306 research outputs found

    Pinning Cluster Synchronization in Linear Hybrid Coupled Delayed Dynamical Networks

    Get PDF
    The problem on cluster synchronization will be investigated for a class of delayed dynamical networks based on pinning control strategy. Through utilizing the combined convex technique and Kronecker product, two sufficient conditions can be derived to ensure the desired synchronization when the designed feedback controller is employed to each cluster. Moreover, the inner coupling matrices are unnecessarily restricted to be diagonal and the controller design can be converted into solving a series of linear matrix inequalities (LMIs), which greatly improve the present methods. Finally, two numerical examples are provided to demonstrate the effectiveness and reduced conservatism

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Synchronization of decentralized event-triggered uncertain switched neural networks with two additive time-varying delays

    Get PDF
    This paper addresses the problem of synchronization for decentralized event-triggered uncertain switched neural networks with two additive time-varying delays. A decentralized eventtriggered scheme is employed to determine the time instants of communication from the sensors to the central controller based on narrow possible information only. In addition, a class of switched neural networks is analyzed based on the Lyapunov–Krasovskii functional method and a combined linear matrix inequality (LMI) technique and average dwell time approach. Some sufficient conditions are derived to guarantee the exponential stability of neural networks under consideration in the presence of admissible parametric uncertainties. Numerical examples are provided to illustrate the effectiveness of the obtained results.&nbsp

    New delay-dependent stability criteria for recurrent neural networks with time-varying delays

    Get PDF
    Dimirovski, Georgi M. (Dogus Author)This work is concerned with the delay-dependentstability problem for recurrent neural networks with time-varying delays. A new improved delay-dependent stability criterion expressed in terms of linear matrix inequalities is derived by constructing a dedicated Lyapunov-Krasovskii functional via utilizing Wirtinger inequality and convex combination approach. Moreover, a further improved delay-dependent stability criterion is established by means of a new partitioning method for bounding conditions on the activation function and certain new activation function conditions presented. Finally, the application of these novel results to an illustrative example from the literature has been investigated and their effectiveness is shown via comparison with the existing recent ones

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Sampled-Data Synchronization for Complex Dynamical Networks with Time-Varying Coupling Delay and Random Coupling Strengths

    Get PDF
    This paper is concerned with the problem of sampled-data synchronization for complex dynamical networks (CDNs) with time-varying coupling delay and random coupling strengths. The random coupling strengths are described by normal distribution. The sampling period considered here is assumed to be less than a given bound. By taking the characteristic of sampled-data system into account, a discontinuous Lyapunov functional is constructed, and a delay-dependent mean square synchronization criterion is derived. Based on the proposed condition, a set of desired sampled-data controllers are designed in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI Toolbox. Numerical examples are given to demonstrate the effectiveness of the proposed scheme

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control
    corecore