5,083,612 research outputs found

    Sampling

    Get PDF

    Quantum rejection sampling

    Full text link
    Rejection sampling is a well-known method to sample from a target distribution, given the ability to sample from a given distribution. The method has been first formalized by von Neumann (1951) and has many applications in classical computing. We define a quantum analogue of rejection sampling: given a black box producing a coherent superposition of (possibly unknown) quantum states with some amplitudes, the problem is to prepare a coherent superposition of the same states, albeit with different target amplitudes. The main result of this paper is a tight characterization of the query complexity of this quantum state generation problem. We exhibit an algorithm, which we call quantum rejection sampling, and analyze its cost using semidefinite programming. Our proof of a matching lower bound is based on the automorphism principle which allows to symmetrize any algorithm over the automorphism group of the problem. Our main technical innovation is an extension of the automorphism principle to continuous groups that arise for quantum state generation problems where the oracle encodes unknown quantum states, instead of just classical data. Furthermore, we illustrate how quantum rejection sampling may be used as a primitive in designing quantum algorithms, by providing three different applications. We first show that it was implicitly used in the quantum algorithm for linear systems of equations by Harrow, Hassidim and Lloyd. Secondly, we show that it can be used to speed up the main step in the quantum Metropolis sampling algorithm by Temme et al.. Finally, we derive a new quantum algorithm for the hidden shift problem of an arbitrary Boolean function and relate its query complexity to "water-filling" of the Fourier spectrum.Comment: 19 pages, 5 figures, minor changes and a more compact style (to appear in proceedings of ITCS 2012

    Sampling Correctors

    Full text link
    In many situations, sample data is obtained from a noisy or imperfect source. In order to address such corruptions, this paper introduces the concept of a sampling corrector. Such algorithms use structure that the distribution is purported to have, in order to allow one to make "on-the-fly" corrections to samples drawn from probability distributions. These algorithms then act as filters between the noisy data and the end user. We show connections between sampling correctors, distribution learning algorithms, and distribution property testing algorithms. We show that these connections can be utilized to expand the applicability of known distribution learning and property testing algorithms as well as to achieve improved algorithms for those tasks. As a first step, we show how to design sampling correctors using proper learning algorithms. We then focus on the question of whether algorithms for sampling correctors can be more efficient in terms of sample complexity than learning algorithms for the analogous families of distributions. When correcting monotonicity, we show that this is indeed the case when also granted query access to the cumulative distribution function. We also obtain sampling correctors for monotonicity without this stronger type of access, provided that the distribution be originally very close to monotone (namely, at a distance O(1/log2n)O(1/\log^2 n)). In addition to that, we consider a restricted error model that aims at capturing "missing data" corruptions. In this model, we show that distributions that are close to monotone have sampling correctors that are significantly more efficient than achievable by the learning approach. We also consider the question of whether an additional source of independent random bits is required by sampling correctors to implement the correction process

    Cakewalk Sampling

    Full text link
    We study the task of finding good local optima in combinatorial optimization problems. Although combinatorial optimization is NP-hard in general, locally optimal solutions are frequently used in practice. Local search methods however typically converge to a limited set of optima that depend on their initialization. Sampling methods on the other hand can access any valid solution, and thus can be used either directly or alongside methods of the former type as a way for finding good local optima. Since the effectiveness of this strategy depends on the sampling distribution, we derive a robust learning algorithm that adapts sampling distributions towards good local optima of arbitrary objective functions. As a first use case, we empirically study the efficiency in which sampling methods can recover locally maximal cliques in undirected graphs. Not only do we show how our adaptive sampler outperforms related methods, we also show how it can even approach the performance of established clique algorithms. As a second use case, we consider how greedy algorithms can be combined with our adaptive sampler, and we demonstrate how this leads to superior performance in k-medoid clustering. Together, these findings suggest that our adaptive sampler can provide an effective strategy to combinatorial optimization problems that arise in practice.Comment: Accepted as a conference paper by AAAI-2020 (oral presentation

    Metropolis Sampling

    Full text link
    Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overview of the current Metropolis-based sampling's world.Comment: Wiley StatsRef-Statistics Reference Online, 201

    Rock sampling

    Get PDF
    An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control
    corecore