USA) was used to 

generate solid structures and MathMod (version 11.0) was used for the non-thickened 

structures associated with the shell FEM mesh. Solid structures were used for numerical 

simulations using solid elements, and printed specimens were used for experimental 

testing. 

2.2.1. Experimental methods 

An 8032 Instron uniaxial testing machine (Norwood, MA, USA) with a maximum load 

capacity of 100 kN and two different load cells (10 kN and 100 kN) was used to test the 

different specimens at very low velocity to obtain a low strain rate; thus, the results 

were not influenced by the strain rate. The Instron machine recorded force and 

displacement, although a strain gauge and an extensometer were also used. 

Initially, the solid material was mechanically characterized for use in numerical tests. 

Consequently, solid material specimens were printed and tested under different pure 

loads, namely traction, compression, and shear.  

In the case involving compression, ASTM D638 was used; therefore, a diameter of 20 

mm and height cylinder of 20 mm were tested (see Fig. 1). Using the data obtained from 

the Instron machine and different dimensions, the stress–strain curve (Fig. 1) and 

mechanical properties were obtained. 

The results (Fig. 1) show that the materials were similar to those detected by Gibson-

Ashby[10] for foams with an elastic zone, a plateau, and a densification point, as well as 

the main mechanical properties. The main mechanical properties are as follows: elastic 

Young’s modulus (Ec), Young’s modulus in the plateau (Ep), maximum stress and 

strain levels in the elastic zone (σc,e and εc,e) and densification point (σc,p and εc,p), and 

average stress in the plateau zone (σp). 

In the traction test (see Fig. 2), ASTM D638 was used; therefore, bone specimens with 

the dimensions specified in the standard were used. The material was tested in two 

printing directions: 0° and 45°. An additional strain gauge from the Instron machine was 

used to obtain the strain directly. An elastic-plastic stress–strain curve with brittle 

failure and necking was observed. Different mechanical properties were observed 

depending on the printing direction: the 0° case had a higher Young’s modulus (Et), but 



failure occurred at a lower strain (εt,u); in the case of 45°, the Young’s modulus was 

lower, but failure occurred at a higher strain. For both cases, the elastic tensile strength 

(σt,e), ultimate tensile strength (σt,r), and tensile strength at failure (σt,u) were similar. 

In the case of the ASTM D 5379/D 5379M shear test, two gauges were glued in the 

middle, and external extensometry acquisition data were used. According to the 

regulation, these gauges were oriented at an angle of ±45°, but a rosette was used with 

equivalent directions (see Fig. 3). Three different printing orientations were tested, 0°, 

90°, and 45°. The results show that the elastic shear stress (τe) and shear modulus (G) 

were similar; in the case of the ultimate shear strength (τu) and ultimate shear strain 

(𝛾𝛾u), the 0° and 90° results were similar, but the values for 45° were significantly 

higher. This difference is due to the optimal configuration to support shear efforts[27]. 

Finally, the gyroid specimens were tested under compression in the layer direction. 

There are no specific standards for these structures; however, there are standards for 

other plastic materials, such as ISO 844, ASTM 3574, and ASTM D1621. These 

standards are similar but vary in terms of the recommended dimensions of specimens 

(50 mm × 100 mm × 100 mm prism for ISO 844, 50 mm × 50 mm × 25 mm prism for 

ASTM 3574, and 25.4 mm × 25.4 mm × 25.4 mm prism for ASTM D1621). Owing to 

the aforementioned limitations (such as the resolution of the printer, edge effects, and 

load capability of the Instron machine), we adopted a 40 mm × 40 mm × 40 mm cubic 

specimen. The internal acquired data of the Instron machine were used to determine the 

force–displacement and stress–strain curves; additionally, an external camera with an 

intervalometer was used to capture images of the compression test, which were then 

compared with the numerical results. 



 
Fig. 2. Left: typical stress–strain curve for an elasto-plastic material under compression 

with the main properties; right: obtained stress–strain curve for acrylonitrile butadiene 

styrene (ABS). Table: main mechanical properties. Cases: different printing directions. 

 
Fig. 3. Left: typical stress–strain curve for a material under shear with the main 

properties; Right: obtained stress–strain curve for acrylonitrile butadiene styrene (ABS). 

Table: main mechanical properties. Cases: different printing directions. 

2.2.2. Numerical methods 

Different FEM software packages can be used for numerical simulations; here, 

nTopology and Patran 2021.2 (MSC Software, Newport Beach, CA, USA) were used 



for the pre-process, especially to mesh the solid and shell structures, whereas ABAQUS 

6.21-6 (Dassault Systèmes, Vélizy-Villacoublay, France) was used for the analysis and 

post-processing.  

The main drawback of the nTopology software is that orthotropic and isotropic 

materials can only be simulated as elastic materials. Nevertheless, nTopology integrates 

a homogenization module that enables the simulation of a unit cell under different load 

cells to obtain the equivalent mechanical properties[19, 20]. Subsequently, a larger 

structure comprising many of these unit cells can be simulated, without meshing the 

actual geometry of the structure. In this case, a solid structure was meshed, and 

equivalent properties were applied. Consequently, with a relatively small number of 

elements and a low computational cost, the equivalent behavior can be obtained. 

However, this homogenization method suffers from certain limitations, mainly in that 

this method is only valid for simulating materials when they are in the elastic zone and 

that the failure of different elements cannot be predicted. Thus, in the case of a gyroid 

structure, this method is only valid for simulating the elastic zone of the stress–strain 

curve. Nevertheless, this method could be useful for simulating, for instance, a 

sandwich panel with an internal gyroid core to determine its stiffness, although the 

strength of the structure cannot be predicted. Furthermore, another primary issue is that 

the mechanical properties introduced in the program (elastic Young’s modulus and 

Poisson’s coefficient) vary across the different zones under investigation, and the elastic 

properties of the material also differ (Fig. 1, Fig. 2, and Fig. 3); in addition, the 

mechanical properties depend on the printing direction [Ec: 923 MPa; Et: 1762 (90°) to 

2500 MPa (0°); and G: 1023 (0° and 90°) to 1120 MPa (45°)]. A novel study[17, 28–

30] has revealed that previous works failed to use the mechanical properties of the solid 

material in numerical simulations; instead, these simulations employed experimental 

tests on a lattice structure and inverse engineering to determine the mechanical 

properties of the numerical model. In certain cases, previous studies have also failed to 

reveal the values used and/or their precedence[31–36]. Ruiz de Galarreta et al.[37] 

tested a single strut element under traction to determine the final mechanical properties 

of a strut lattice structure. Only Al Rifaie[38] used 3D printed solid structures to 

characterize solid materials under traction (with different printing orientations) and 

compression (in the layer direction); subsequently, the data were used in the numerical 

simulations. However, the final mechanical properties of the material in the FEM model 

were not indicated. In the case of Poisson’s coefficient, most researchers employ a value 



between 0.3 and 0.35 for acrylonitrile butadiene styrene (ABS) and polylactic acid 

(PLA)[7, 17, 29, 34, 36, 38, 39]. 

Thus, the homogenization method was simulated using a 40 mm cubic specimen (Fig. 

4), various values for the elastic Young’s modulus of the solid material (previously 

mentioned), and a Poisson’s coefficient of 0.3 with nTopology; subsequently, topologic 

optimization was adopted to obtain the optimized elastic Young’s modulus (Eo) using 

the results of the three different tested specimens. This model can be used to predict the 

elastic behavior of a material as a function of the volume fraction at a significantly low 

computational cost. However, the maximum stress in the elastic zone and, consequently, 

the zones of the stress–strain curves cannot be predicted. 

 
Fig. 4. Scheme of the homogenization process. 

Thus, Patran and ABAQUS were used to generate a model of the 40 mm cubic 

specimen with the real geometry of the gyroids (Fig. 5). Two rigid plates were created 

to simulate the boundary conditions that were initially at 0.001 mm from the top and 

bottom of the gyroid structure; one of these plates was completely clamped and the 

other could only move vertically at a constant velocity (5 mm/min). Hence, a dynamic 

case with double precision was used to reduce the possible divergences in the results. 

The material properties and internal contacts should be appropriately defined to 

simulate the structure. Further, with regard to the contact, a self-contact was used, 

including rigid walls to simulate both the contact of the internal walls of the gyroid 

during the crushing process and any part of the gyroid structure with rigid surfaces. 

These parameters include the recommended internal friction of the contact of 0.1[40]. 



Additionally, contact control for nodal erosion was included to delete a node of an 

element-based surface from the general contact domain when all the edges and contact 

faces to which it is attached have eroded[40].  

 
Fig. 5. Solid and shell meshes. 

An elastic-plastic material model was used. The elastic modulus of the elastic zone was 

determined using the value obtained during the topological optimization of the 

nTopology model. Poisson’s coefficient was 0.3, and the density (1150 kg/m3) was 

obtained by weighing the solid specimens that were previously tested. The main 

problem involved determining the different points of the plastic curve. One option could 

be to use a user material (UMAT) subroutine to define the material properties under 

traction, compression, and other complex material models. However, this option would 

render the numerical simulation excessively complex. Consequently, a plastic curve 

(*plastic) that combines artificial compression and traction was generated. These 

materials fail under traction or shear stress, mainly with a very low strain. As a result, a 

combination of the curves was created: if the strain was lower than εt,u, a traction curve 

was used, and after this point, with a transition zone and compression curve, the final 

stress–strain curve can be observed in Fig. 6.  



 
Fig. 6. Stress–strain curve introduced in the finite element method (FEM) to simulate 

the solid material. 

 

Another aspect was also to simulate failure; in this case, the internal wall of the 

structure fails mainly due to shear failure. Thus, the result in Fig. 3 (𝛾𝛾u) was used. 

However, failure in all directions, as shown in Fig. 2 (*Fail Strain), was realized using 

the mechanical properties under traction (εt,u). In the case of compression, however, the 

structures did not fail; thus, a high value was used (0.99) to avoid failure. Initially, the 

orientation of the fiber in the structure was unknown, but a 0° orientation (case 1) was 

more suitable due to manufacturing, thus 5.3% was selected.  

Initially, a quarter model was considered to reduce the numerical cost and processing 

time, but the non-symmetry of the gyroid structure rendered this option impossible. This 

aspect could be used in other TPMS structures, such as Schwarz-P and Neovius 

structures.  

Similarly, linear shell elements (S4R and S3R) with reduced integration and five 

integration points in thickness were used; these were standard large-strain shell 

elements. The dimensions of the gyroid (in relation to the thickness) and curvature of 

the surface prevented its use. However, the lower number of elements (24578) and 

nodes needed (23478) to mesh the structure and low computational cost enabled shell 

models to be used. In addition, shell models allowed the volume fraction to be easily 

changed without the necessity of re-meshing by changing only the associated thickness 

of the shell elements. 

Additionally, another solid model was developed for comparison with the shell models 

and experimental results. In this case, a completely different mesh was generated for 



each volume fraction. Furthermore, to adequately simulate walls under shear[40, 41], 

the mesh should have at least four elements in the thickness direction. In addition, 

elements should not be significantly distorted initially, especially if they would suffer 

high deformation; therefore, a mesh with a high number of nodes (around 920000) and 

elements (around 750000) was required. These requirements imply a high 

computational cost. A general-purpose brick element (C3D8R) with reduced integration 

was selected to increase the computational efficiency[40]. Additionally, a new mesh 

was generated for each volume fraction, which implies a higher meshing cost. 

3. Results and discussion 

Analysis of the results shows that the studied structures follow the Gibson-

Ashby prediction for foams; consequently, a higher volume fraction was associated with 

higher levels of stress and Young’s modulus, but also a lower strain at the densification 

point.  

3.1. Homogenization analysis 

A comparative analysis of the Young’s modulus of the 40 mm cubic gyroid 

specimen obtained experimentally and numerically using the homogenization process is 

shown in Table 1. Five different Young’s moduli of the constitutive material were 

obtained from different experimental tests for three different volume fractions (between 

923 and 2500 MPa), and the main conclusion is that while none of the materials offers a 

sufficiently low deviation for all the volume fractions, the equivalent Young’s modulus 

must be in this range of values. As a result, topological optimization was carried out to 

determine this parameter while minimizing the error; 1560 MPa was the optimal value.  

 



 
Table 1: Numerical results of the elastic Young’s modulus obtained using the 

homogenization process and experiments. 

This value was subsequently used for numerical simulations using shell and 

solid elements. In Table 2, weights of the different models and small deviations for all 

models are shown. The theoretical weight calculated using the density of the solid 

material provided by the manufacturer was usually higher than that obtained using AM. 

 
Table 2: Final weight of the different finite element method (FEM) models, 

theoretical models, and those obtained with computer-aided design (CAD) tools. 

3.2. Shell element analysis 

The results show (see Table 1 and Fig. 7) that the shell model had a higher 

stiffness in the elastic zone than the experimental model for all volume fractions. 

Additionally, densification occurred with higher deformation (higher displacement). 

This densification is because of the failure to control this mode. In the solid models that 

had at least four elements, failure occurred when the elements disappeared 

ρ* Esolid Eexp EMEF Deviation
% %

923 50.49 -31.46
1762 96.39 30.84
2500 136.76 85.64
1023 55.96 -24.04
1120 61.27 -16.83
1560 85.34 15.84
923 85.02 -38.51

1762 162.30 17.39
2500 230.27 66.56
1023 94.23 -31.84
1120 103.16 -25.38
1560 143.69 3.93
923 126.05 -48.75

1762 240.63 -2.17
2500 341.41 38.80
1023 139.71 -43.20
1120 152.95 -37.82
1560 213.04 -13.39

MPa 

73.67

138.25

245.97

20

30

40

Weight (g) 20% 30% 40%
Theoric 14.8 22.2 29.6

Experimental 14.7 22.1 29.4
Homogenization 14.4 21.5 28.5

Shell 15.3 22.9 30.6
Solid 15.0 22.5 30.1



progressively; in the case of the shell models, the whole element disappeared. Thus, 

these elements could not contact the opposite wall properly; consequently, the 

deformation was higher. The stress levels were smaller than those of the solid model 

and experimental results; additionally, this model could not be used to predict 

densification. Finally, the shapes of the curves (Fig. 7) were significantly different.  

 
Fig. 7. Obtained stress–strain curve using numerical tools and experimental ones for 

different volume fractions. 

3.3. Solid element analysis 

Fig. 7 and Table 3 show that the solid models had high accuracy. The elastic 

Young’s modulus was predicted with low error; under volume fractions of 30% and 

40%, the densification point and stress levels in the plateau were also predicted. Owing 

to the proposed material model and failure values, solid models, as well as shell models, 

featured an initial peak in the first zone of the plateau; the model values approached the 

experimental ones as the stress decreased. In the case of the volume fraction of 30%, an 

initial peak appeared after the elastic zone, which could not be predicted by the solid or 

shell numerical model. In the case of the volume fraction of 20%, densification 

appeared with a lower deformation. In the case of the densification zone, the slope was 

similar for the solid simulation and the experiment; however, under a volume fraction of 

20%, a higher step was observed for the solid model. Analyses of the deformation 

process (see Fig. 8) indicate similar deformations in the numerical and experimental 

results. The model predicted the layer that initially fails for all the volume fractions and 



the layer failure progression. Consequently, the solid model could predict zones with 

higher levels of stress, which are likely to collapse earlier. A solid mesh included at 

least four elements comprising the thickness of the gyroid; thus, the failure was not as 

abrupt as in the case of the shell structure if only one element of the thickness 

disappeared.  

 
Fig. 8. Comparative study of the deformation process of solid elements by the finite 

element method (FEM) model and experimental results for different volume fractions. 

 
Table 3: Mechanical properties obtained using the finite element method (FEM) and 

experiments. 

 

 

ρ* (%) E(MPa) σc,e (MPa) σp (MPa) σc,d (MPa) εc,d (%)
Exp 73.7 4.4 4.2 6.2 70.2

Hom 85.4
Shell 96.3 4.7 4.6 6.4 78.3
Solid 84.2 4.7 4.6 6.7 93.2
Exp 138.3 6.2 7.7 10.5 62.5

Hom 143.7
Shell 167.8 8.8 6.4 8.6 82.5
Solid 121.4 6.5 7.2 10.2 63.2
Exp 246 10.8 11.1 14.1 54.3

Hom 213
Shell 267 9.9 11.9 16.3 76.6
Solid 254 11.2 11.4 14.6 57.2

20

30

40



4. Conclusions 

The conclusions of this work can be summarized as follows. The while solid and 

homogenization numerical models exhibited sufficient accuracy in terms of determining 

Young’s modulus, although the homogenization method achieved better performance 

owing to its lower computational cost and CPU time. In the case of the shells, the 

results were significantly higher. However, homogenization failed to predict the 

strength of the structure and the behavior in the plateau and densification zones.  

Although the shell element model could approximate the levels of stress in the plateau 

zone, this model could not adequately predict the appearance of the densification point 

with a much higher deformation; therefore, this model was inadequate for this purpose, 

despite the lower computational cost and CPU time than those of the solid numerical 

model. 

The solid numerical model performed better in terms of simulating the behavior of the 

gyroid structure; however, the corresponding computational cost and CPU time reduce 

its applicability. Consequently, for a complex product, the number of elements and the 

CPU time would be excessive; therefore, another method should be developed. The 

proposed material model simulated these structures using the mechanical properties of 

the solid material alone. Therefore, the elastic Young’s modulus required further 

adjustments.  

Finally, owing to the CPU time cost, computational effort, and difficulties in meshing 

complex products with solid elements, the solid models were not adequate for 

simulating products with a significant number of gyroid unit cells. Consequently, 

different simulation methods are necessary to simulate gyroid structures. Currently, one 

possible solution is a UMAT subroutine; therefore, instead of a mesh of the actual 

structure of a gyroid, the structure could be meshed as a solid without holes. This 

compromise implies fewer elements (similar to the homogenization method), which, in 

turn, would imply a simpler pre-process stage and a considerably lower processing time. 

Another possible solution is the use of super-elements and multiscale models. 
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