5,083,612 research outputs found
Quantum rejection sampling
Rejection sampling is a well-known method to sample from a target
distribution, given the ability to sample from a given distribution. The method
has been first formalized by von Neumann (1951) and has many applications in
classical computing. We define a quantum analogue of rejection sampling: given
a black box producing a coherent superposition of (possibly unknown) quantum
states with some amplitudes, the problem is to prepare a coherent superposition
of the same states, albeit with different target amplitudes. The main result of
this paper is a tight characterization of the query complexity of this quantum
state generation problem. We exhibit an algorithm, which we call quantum
rejection sampling, and analyze its cost using semidefinite programming. Our
proof of a matching lower bound is based on the automorphism principle which
allows to symmetrize any algorithm over the automorphism group of the problem.
Our main technical innovation is an extension of the automorphism principle to
continuous groups that arise for quantum state generation problems where the
oracle encodes unknown quantum states, instead of just classical data.
Furthermore, we illustrate how quantum rejection sampling may be used as a
primitive in designing quantum algorithms, by providing three different
applications. We first show that it was implicitly used in the quantum
algorithm for linear systems of equations by Harrow, Hassidim and Lloyd.
Secondly, we show that it can be used to speed up the main step in the quantum
Metropolis sampling algorithm by Temme et al.. Finally, we derive a new quantum
algorithm for the hidden shift problem of an arbitrary Boolean function and
relate its query complexity to "water-filling" of the Fourier spectrum.Comment: 19 pages, 5 figures, minor changes and a more compact style (to
appear in proceedings of ITCS 2012
Sampling Correctors
In many situations, sample data is obtained from a noisy or imperfect source.
In order to address such corruptions, this paper introduces the concept of a
sampling corrector. Such algorithms use structure that the distribution is
purported to have, in order to allow one to make "on-the-fly" corrections to
samples drawn from probability distributions. These algorithms then act as
filters between the noisy data and the end user.
We show connections between sampling correctors, distribution learning
algorithms, and distribution property testing algorithms. We show that these
connections can be utilized to expand the applicability of known distribution
learning and property testing algorithms as well as to achieve improved
algorithms for those tasks.
As a first step, we show how to design sampling correctors using proper
learning algorithms. We then focus on the question of whether algorithms for
sampling correctors can be more efficient in terms of sample complexity than
learning algorithms for the analogous families of distributions. When
correcting monotonicity, we show that this is indeed the case when also granted
query access to the cumulative distribution function. We also obtain sampling
correctors for monotonicity without this stronger type of access, provided that
the distribution be originally very close to monotone (namely, at a distance
). In addition to that, we consider a restricted error model
that aims at capturing "missing data" corruptions. In this model, we show that
distributions that are close to monotone have sampling correctors that are
significantly more efficient than achievable by the learning approach.
We also consider the question of whether an additional source of independent
random bits is required by sampling correctors to implement the correction
process
Cakewalk Sampling
We study the task of finding good local optima in combinatorial optimization
problems. Although combinatorial optimization is NP-hard in general, locally
optimal solutions are frequently used in practice. Local search methods however
typically converge to a limited set of optima that depend on their
initialization. Sampling methods on the other hand can access any valid
solution, and thus can be used either directly or alongside methods of the
former type as a way for finding good local optima. Since the effectiveness of
this strategy depends on the sampling distribution, we derive a robust learning
algorithm that adapts sampling distributions towards good local optima of
arbitrary objective functions. As a first use case, we empirically study the
efficiency in which sampling methods can recover locally maximal cliques in
undirected graphs. Not only do we show how our adaptive sampler outperforms
related methods, we also show how it can even approach the performance of
established clique algorithms. As a second use case, we consider how greedy
algorithms can be combined with our adaptive sampler, and we demonstrate how
this leads to superior performance in k-medoid clustering. Together, these
findings suggest that our adaptive sampler can provide an effective strategy to
combinatorial optimization problems that arise in practice.Comment: Accepted as a conference paper by AAAI-2020 (oral presentation
Metropolis Sampling
Monte Carlo (MC) sampling methods are widely applied in Bayesian inference,
system simulation and optimization problems. The Markov Chain Monte Carlo
(MCMC) algorithms are a well-known class of MC methods which generate a Markov
chain with the desired invariant distribution. In this document, we focus on
the Metropolis-Hastings (MH) sampler, which can be considered as the atom of
the MCMC techniques, introducing the basic notions and different properties. We
describe in details all the elements involved in the MH algorithm and the most
relevant variants. Several improvements and recent extensions proposed in the
literature are also briefly discussed, providing a quick but exhaustive
overview of the current Metropolis-based sampling's world.Comment: Wiley StatsRef-Statistics Reference Online, 201
Rock sampling
An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control
- …
