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This work is concerned with the delay-dependentstability problem for recurrent neural networks with
time-varying delays. A new improved delay-dependent stability criterion expressed in terms of linear
matrix inequalities is derived by constructing a dedicated Lyapunov-Krasovskii functional via utilizing
Wirtinger inequality and convex combination approach. Moreover, a further improved delay-dependent
stability criterion is established by means of a new partitioning method for bounding conditions on the
activation function and certain new activation function conditions presented. Finally, the application of
these novel results to an illustrative example from the literature has been investigated and their
effectiveness is shown via comparison with the existing recent ones.
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1. Introduction

During the past several decades, an increasing, revived research
activity on recurrent neural networks (RNNs) is taking place
because of their successful applications in various areas. These
include associative memories, image processing, optimization pro-
blems, and pattern recognition as well as other engineering or
scientific areas [1-5]. It is well known, the time delay often is a
source of the degradation of performance and/or the instability of
RNNGs. It is therefore that the stability analysis of RNNs with time
delays has attracted considerable attention in recent years, e.g. see
Refs. [6-11] and references therein.

It should be noted, the existing stability criteria for RNNs with
time delays can be classified into the delay-independent ones and
the delay-dependent criteria. In general, when the time delay is
small, the delay-dependent stability criteria are less conservative
than delay-independent ones. For the delay-dependent stability
criteria, the maximum delay bound is a very important index for
checking the criterion's conservatism. In due course, significant
research efforts have been devoted to the reduction of conserva-
tism of the delay-dependent stability criteria for the time-delay
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RNNs. Following the Lyapunov stability theory, there are two
effective ways to reduce the conservatism within in stability
analysis of networks and systems. One is the choice of suitable
Lyapunov-Krasovskii functional (LKF) and the other one is the
estimation of its time derivative.

In recent years, some new techniques of construction of a
suitable LKF and estimation of its derivative for delayed neural
networks (DNNS) and time delay systems have been presented [12-
32,44-48]. Methods for constructing a dedicated LKF include delay-
partitioning idea [12-20], triple integral terms [16-25], more
information on the activation functions [26], augmented vector
[27,28], etc. The proposed methods for estimating the time-
derivative of LKF include: Park' inequality [29], Jensen's inequality
[30], free-weighing matrices [31], and reciprocally convex optimiza-
tion [32]. In turn, these methods proved very useful in investigating
the stability problems of RNNs with time delays. Among the
stability analysis methods, some delay-dependent criteria for the
RNNs with time-varying delays have been contributed in works
[33-36,42]. For instance, in Ref. [33] the problem of delay-
dependent stability has been investigated by considering some
semi-positive-definite free matrices. Jensen's inequality combined
with convex combination method has been used in Ref. [35]. In Ref.
[36] a new improved delay-dependent stability criterion was pro-
posed, which has been derived by constructing a new augmented
LKF, containing a triple integral term, also by using Wirtinger-based
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integral inequality and two zero value free matrix equations. How-
ever, the introduced free-weighing matrices increase the calculation
complexity as well as computational complexity. For the RNNs with
interval time-varying delays, work [43] has contributed an improved
stability criterion by construction of a suitable augmented LKF and
utilization of Wirtinger-based integral inequality with reciprocally
convex approach. Following the work [37], both the ability and the
performance of neural networks are influenced considerably by the
choice of the activation functions. Apparently there is an essential
need to look for alternative methods of reducing the conservatism of
stability criteria for such neural networks. Thus, the delay-
partitioning approach appeared as an effective way to get a tighter
bound by calculating the derivative of the LKF, which would lead to
better results. However, as the partitioning number of delay
increases, the matrix formulation becomes more complex and the
dimensionality of the stability criterion grows bigger. Hence the
computational burden and computational time consumption growth
become a considerable problem. The activation function dividing
approach was proposed in work [23], and some new improved delay-
dependent criteria for neural networks with time-varying delays
have been established. A more general activation function dividing
method for delay-dependent stability analysis of DNNs was pre-
sented in Ref. [38].

The above motivating discussion has given considerably incen-
tives to utilize a modified approach, albeit making use of the
existing knowledge, in order to arrive at less conservative, novel,
delay-dependent stability criteria for recurrent neural networks
with time-varying delays.

Firstly, a combined convex method is developed for the stability
of the recurrent neural network systems with time-varying delays.
This method can tackle both the presence of time-varying delays and
the variation of delays. As a first novelty, a new LKF is constructed by
taking more information on the state and the activation functions as
augmented vectors. It has been found by using reciprocal convex
approach and Wirtinger inequality to handle the integral term of
quadratic quantities. With the new LKF at hand, in Theorem 1, the
delay-dependent stability criterion in which both the upper and
lower bounds of delay derivative are available is then derived.
Secondly, unlike the delay partitioning method, a new dividing
approach of the bounding conditions on activation function is
utilized in Theorem 2. Considering the time and the improvement
of the feasible region, the bounding of activation functions
ki < (fi(w)/u) < k;" of RNNs with time-varying delays is divided into
two subintervals such as to obtain: k;” < (f;(u)/u) <k; +a(k" —k;)
and ki +a(k" —k7) < (fi(w/u) <k’ (0<a<1), where the two
sub-intervals can be either equal or unequal. New activation function
conditions for the divided activation functions bounds are proposed
and utilized in Theorem 2. Thirdly, by utilizing the results of
Theorems 1 and 2, when only the upper bound of the derivative of
the time-varying delay is available, the corresponding new results are
proposed in Corollaries 1 and 2. Finally, this stability analysis method
was applied to a known example from the literature and the
respective results computed. These new results were compared with
the existing recent ones in order to verify and illustrate the effec-
tiveness of the new method and to demonstrate the improvements
obtained. Further, Section 2 presents the problem formulation and
Section 3 presents the new main results. Section 4 elaborates on the
illustrative example and comparison analysis, while conclusions are
drawn and further research outlined in Section 5.

This paper uses the following notations: CT represents the
transposition of matrix C. R" denotes n-dimensional Euclidean
space and R™™ is the set of all n x m real matrices. P > 0 means
that P is positive definite. Symbol s represents the elements
below the main diagonal of a symmetric block matrix, and
diag{ ---} denotes a block diagonal matrix. Sym(X) is defined as
SymX)=X+X".

2. Problem formulation

Consider the following recurrent neural networks with discrete
time-varying delays:
2(t) = —Az(t) +f(Wz(t - h(t)) +)) (1)
where z(-)=[z{(*),..za(*)]" is the state vector; f(-)=[f1(")
s ofn()]" denote the neuron activation functions; J = [J;, ...J,]" € R"
is a vector representing the bias; A = diag {ay, ..., a,} € R™" is a constant
matrix of appropriate dimensions; W = [W1, .., W,]" e R" represents
the matrix of connection weights; and h(t) is a time-varying delay having
the following bound properties

Cl: O<h@t)<h, h) <ht)<h® <1,
C2: O0<h(t)<h, h(t)<h.

where h >0 and hg, hp are known constants.
The activation functions f;(-), i=1,..,n are assumed to be
bounded and to satisfy the following bound conditions:
<fi(u)_fi(v)<,<;¢—’

ki < v =k u#v, i=1,..,n 2)
where k;” and k" are constants.

In the stability analysis of recurrent neural networks (1), for
simplicity, firstly we shift the equilibrium point z* to the origin by
letting x =z—z*. Then the system (1) can be converted into

X(t) = —Ax(t)+g(Wx(t —h(t))) 3

where  g(+)=[g;(*),..g,()]" and gWx(-))=f(Wx(-)+z*+])
—f(Wz*+]) with g;(0)=0. Notice that functions g;(-)(i=1,..n)
satisfy the following bound conditions:

K LE&EW-8W) _ o+

=Sy S, u#v, i=1,..n 4)

If v=0 in (4), then these inequalities become
ki g‘#gkﬁ, VYu£0, i=1,..,n. (5)

The objective of this paper is to explore of asymptotic stability
of recurrent neural networks (3) with time-varying delays and to
establish a novel analysis method. Before deriving the main results
of this contribution, the following lemmas are needed:

Lemma 1. [32,39]Consider the given positive integers n, m, a positive
scalar a in the interval (0, 1), a given n x n matrix R > 0, two matrices
Wy and W5 in R™™, For all vectors & in R™, define the function &(a, R)
as

1 1
O, R) = agTW{RW1 §+E§TW§RWZ§.

R
Then, if there exists a matrix X in R™" such that {
following inequality holds true: *

i O R) > W1§TRX Wié
mineah= |y ]|

Lemma 2. [39] For a given matrix R > 0, the following inequality
holds for all continuously differentiable functions ¢ in [a,b]—R":

X
R} >0, the

b 1 3
LT . T T
/a & (WRs(w)du > m(o(b) —o(a))' R(o(b)— a(a))+m5 R&,

where § = 6(b)+c(a)—(2/b—a) ff o(u)du.

Lemma 3. [40] Let éeR", & =& e R™", and Be R™" such that
rank (B) < n. Then, the following statements are equivalent:

(1) &"pe <0, BE=0, ££0,
(2) (BH)T®B* <0, where B* is a right orthogonal complement of B.



1416

Lemma 4. [41] For symmetric matrices of appropriate dimensions
R>0 and @, and matrix I, the following two statements are
equivalent: (1) Q—I'RI'T <0, and (2) there exists a matrix IT of the
appropriate dimension such that

Q+ra’+nort n

T _R <0. (6)

3. Main results

In this section, the new stability criterion is proposed for the
considered class of recurrent neural networks (1), albeit via the
equilibrium-shifted representation model (3). For simplicity of matrix
representations, the set block entry matrices e;(i=1, ...,13) e R137"
(for example, el =[01000000 0000 0]) are given and defined as
follows:

§T(t):[x7(t) xT(t—ht) x"t—h) x'@t) x"¢—ht) X E-h)

g'(Wx(t) g'(Wx(t—h(t))

S Wx(E—h) s [ pe X' O)ds 5= [ KT (s)ds

h—ht)Jt—h

! T(Wx(s))ds
S e 8T (Wx(s) /h

(t)
gRWx(s))ds} ,

ot — h(

0
x(s)ds / xT(s)ds
) Jeon

ot
wT(t)=[xT(t) xI'(t—h) /

| waends Ko
t—h
9= [X© ) K6 gWxs) K t—ho)

pe =K' %) g Wxe)
H(]) =[e1e300e,+e13 ez],ﬂ% =[00e;p00 0],”% =[000e;; 00],

9 =lesese; —e;e;—eq 0],

1y =[00e; e; 0es], 113 =[e; e, e7], 114 = [e3 es eg],
1M3=[00e;—e; ey, 01,773 =[e; 10 0 0 e5],

s =[e4 000 es], 177 =[e3 es 9], 73 =[0 0 2 —e5 ey3 O],
11§ =[e; e;1 00 ey],

113 =[he; 0 e; —e3 ery+ey3 heyl, 11} =[0e19 0 0 0], 713 =[0 e4; 0 0 0],

M9, =[0e;—e; e 0ey—e3 e3], Mg =[e1000000],
12, =[000e;; 00],
@1 = Sym(le7 —e1 WTK;n)D1 Wel +[e; WK, —e;1D, We))
+Sym([leg —esW'K;n]DsWel +[esWTK, — eg]DgWe),
Doy =(1- vK)Sym{les —ea WK n)DsWek +[e; WTK, —eg]
D4awel},
> =Sym(9P19" + Yk I3+ Dok —(1— v)e; 114 5]
Qler 174 ea]' +SymIT5QY 51 )
+Sym(H‘8’RY2Wz‘ 5 +(1—vVE)e; 4 e]R[e; 114 e5]"
+Sym(H8NY’2W§‘HZ;),
2y = SymUTi PUTST + Y 1194 1131) + I3 QY 3y [TE +TTENY o3 1TE),
= Sym(H%P(HgTJF Tl\VZ\H%T))‘FHs];RYzW@HE+H3NT2W‘;\H£):
Yy = diagil, I, —(1- VI (1 =VOL LA - VR,
Yo = diag(LLLLL 1=Vl k=1,2,Vj = hp, Vi = hp,
H=[-A00-1000100000],1q=1%+hil},, ', =11%+hiT%,
¥ = @1 +[eq 15 e;]Q[eq 15 €3] —[eq 117 ex]R[eq 117 e3]”
+[eq 173 ezIN[eq 115 e3]"
—[ey IT7 e3]N[eq IT7 ex]+h* 1152115 + h*e,Gel — YT oY,
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Y =[e; —e; e;+e;—2ejg e;—e3 ey +e3 —2eq; ],

K = —Sym(le; —ey W K] T1[e7 —e; WTK,]

+[es —e; W Kin]T2[es —es W K] +[eg —esW Ky ]T3[eq
—e3sW'K,]")—Sym(le; —es —(e1 — €)W Km]Ta[e; —eg
—(e1—e)W'Kp]"

+[es —eg — (€2 —e3)W K] Ts[es —eg — (2 —e3) WK, 1),

X_ZA <1>—ES __[G O 5 Su Si
_Lk Z}’ _{* E}’ H_{O 36}’ T Sn S:m |’
Oa = —Sym(le; —e; W' (Km +K,)T1[e7 —e1 W K]

+les —ea W' (K +K,)IT2[es —e; W K]

+leg —esW' (Kin+Ko)IT3leg —esW'Kin]"), K, = a(Kp—Kum),

6y = —Sym(le; —ey WK, Tale; —ey W (K + K )]
+[es —eaWTKpTs[eg — ea W (K + K1
+[eg—esWTK,]Ts[eg —es W (Kin+ K1),

Qq=—Sym(le; —eg — (€1 —ex)W' (Kin+K.)]L1[e7 —es
—(e1—e)W'Kpn]"
+[es —eg—(e3 — )W (Kin +K,)]La[es —eg — (2 — e3)W' Kin]),

Q= —Sym(le; —es —(e1 —e2)W' (K +K,)IL3[e7 —es
—(e1—e)W'Kp]"
+[es —eg —(e2—e3)W' (K +Ko)|Lales —eq — (€2 — es)W' K1),
(7)
Then the first main result is stated as follows:

Theorem 1. For a given scalar h, any one h'D and h}, with C1, diagonal
matrices kp =diag{ky,....k}} and kpn=diagik; ,....k; ), system
model (3) is asymptotically stable, if there exist the positive definite
matrices P e RanGn' Q e RSnxSn' Re RSnxSn' Ne RSnxSn, Ze R3n><3n'
G e R™", diagonal matrices D; = diag(d,;, d;, ...,dy) >0, (i=1, ...,6),
T; = diag(tyi, ty,.... tyi) = 0,(i=1,...,5), and any matrix A e R33",
with matrices S;je R™"(i,j=1,2) and matrix II of appropriate
dimensions, satisfying the following linear matrix inequalities:

T T T T
[(Hi) QH)+H) Tall' +1T(H*) 1T } <0, (8)
% —-X
T T T T
[(HL) QH)+H 0" +OrYHY) 11 } <0, &)
% —-X
X>0, >0 (19)

where 21 =X +hZ1+¥V+K, 2, =X+hZ+¥P+K, and %, X;, 2, Iq,
Iy, ¥, K, X, @ are defined in (7), and H* is the right orthogonal
complement of H.

Proof. For positive diagonal matrices D;(i=1,...,6) and positive

definite matrices P,Q,R,N,Z, G, we construct the LKF as
6

V=% Vikx) (11)
i=1

where individual Lyapunov function and Lyapunov-Krasovskii
functional are

V1 =o' (HPa(t),

n "WiXi(t) g
V=2 _El(dli /0 (i) — ki s)ds +dyi /0
i=

WiXi

(t)
(k" s—gi(s)ds)

i=1

n wix;(t — h(t))
+2 ¥ (dsi /0 (gi(s)—k; s)ds

~wix;(t —h(t)) N
+d4i/0 (ki" s —gi(s))ds)
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wix;(t —h)

n wixi(t—h)
+2 ¥ (dsi / (&i(s)— ki~ 5)d5+d6i/ (ki* s—gi(s))ds).
i=1 " Jo 0

t—h(t)

-t
V3= / al (t,s)Qal(t, s)ds + / al (t,s)Ra(t, s)ds,
t—h(t)

ot
V= / al'(t,s)Na(t,s)ds,
t—h
t t
Vs—h /t . / AT (WZpw)duds,

Ve = h/[ \ /tXT(u)GX(u)duds.

The time derivative of V; can be represented as
Vi =20 (O)Pi(t) = " (OISym((19 +h(OIT] +(h—h(®)IT3)

PUTS+ 13T ) (12)
where 1, ;. = diag{l, I, — (1—h(O)I, (1 = h(t)L 1, (1= h(O)}.

Also, it is fairly easy to calculate

V3 = 2[8(Wx(1)) — X(OWK 1" D1 WX(t) + 2[X() WK, — g(Wx(£))]" Dy WK(t)

+(1- h(t)){Z[g(Wx(t —h(t))) —x(t — h(t))WKm]TD3 Wx(t— h(t))
+2[x(t —h(t)WK, —g(Wx(t — ()] DaWx(t - h(t))}
+2[g(WX(t — h)) = x(t — WK ] DsWx(t — )+ 2[x(t — WK,
—g(Wx(t —h))]" DeWx(t—h)

= E OUP1 +Pyyj ) NED) (13)

where &, is defined in (7) and &. = (1—h(t)Sym{[es —e, WT
Km)DsWel +[e; W'K, —eg]DsWel}.

The calculation of V3 gives

2|h(0)]

V3 =a'(t,)Qa(t, ) — (1 - h(t)a’ (¢, t— h(t))Qa(t, t — h(t))
t
+2 al(t, S)Q)"zm([)‘qu
t—h(t)
+(1=ht)a’ (t, t—h(t)Ra(t, t —h(t)) —a’ (t,t — H)Ra(t, t —h)
t—h(t)

+2 1 al (t,S)RY yj, s
t—h

=& (0){[e1 173 e2]Qer 173 e2]" — (1 h(t)[er 114 e2]Q[eq M4 e2]"
+Sym((+ h(IT)QY y j o 1T5)
+(1—h(t)le; 14 e;]R(eq 14 e2]" —[eq 117 e3]R[eq 117 e3]"
+Sym(UT3 + (h— REDITGRY o TTE)EE) (14)
where T

%Jh(f)\
x(t—h)y'. .
The calculation of V4 leads to

=diag{L,LL,LLL,A—ht)l}, n=[%t 0 0 0

t
Vy=a'(t,t)Na(t,t)—a’ (t,t —h)Na(t,t —h)+2 / aT(t,s)N}’z‘h(t)‘qu
t—h
=¢£T(t){[eq 15 e2]N[ey 115 e5]" —[e IT7 e;]N[eq 117 e5]"
+Sym((ITg + h(t) 11§+ (h— h(EDITNY 5 j,  TTENE(E) (15)

Furthermore, by using Lemma 1 and Jensen's inequality, we can
derive

t—h(t)

— W1 (OZp(t)—h / P $Zp(s)ds —h / P SZp(s)ds

h t T t
oo~ (5g) (/L 29%) 2, 9%)
=0z (g ) ([, po0s) 2( [, weons
h t—h(t) T t—h(t)
(=) (/ ”"5’“> Z([_h ’“”ds>

ftt—h(t)ﬁ(s)ds ! Z A j'tih(t)/}(s)ds
v 2]

h2gT(tZp(t) —
<h"pg (t)Zp(t) |:f[[’£1(t)ﬂ(s)ds ./-tt:lf(t)ﬁ(S)ds

- gT(t){h2n32n§ - rer}g(t) (16)

where " =119, + h()IT} + (h — h(t)) T3,
Finally, the time derivative Vg is readily obtained as

t
Ve = h2%"(H)Gx(t)—h / %7 (s)Gx(s)ds (17)
t—h

According to Lemmas 1 and 2, it can be found that

t—h(t)
—h x7(5)Gx(s)ds= —h / x7(s)Gx(s)ds

Jt—h

%7 (s)Gx(s)ds—h /

h(t)
h
T
< - h(t)[x(t) x(t—h(t))] GIx(t) —x(t — h(t))] — o )[x(t h(t))
—X(t W1 GIx(¢—h(t))— X(t h)]
T
h(r)["(t”"(t o)~ / X(s)ds]" GIX(t)+X(t — h(t))

t

2
_ d
h(t) t—ht) Xs)ds]

2
o h(t)[x(t h(t))+x(t—h)— =)

N TGl — h(O)+x(t— h
[ xodsiGie—hey+xe-h - [

h X(D)—x(t— h(t)) !

“ho {x(t)+x(t —h(®) =5 Ji o x(s)ds}
x(t) —x(t—h(t))

X(O+X(E—h(O) =25 [}y X(S)dS ]

t—h(t)
x(s)ds]

=

b xX(t—h(t)—x(t—h) T
TRh=h() | X(t—hO)+X(t— )~ 2 [ x(s)ds

X(t —h(t))— x(t — )
= | x(t—h(®)+x(t—h)—5 e O x(s)ds

x(t)— x(t —h(t)) T
x(t)+x(t—h(t))— % I ho X(S)ds
=- x(t—h(t))— x(t h)
X(t=h(0)+x(t—h) =% [~ 1O x(s)ds
Xx(t)—x(t —h(t))
X(O+X(E = h(0) =325 [{_p e, X(5)dS
@ x(t—h(t))— x(t h)
X(t—h(O) +X(t— )~ 2 [ x($)ds
Hence
Ve(xo) < gT(t){h2e4Ge£ - YTQSY}f(t). (18)

On the grounds of (4) and (5), for any positive diagonal matrix
T; =diag(tyi, ty;,....ts) =0, (i=1,...,5), the following inequality
holds true:

0<-2 i t1i[g(Wixi() — ki Wixi(0)] [gi(Wixi() — ki Wix;(0)]
i<

-2 ;nll i [gi(Wixi(t—h(6) — ki Wixi(t—h(®)] [g{(Wixi(t—h()))

—ki" Wixi(t —h(t))]
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-2 i] t3i [gi(Wixi(t —h) —k; Wixi(t—h)] [g{(Wixi(t—h))
— k,+ Wix;(t — h)}
-2 gnll t4i [Gi(Wixi(D)) — &i(Wixi(t — h(£))) — ki (xi(t) = Xi(t— h(D)))]

x [i(Wixi(£)) = gi(Wixi(t — h(£) — k" (xi(t) = xi(t — h(1)))] — 2 Enl fsi

i=1
x [Z(Wixi(t —h(t))) — gi(Wix;(t — h)) — k;” (x;(t —h(t)) —x;(t — )]
x [Zi(Wixi(t — h(£))) — gi(Wixi(t — h)) — ki (xi(t — h(t)) — x;(t — h))]
=E(HKET) (19)

In order to handle the term A(t), which occurred in the above
derivative, let define quantity Vv, in the following set:

¥y ={Vq4|Vqeconv{Vv},vil} (20)

where conv denotes the convex hull, v} = hi,, and V2 = hi). Then,
there exists a parameter ¢ > 0 such that h(t) can be expressed as
convex combination of the vertices as follows:

h(t) =6V} +(1-6)V3. 1)
If a matrix M, is affine dependent on A(t), then M, can be

expressed as convex combinations of the vertices

My = Mgy +(1 =)Moz (22)

It follows from (22), if a stability condition is affine dependent
on A(t), then the only need is to check the vertex values of A(t)
instead of checking all the values of h(t) [43].

From expressions (12)-(22), we can get

V <&ty @—-rxrhat) (23)

where Q = X+ h(t)X1 +(h—h(t))Z;+ ¥ +K, and I is defined in (16).

By virtue of Lemma 3, it follows that &' (t){@2—IXrT}&t) <0
with 0= H&®t) is equivalent to (H+)T(@—rXrTyH=*)<0. Then by
Lemma 4, inequality (7#+)"(@—rxrT)H+) <0 is equivalent to the
inequality

HH'QHYHY+HH' O +0r'HY) 0

0, 24
* x| (24)

where 17 is a matrix of appropriate dimensions. Based on inequal-
ity (24) and the convex optimization approach, we can find
precisely that inequality (24) holds if and only if inequalities
(8)-(10) do hold. Thus, then system (3) is asymptotically stable
and hence the system (1) too. This completes the proof.

Remark 1. Recently, the reciprocally convex optimization techni-
que and the Wirtinger inequality was proposed in Refs. [32,39]
respectively, and these two methods were utilized in deriving (18).
In Lemma 2, it can be noticed the term (1/(b—a))
(6(b)—o(a))"R(s(b)—o(a)) is equal to Jensen's inequality and the
newly appeared term (3/(b—a))5"R5 can reduce the LKF enlarge-
ment of the estimation. The usage of reciprocally convex optimiza-
tion method avoids the enlargement of h(t) and h— h(t) while only
introduces matrices S, A. Then, the convex optimization method is
used to handle V(x;). During the above proof procedure, the
dedicated construction of LKF (11) does have full information on
the recurrent neural network system dynamics. It is therefore that
the conservatism is reduced.

Remark 2. In Theorem 1, firstly, the terms (1/h—h(t))
:::m xT(s)ds and (1/h(t)) f:ﬁh(t)xT(s)ds are used for the vector

&(t). This treatment can separate the time derivative of the LKF into
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yields h(t)-dependent and (h—h(t))-dependent. Secondly, the
states x(t — h(t)) and x(t —h) are taken as intervals of integral terms,
as shown in the second and third terms of V,. Therefore con-
siderably more information on the cross terms in (g(Wx(t — h(t))),
x(t—h(t)), x(t—h(t)) and (g(Wx(t—h)), x(t—h), x(t—h) are being
utilized. Thirdly, notice the introduction of x(t), x(t—h(t)) as
integral terms in V3, V4, and of the term ff[:,f“) al(t,$)Ra(t, s)ds in
V3, which before have not proposed in the literature. These
considerations highlight the main differences in the construction
of the LKF candidate in this paper.

Remark 3. In the stability criteria for delayed neural networks,
many works choose the delay-partitioning number as two as a
kind of a tradeoff between the computational burden and the
improvement of feasible region in stability conditions. However,
when the condition 0 < h(t) < h is divided into 0 < h(t) <h/2 and
h/2 < h(t) < h, the matrix formulation becomes more complex and
the dimension of stability conditions grows larger because of more
augmented vector. Inspired by work [23] on the activation func-
tions dividing method for neural networks with time-varying
delays, we have divided the bounding of the activation function
ki <fiu/u<k" for the considered time-varying delay RNNs into
ki <fiw/u<k +aki =k ) and ki +aki —k7) <fiw)/u<k',
O<a<1. This new activation partitioning method for time-
varying delay RNNs is more general and less conservative. The
new bounding partitioning approach is utilized instead of using
delay-partitioning method; this latter technique is used in the
subsequent Theorem 2. Thus through Theorems 1 and 2 less
conservative stability criteria are derived.

Now, based on the results of Theorem 1, a new stability
criterion for system (3) is introduced by utilizing the new bound-
ing partitioning approach.

Theorem 2. For the given scalars 0 < a < 1 and h, any one hl, and hi}
satisfying C1, and diagonal matrices k,=diagi{k; ,...k;} and
km = diag{k; ...k, }, system (3) is asymptotically stable, if there
exist positive definite matrices P e R®™67 Q ¢ R¥™51 R ¢ RM51
NeR>on  ZeR33n  GeR™"  diagonal matrices D;=
diag(dy;, dy;, ...,dy) =0, (i=1,..,6), T;=diag(ty;, t2i" Lothi) =0,
(i=1,..,6), Li=diag(h,Ly,....1,) >0, (i=1,..,4), and any matrix
A e R33N along with matrices Sij e R™"(i,j=1,2) and 1T of appro-
priate dimensions, satisfying the following linear matrix inequalities

- T n AT T T 1 1
(HE) O1H ) +H ) Tl + 1T H) 1| oy oy
i * —X]
(25)
S N LN T ToprL |
(HEY O(H D)+ H) T + ATy HS) T oy
i % _X_
(26)
X>0, >0 @7

where 01 =X4+hZ14+¥Y+0,+Q2y, Ory=3X+hZ)+¥+0,+02,,
VA=a,b and %, X}, X5, ¥, T'q, T'p, X, D, Oq, Oy, 24, 2, are defined
in (7), and where H* is the right orthogonal complement of H.

Proof. While considering the same Lyapunov-Krasovskii func-
tional as proposed in Theorem 1, we divide the bounding on
activation function (5) into two sub-intervals, thus denoting the
Case 1 and the Case 2 within this proof.

Case 1: Notice

ki < W <k +ak —k7), O0<a<l (28)
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which by choosing v =0, it is equivalent to
(g (W) —k; ul[g;(w) — (ki +a(kt —k Hu] <0. (29)

From (29), for any positive definite diagonal matrices
Ty =diag(ti1,ti2, ..., t1n) = 0, Ty =diag(ts,tz,...,t2,) >0, and
T3 = diag(ts, t3a, ..., t3n) = 0 the following inequality is satisfied:

0< -2 lgnjl t1i [ (Wixi() — ki Wixi(0)] [8{(Wix;(b))
ik -tk kW] -2 _il i [ Wixi(t— h(£))
—ki Wixi(t—h(t)] [gi(Wixi(t — f;(t)))
7 e — K )Wt h(e)] —2 ii b g (Wixi(t— )
—ki Wixi(t—h)] [gi(Wixi(¢ —h) — (ki +a(ki — k7 YW ixi(t—h)]

=& (H)6.&(t) (30)

For (28), the following conditions are fulfilled:
- <&iWixi(t) —gi(Wixi(t — h(t)))
LT Wixi(H)—Wixi(t—h(t))

k- < &iWixit—h®)) —gi(Wixi(t—h))
P Wixi(t—h(t) = Wix;(t—h)

<ki +akt —k),

<k +ak —k) (31

For i=1,---,n, the above two conditions are equivalent to
[8i(Wixi(0) — g{(Wixi(¢ — h(D))) — ki Wi(xi(£) — xi(t — h(1)))]
x [Gi(Wixi(6) = gi(Wixi(t —h(e) — (K +a(k” —k HWilxi(t)
—xi(t—h(t)] <0,
[8i(Wixi(t —h(t)) — g{(Wixi(t — h) — k;” Wi(x;(t— h(£) — X;(t — )]
x [i(Wixi(t— h(£))) — g{(Wx;(t — h))
— (k7 +aki” —k7 WWixi(t—h(t))—x;(t—h))] <0 (32)

Therefore, for any positive definite matrices L, = diag{li1, -+, l1n},
L, =diag{ly, -, L, }, the following inequality holds true:

0<-2 i:l {hi [gi(Wixi(t) — gi(Wixi(t — h(t) — k;” Wix;(t) — xi(t — h(t)))]

X [B(Wixi(0) — gi(Wixi(t— h(0) — (ki +alki” =k )Wi(xi(t)
n
“X(=hapl =2 ¥ {Li [gi(Wixi(t = h(t))) —g{(Wixi(t — h))
1=

— ki Witxi(t—h(t) —xi(t —hy)].
x [gi(Wixi(t — () — g Wixi(t — ) — (ki +a(ki” — ki YWilxi(t—h(t))

—xi(t—h)]} = ET(H)Q&(t) (33)

From  the proof of Theorem 1, when ki <
(gi(w) —gi(v)/u—v) <k; +a(k* —k ), then an upper bound of V

can be found as
V < & (6){0+Oq+Qq —TXTT)E(D). (34)

with 0= HE(t), where © =X +h(t)X;+(h—h(t))Z,+ ¥, and I as
defined in (16).

Case 2: Notice

ki +alki —k) < W <k (35)
For this case, let define positive definite diagonal matrices
Ty =diag(ta, tsa, ..., tan) = 0,Ts = diag(ts, tsy, ..., t50) = 0, Tg=
diag(tm Jte2, ..o ten) =0 and L3 = diag{l31 TN l3n}, Ly = dlag
{ls1, -+, lan}. Then by applying a similar procedure as the one

used in Case 1, ultimately we obtain
V < ({04 0y +2, — TXTTED). (36)

with 0 = HE®). .
Thus, for k; < f;(u)/u <k;" an upper bound of V is obtained as
follows:

V<(t{O+60,+02,—TXTT}Et) Va=ab 37)

where 0,, 2,(YA = a,b). Similarly as in the proof of Theorem 1,
inequality (37) holds precisely if and only if inequalities (25) and
(26) are satisfied. Thus the feasibility of satisfying inequalities
(25)-(27) means the recurrent neural network (3) is asymptoti-
cally stable, and so is network (1). This completes the proof.

Remark 4. In Theorem 1, we consider that h(t) satisfies C1,
but it should be noted there are many systems satisfying the
condition C2. Therefore we can introduce Corollary 1 in order to
analyze the stability of recurrent neural networks with the
condition C2 by setting D3,D4 =0, R=0 and changing LKF terms
Vi, Vs, Vs, Va.

In Corollary 1 below, block entry matrices &; e R12™" will be
used and the following notations are defined for the sake of
simplicity of matrix notation:

Fo=') x(t—hty x't—h 3@ -h) g Wx)
g (Wx(t—h(t)) g'(Wx(t—h)

%ftt—h(t) X' (s)ds hflh([) ftt::(t) XT(s)ds fttfh([) gl (Wx(s))ds

t—h(t)
/ gT(Wx(s»ds}, @T(r)=[xT(t) XT(E—h) /
t—h t

ot

t
xT(s)ds
h

gT(Wx(s))ds}, H=[-A00—-100100000],
h

1) =[81 &3 0811 +&12].11; =[0 0 & 0], /1> =[0 0 &, O],
I1=[84 8581 —8385—8g], [13=[E18],

I14=[8; &7), 115 =[&1 &4 &6], Il =[5 &5 &3],
f15=[08 8,81, 08,—83812], 115=[8500000],
A2 =[00081000]. g =15 +hit}, Iy = 19+ hit?,

&y =Sym([8g — & W KDy We) +[8,WTK, —&sID,Wel)
+Sym([ég — &3 WK n]DsWel +[6s WK, —ég]DsWel),

W =S4y +113Q 115 — (1 —h)i14Q T4 +11sNIT5
—f16NTIy+ WP 15ZITE + hPe4Gel — V' oY,
Sym(1\PI13), £1 = Sym(TyPi1y), £ = Sym(TiPiTy),
[61—85 81+8,—28q 8y — 83 &5 +83—2810]"
K = —Sym([s—& W KT [ — & WK,

+[87 =8 WTKTo[87 — 8, WK,

+[8g— 3 WTKn]T3[85 —&3WTK,]T)

—Sym([ég — &7 — (&1 — &)W Kn]T4les — &7 — (&1 — )W Kp]"

z

o}
I

+[87— 85— (B2 —&3)W K]Ts[e7 — 85 — (&2 —83)W K",
0= —Sym([es — &1 W' (Kin+K)T1[e6 — &1 W' K]
+[87 — B W (K + K )T2[87 — 82 W K]
+[8g —3W' (Kin +Ko)|T3[85 — 83 W Km]"),
Op = —Sym([&s — &1 W K, T4[e6 — 81 W' (Kin+K,)]"
+[87 -8 WKpITs[87 — 8, W' (K +K )"
+[8g—E3WTK,|Tg[es —EsWT (Kin+ K],
Qq= —Sym([8s— &7 — (@1 — )W (Km +K)IL1[E6 — &7
— (@1 —8)W'Km]" +[87 — 85— (83— e3)W' (K +Ko)L2[87
—83— (82— &)W Km]"),

1419
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Table 1
Delay bounds h with different hp.

Methods Condition of h(t) hp=0.0 hp=0.1 hp=0.5 hp=0.9 Unknown
[11] It < hp 13323 0.8245 0.3733 0.2343 0.2313
[33] Ity < hp 13323 0.8402 0.4264 0.3214 0.3209
[34] h(t) < hp 1.5330 0.9331 0.4268 - 0.3215
[35] —hp < h(t) < hp - 0.8411 0.4267 0.3227 0.3215
[36] (Theorem 1) —hp <h(t) < hp 1.5575 1.0389 0.5478 0.4602 -
[36] (Corollary 1) It < hp 15575 0.9430 0.4417 0.3632 0.3632
Theorem 1 —hp < h(t) < hp 1.8899 1.1240 0.5698 0.4737 -
Theorem 2(a =0.7) —hp < h(t) < hp 2.1082 11778 0.5824 0.4824 -
Corollary 1 i) < hp 1.6386 0.9956 0.4464 0.3800 0.3695
Corollary 2 (a=0.7) Ity < hp 1.8211 1.0401 0.4535 0.3781 0.3781
2 : r : T T . n w;x;(t) B wiX;(t) 4
0 Va2 By [ @Ok s [ s-gi)ds)
........... X2(t) i—1 Jo JOo
15 lW VNS n ~WiX;(t—h) ~wiX;(t—h) N
| +2 ¥ (ds; /0 (gi(s)— ki s)ds+dei /0 (ki" s —gi(s))ds)
i1 . .
k) 1 (43)
5
iy t X(5) X(s)
o , _ .
: Vs= / Q ds (44
2 Joono | gWxs) | | gwxs) )
B
- ) . ) ) )
: Va= [ F NS V5= V5. Vs =Ve. (45)
05 f . ot
Therefore, we can get
0 1 ) 3 4 5 6 7 8 9 10 < ST, a s ST o
. V(X)) <& (O —T'XT)EL)
Time(s)

Fig. 1. State trajectories of the system of Example 1.

Qp = —Sym([8s—&7— (&1 —E)WT (K +K,)]L3[E6 — &7
— (@1 —E)W'Kp)" +[87 — 85— (82— 83)W' (K +K.)ILa[E7

—83— (82— 23)WK,]") (38)

Corollary 1. For the given scalars h and hy, satisfying C2, diagonal

matrices k, = diag{k{ , ...k} and ky, = diag{k; , ..., k; }, system (3)
is asymptotically stable, if there exist positive matrices P e R4"<4",
NeR33n  Q eR21<2n 7 R3W3n Ge R"™" diagonal matrices
D;= diag(d”,dz,», cndp)>0,(i=1,...,6), T; = diag(t”, tZi""’ thi) >0,
(i=1,..,5), and any matrix AeR33" qlong with matrices
Sij e R™™(i,j=1,2), and II of appropriate dimensions, satisfying the
following linear matrix inequalities:

~ LT oL ~ LT ~T  ~~T ~ | ~

{(H Yo () +@ Y ol + PN a0 }<0 39
# -X

HO Qo)+ @1 + 0Ty 11| _ g 40)
3 -X

X>0, >0 41

where @; = hZ{+% +K, 2, =hS,+¥ +K, and X, @ are defined in
(7), $1, %2, Fa, Ty, ¥, K and A" is the right orthogonal comple-
ment of A are defined in (38).

Proof. Notice

N 6 .

Vix) = Y Vi)
i=1

where

Vi=aT(OPa(t) (42)

where & = h(t)51 +(h—h(t)3, + ¥ +&, ' = 19+ h(t)[1y +(h— h(t))
I 3 Further the proof follows similar steps as before for deriving
(24). Thus, we can see that inequalities (39)-(41) do guarantee the
asymptotic stability of recurrent neural networks (3) hence the
networks (1) too.

Remark 5. Also for Theorem 2, we can introduce Corollary 2 in
order to analyze the stability of recurrent neural networks with
the condition C2 applicable by setting D3;,D;=0, Q,R=0 and
changing LKF terms V', V5, V3, V,4. The proof is very similar to the
proof of Corollary 1, and thus omitted here.

Corollary 2. For the given scalars 0 <a <1 and h, h} satisfying C2,
diagonal matrices k, =diag{k{ ...k} } and kyn=diag{k; ,....k; },
system (3) is asymptotically stable, if there exist positive matrices
13 < R4n><4n, N c IRBnX3“, Q e R2n><2n' Ze RBHXBH, Ge IR"X", diagonal
matrices D;= diag(d1,-, dzf, cees dm') >0,(i=1,...,6), Ti= diag(tl,-,
B, tr) >0, (i=1,..,6), Li=diag(hi,by,....[,)) =0, (i=1,..,4),
and any matrix A e R33" along with matrices S;j e R™"(i,j=1,2),
and 1 of appropriate dimensions, satisfying the following linear
matrix inequalities:

{(FIL)7(3)1(1?L)+(ﬁ‘)7faﬁT+ﬁfaT(ﬁ‘) it
* —-X

} <0 VA=ab (46)

(H Y @y(H ) +\H Pyt +AF AT 01
% —-X

] <0 VvA=ab (47)

X>0, &>0 (48)

where @1 =hZ1+¥+0,+QR,, O3 =hE,+¥+0,+R4, YVA=a,b
and X, @ are defined in (7), £1, £5, I'a, 'y, ¥, @q, O, 2q, 2, and
A7 is the right orthogonal complement of # are defined in (38).

Though it should be noted, in some cases, the information on
the derivative of the delay may not be available. Then the criterion
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for such a situation can be derived from Corollaries 1 and 2 by
setting Q =0.

4. Illustrative example

In this section, the results of applying the proposed stability method
to an example from the literature (e.g., see Ref. [11] for instance) are
presented via a comparison analysis with those of the previous
relevant methods to show its effectiveness and demonstrate the
improvements. These results are given below in terms of the calcula-
tions in Table 1 and the computer simulations in Fig. 1.

Example 1. Consider a recurrent neural network of class (3) that
is defined by the following parameter matrices:

7.3458 0 0 13.6014 —-2.9616 —0.6936
A= 0 6.9987 0 , W= 74736 21.6810 3.2100
0 0 5.5949 0.7290 —-2.6334 —-20.1300
Km = diag(0,0,0}, K, = diag{0.3680,0.1795,0.2876}. (49)

For this recurrent neural network in which the condition
—hp <h(ty<hp applied, the results obtained by means of
Theorems 1 and 2 are summarized in Table 1, and given in
comparison with the existing recent ones. It can be seen that, as
compared to those in works [11,33-36], our results have improved
the feasible region where asymptotic stability holds. It is worth
pointing out the results based on Theorem 2 clearly provide larger
delay bounds than those of Theorem 1 when a = 0.7. This fact also
clearly demonstrates the effectiveness of the method with parti-
tioning the bounding conditions on the activation functions. For
the case of C2, the results obtained by Corollaries 1 and 2 are
shown in Table 1 too. Again it is seen our results are less
conservative than the existing ones.

The responses shown in Fig. 1 are obtained setting
x(0)=[1, —1, 2]" for the recurrent neural network with a time-
varying delay in Example 1, where the following quantities were
defined: h=1.1778 for hp = —hp=0.1, h(t)=0.1 sin(t)+1.0778 <
1.1778, g(x(t)) =[0.3680 tanh(x1(t)), 0.1795 tanh(x, (t)), 0.2876
tanh(xs(t))]". These results verify the asymptotic stability of the
considered class of time-varying delay RNNs obtained by means of
the theorems proved in the previous section.

5. Conclusions

The problem of delay-dependent stability conditions for recurrent
neural network (RNN) systems with time-varying delays has been
investigated and new method derived. Less conservative delay-
dependent stability criteria, which are expressed in terms of LMIs,
are derived by using a novel method of partitioning the bounding
conditions on network’s activation function and a novel Lyapunov-
Krasovskii functional (KLF), especially derived for this purpose. This
new proposed method of stability analysis for the time-varying delay
RNNs has been applied to the illustrative example taken from the
literature. The obtained results are summarized in a comparison
table with those in the recent literature and also verified by the
asymptotic stability of state responses obtained via computer simu-
lation. The presented results clearly demonstrate reduced conserva-
tiveness and response improvements.

This new methodological approach can be extended to other
stability analysis problems for all kinds of neural networks, e.g. for
stability problems involving H-infinite performance, passivity, and
dissipativity too. In addition, by applying the main idea to the control
synthesis problem for dynamic networks, such as stochastic delayed
complex networks and Markovian jumping delayed complex net-
works, the feasible stability region can be enhanced. These aspects

will be studied in future works. Also, it is worth noting, constructing a
more suitable LKF and reducing the calculation enlargement in
estimating the derivative also needs further investigation.

Acknowledgment

This work is partially supported by the National Natural Science
Foundation of China (61374154 and 61374072), the Australian Research
Council (DP140102180, LP140100471), and the 111 Project (B12018).

References

[1] L. Chua, L. Yang, Cellular neural networks: applications, IEEE Trans. Circuits
Syst. I: Fundam. Theory Appl. 35 (1998) 1273-1290.

[2] D.P. Mandic, J.A. Chambers, Recurrent Neural Networks for Prediction: Learn-
ing Algorithms, Architectures, and Stability, Wiley, New York, 2001.

[3] G.P. Liu, Nonlinear Identification and Control: A Neural Network Approach,
Springer, London, 2001.

[4] ]. Cao, J. Wang, Global asymptotic and robust stability of recurrent neural
networks with time delays, IEEE Trans. Circuits Syst. I: Regul. Pap. 52 (2005)
417-426.

[5] Y. Li, J. Li, M. Hua, New results of Hoo filtering for neural network with time-
varying delay, Int. J. Innov. Comput. Inf. Control 10 (2014) 2309-2323.

[6] ]J.D. Cao, J.Wang, Exponential stability and periodicity of recurrent neural networks
with time delays, IEEE Trans. Circuits Syst. I: Regul. Pap. 52 (2005) 920-931.

[7] Q. Song, ].D. Cao, Z. Zhao, Periodic solutions and its exponential stability of
reaction-diffusion recurrent neural networks with continuously distributed
delays, Nonlinear Anal. Real World Appl. 7 (2006) 65-80.

[8] J. Liang, J. Cao, A based-on LMI stability criterion for delayed recurrent neural
networks, Chaos Solitons Fractals 28 (2006) 154-160.

[9] XJ. Su, Z.C. Li, Y.K. Feng, L.G. Wu, New global exponential stability criteria for
interval delayed neural networks, Proc. Inst. Mech. Eng. — Part [: J. Syst. Control
Eng. 225 (2011) 125-136.

[10] P. Liu, Delay-dependent robust stability analysis for recurrent neural networks
with time-varying delay, Int. J. Innov. Comput. Inf. Control 9 (2013)
3341-3355.

[11] H. Shao, Delay-dependent stability for recurrent neural networks with time-
varying delays, IEEE Trans. Neural Netw. 19 (2008) 1647-1651.

[12] L. Hu, H. Gao, W.X. Zheng, Novel stability of cellular neural networks with
interval time-varying delay, Neural Netw. 21 (2008) 1458-1463.

[13] Y. Zhang, D. Yue, E. Tian, New stability criteria of neural networks with interval
time-varying delays: a piecewise delay method, Appl. Math. Comput. 208
(2009) 249-259.

[14] S. Lakshmanan, V. Vembarasan, P. Balasubramaniam, Delay decomposition
approach to state estimation of neural networks with mixed time-varying
delays and Markovian jumping parameters, Math. Methods Appl. Sci. 36
(2013) 395-412.

[15] H.G. Zhang, Z.W. Liu, G.B. Huang, Z.S. Wang, Novel weighting-delay-based
stability criteria for recurrent neural networks with time-varying delay, IEEE
Trans. Neural Netw. 21 (2010) 91-106.

[16] T. Li, A. Song, S. Fei, T. Wang, Delay-derivative-dependent stability for delayed
neural networks with unbounded distributed delay, IEEE Trans. Neural Netw.
21 (2010) 1365-1371.

[17] T. Li, A. Song, M. Xue, H. Zhang, Stability analysis on delayed neural networks
based on an improved delay-partitioning approach, J. Comput. Appl. Math. 235
(2011) 3086-3095.

[18] P. Balasubramaniam, V. Vembarasan, R. Rakkiyappan, Global robust asymptotic
stability analysis of uncertain switched Hopfield neural networks with time
delay in the leakage term, Neural Comput. Appl. 21 (2012) 1593-1616.

[19] Z.Liy, ]. Yu, D. Xu, Vector Writinger-type inequality and the stability analysis of
delayed neural network, Commun. Nonlinear Sci. Numer. Simul. 18 (2013)
1247-1257.

[20] Y. Wang, C. Yang, Z. Zuo, On exponential stability analysis for neural networks
with time-varying delays and general activation functions, Commun. Non-
linear Sci. Numer. Simul. 17 (2012) 1447-1459.

[21] P. Balasubramaniam, S. Lakshmanan, Delay-range dependent stability criteria
for neural networks with Markovian jumping parameters, Nonlinear Anal.
Hybrid Syst. 3 (2009) 749-756.

[22] P. Balasubramaniam, S. Lakshmanan, R. Rakkiyappan, Delay-interval depen-
dent robust stability criteria for stochastic neural networks with linear
fractional uncertainties, Neurocomputing 72 (2009) 3675-3682.

[23] O.M. Kwon, M.]. Park, S.M. Lee, ].H. Park, E.J. Cha, Stability for neural networks
with time-varying delays via some new approaches, IEEE Trans. Neural Netw.
Learn. Syst. 24 (2013) 181-193.

[24] O.M. Kwon, S.M. Lee, ].H. Park, EJ. Cha, New approaches on stability criteria for
neural networks with interval time-varying delays, Appl. Math. Comput. 213
(2012) 9953-9964.

[25] H. Zhang, F. Yang, X. Liu, Q. Zhang, Stability analysis for neural networks with
time-varying delay based on quadratic convex optimization, IEEE Trans.
Neural Netw. Learn. Syst. 24 (2013) 513-521.


http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref1
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref1
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref2
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref2
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref3
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref3
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref4
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref5
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref5
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref5
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref6
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref7
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref8
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref8
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref9
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref10
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref11
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref12
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref13
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref13
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref13
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref14
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref15
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref16
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref17
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref17
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref17
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref18
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref18
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref18
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref19
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref19
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref19
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref20
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref20
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref20
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref21
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref21
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref21
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref22
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref22
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref22
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref23
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref23
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref23
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref24
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref24
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref24
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref25
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref25
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref25

1422

[26] T. Li, W. Zheng, C. Lin, Delay-slope-dependent stability results of recurrent
neural networks, IEEE Trans. Neural Netw. 22 (2011) 2138-2143.

[27] T. Li, X.L. Ye, Improved stability criteria of neural networks with time-varying
delays: an augmented LKF approach, Neurocomputing 73 (2010) 1038-1047.

[28] O.M. Kwon, J.H. Park, S.M. Lee, EJ. Cha, Analysis on delay-dependent stability for
neural networks with time-varying delays, Neurocomputing 103 (2013) 114-120.

[29] P.G. Park, A delay-dependent stability criterion for systems with uncertain
linear state-delayed systems, IEEE Trans. Automat. Control 35 (1999) 876-877.

[30] K. Gu, An integral inequality in the stability problem of time-delay systems, in:
Proceedings of the IEEE Conference on Decision and Control, vol. 3, 2000, pp. 2805-
2810.

[31] Y. He, M. Wu, JH. She, G.P. Liu, Delay-dependent robust stability criteria for
uncertain neutral systems with mixed delays, Syst. Control Lett. 51 (2004) 57-75.

[32] PG. Park, JW. Ko, C. Jeong, Reciprocally convex approach to stability of
systems with time-varying delays, Automatica 47 (2011) 235-238.

[33] Z. Zuo, C. Yang, Y. Wang, A new method for stability analysis of recurrent
neural networks with interval time-varying delay, IEEE Trans. Neural Netw.
21 (2010) 339-344.

[34] X.W. Li, HJ. Gao, X.H. Yu, A unified approach to the stability of generalized
static neural networks with linear fractional uncertainties and delays, IEEE
Trans. Syst. Man Cybern. Part B: Cybern. 41 (2011) 1275-1286.

[35] Y.Q. Bai, J. Chen, New stability criteria for recurrent neural networks with
interval time-varying delay, Neurocomputing 121 (2013) 179-184.

[36] M.D. Ji, Y. He, C.K. Zhang, M. Wu, Novel stability criteria for recurrent neural
networks with time-varying delay, Neurocomputing 138 (2014) 383-391.

[37] M. Morita, Associative memory with non-monotone dynamics, Neural Netw.
6 (1993) 115-126.

[38] B. Yang, L. Wang, C.X. Fan, M. Han, New delay-dependent stability criteria for
networks with time-varying delays, in: Proceedings of the American Control
Conference, Portland, Oregon, USA, 2014, pp. 2881-2886.

[39] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to
time-delay systems, Automatica 49 (2013) 2860-2866.

[40] RE. Skelton, T. Iwasaki, K.M. Grigoradis, A Unified Algebraic Approach to
Linear Control Design, Taylor & Francis, New York, 1997.

[41] T.Li, T. Wang, A. Song, S. Fei, Combined convex technique on delay-dependent
stability for delayed neural networks, IEEE Trans. Neural Netw. Learn. Syst.
24 (2013) 1459-1466.

[42] O.M. Kwon, M.J. Park, ].H. Park, S.M. Lee, E.J. Cha, New and improved results on
stability of static neural networks with interval time-varying delay, Appl.
Math. Comput. 239 (2014) 346-357.

[43] LE. Kose, F. Jabbari, W.E. Schmitendorf, A direct characterization of L 2-gain
controllers for LPV systems, IEEE Trans. Autom. Control 43 (1998) 1302-1307.

[44] XJ. Su, L.G. Wu, P. Shi, CL. Philip Chen, Model approximation for fuzzy
switched systems with stochastic perturbation, IEEE Trans. Fuzzy Syst. (2014),
http://dx.doi.org/10.1109/TFUZZ.2014.2362153.

[45] Q. Shen, P. Shi, T. Zhang, C.C. Lim, Novel neural control for a class of uncertain pure-
feedback systems, IEEE Trans. Neural Netw. Learn. Syst. 25 (2014) 718-727.

[46] XJ. Su, L.G. Wu, P. Shi, M.V. Basin, Reliable filtering with strict dissipativity for
T-S fuzzy time-delay systems, IEEE Trans. Cybern. (2014), http://dx.doi.org/
10.1109/TCYB.2014.2308983.

[47] Z. Wu, P. Shi, H. Su, J. Chu, Sampled-data exponential synchronization of
complex dynamical networks with time-varying coupling delay, IEEE Trans.
Neural Netw. Learn. Syst. 24 (2013) 1177-1187.

[48] Q. Zhou, P. Shi, S. Xu, H. Li, Observer-based adaptive neural network control for
nonlinear stochastic systems with time-delay, IEEE Trans. Neural Netw. Learn.
Syst. 24 (2013) 71-80.

Bin Yang received the Ph.D. degree in Control Theory and
Control Engineering from the Northeastern University,
Shenyang, China, in 1998. From December 1998 to Novem-
ber 2000, he was a Postdoctoral Research Fellow with the
Huazhong University of Science and Technology. He is
currently an Associate Professor with the School of Control
Science and Engineering, Dalian University of Technology,
Dalian, China. His main research interests include time-
delay systems, cellular neural networks, networked control
systems, robust control.

B. Yang et al. / Neurocomputing 151 (2015) 1414-1422

Rui Wang received the B.E. and M.E. degrees in
Mathematics from the Bohai University, Jinzhou, China,
in 2001 and 2004, respectively, and the Ph.D. degree in
Control Theory and Applications from e Northeastern
University, Shenyang, China, in 2007. From March 2007
to December 2008, she was a Visiting Research Fellow
with the University of Glamorgan, Pontypridd, UK. She
is currently an Associate Professor with the School of
Aeronautics and Astronautics, Dalian University of
Technology, Dalian, China. Her main research interests
include switched systems, robust control, and net-
worked control systems.

Peng Shi received the B.Sc. degree in Mathematics
from the Harbin Institute of Technology, China; the
ME degree in Systems Engineering from the Harbin
Engineering University, China; the Ph.D. degree in
Electrical Engineering from the University of Newcastle,
Australia; the Ph.D. degree in Mathematics from the
University of South Australia; and the D.Sc. degree from
the University of Glamorgan, UK. Dr. Shi was a Post-
doctorate and Lecturer at the University of South
Australia; a Senior Scientist in the Defence Science
and Technology Organisation, Australia; and a Professor
at the University of Glamorgan (now The University of
South Wales), UK. Now, he is a Professor at The
University of Adelaide, and Victoria University, Australia. Dr. Shi's research interests
include system and control theory, computational intelligence, and operational
research. He has published widely in these areas. Dr. Shi is a Fellow of the
Institution of Engineering and Technology, and a Fellow of the Institute of
Mathematics and its Applications. He has been in the Editorial Board of a number
of journals, including Automatica, IEEE Transactions on Automatic Control, IEEE
Transactions on Fuzzy Systems, IEEE Transactions on Cybernetics, IEEE Transactions
on Circuits and Systems-I, and IEEE Access.

Georgi Marko Dimirovski is a Research Professor (life-
time) of Automation & Systems Engineering at the
Faculty of Electrical-Electronics Engineering and Infor-
mation Technologies of SS Cyril and Methodius Uni-
versity of Skopje, Macedonia, and a Professor of
Computer Science & Information Technologies at the
Faculty of Engineering of Dogus University of Istanbul
as well as an Invited Professor of Computer & Control
Sciences at the Graduate Institutes of Istanbul Technical
University, Turkey, and a “Pro Universitas” Professor at
the Doctoral School of Obuda University in Budapest,
Hungary. He is a Foreign Member of Serbian Academy
of Engineering Sciences in Belgrade. He received his
Dipl.-Ing. degree in 1966 from SS Cyril and Methodius University of Skopje,
Macedonia, M.Sc. degree in 1974 from the University of Belgrade, Serbia, and Ph.
D. degree in 1977 from the University of Bradford, England, UK. He got his
postdoctoral position in 1979 and subsequently was a Visiting Research Professor
at the University of Bradford in 1984, 1986 and 1988 as well as at the University of
Wolverhampton in 1990 and 1991. He was a Senior Research Fellow and Visiting
Professor at the Free University in Brussels, Belgium, in 1994 and also at Johannes
Kepler University in Linz, Austria, in 2000. His research interests include nonlinear
systems and control, complex dynamical networks, switched systems, and applied
computational intelligence to decision and control systems. Currently, as an
Associate Editor, he serves Journal of the Franklin Institute, Asian Journal of
Control, and International Journal of Automation & Computing.


http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref26
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref26
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref27
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref27
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref28
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref28
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref29
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref29
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref30
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref30
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref31
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref31
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref32
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref32
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref32
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref33
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref33
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref33
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref34
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref34
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref35
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref35
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref36
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref36
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref37
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref37
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref38
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref38
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref38
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref39
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref39
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref39
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref40
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref40
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref40
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref41
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref41
http://dx.doi.org/10.1109/TFUZZ.2014.2362153
http://dx.doi.org/10.1109/TFUZZ.2014.2362153
http://dx.doi.org/10.1109/TFUZZ.2014.2362153
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref43
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref43
http://dx.doi.org/10.1109/TCYB.2014.2308983
http://dx.doi.org/10.1109/TCYB.2014.2308983
http://dx.doi.org/10.1109/TCYB.2014.2308983
http://dx.doi.org/10.1109/TCYB.2014.2308983
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref45
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref45
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref45
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref46
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref46
http://refhub.elsevier.com/S0925-2312(14)01408-8/sbref46

	New delay-dependent stability criteria for recurrent neural �networks with time-varying delays
	Introduction
	Problem formulation
	Main results
	Illustrative example
	Conclusions
	Acknowledgment
	References




