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a b s t r a c t

This work is concerned with the delay-dependentstability problem for recurrent neural networks with
time-varying delays. A new improved delay-dependent stability criterion expressed in terms of linear
matrix inequalities is derived by constructing a dedicated Lyapunov–Krasovskii functional via utilizing
Wirtinger inequality and convex combination approach. Moreover, a further improved delay-dependent
stability criterion is established by means of a new partitioning method for bounding conditions on the
activation function and certain new activation function conditions presented. Finally, the application of
these novel results to an illustrative example from the literature has been investigated and their
effectiveness is shown via comparison with the existing recent ones.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

During the past several decades, an increasing, revived research
activity on recurrent neural networks (RNNs) is taking place
because of their successful applications in various areas. These
include associative memories, image processing, optimization pro-
blems, and pattern recognition as well as other engineering or
scientific areas [1–5]. It is well known, the time delay often is a
source of the degradation of performance and/or the instability of
RNNs. It is therefore that the stability analysis of RNNs with time
delays has attracted considerable attention in recent years, e.g. see
Refs. [6–11] and references therein.

It should be noted, the existing stability criteria for RNNs with
time delays can be classified into the delay-independent ones and
the delay-dependent criteria. In general, when the time delay is
small, the delay-dependent stability criteria are less conservative
than delay-independent ones. For the delay-dependent stability
criteria, the maximum delay bound is a very important index for
checking the criterion's conservatism. In due course, significant
research efforts have been devoted to the reduction of conserva-
tism of the delay-dependent stability criteria for the time-delay

RNNs. Following the Lyapunov stability theory, there are two
effective ways to reduce the conservatism within in stability
analysis of networks and systems. One is the choice of suitable
Lyapunov–Krasovskii functional (LKF) and the other one is the
estimation of its time derivative.

In recent years, some new techniques of construction of a
suitable LKF and estimation of its derivative for delayed neural
networks (DNNS) and time delay systems have been presented [12–
32,44–48]. Methods for constructing a dedicated LKF include delay-
partitioning idea [12–20], triple integral terms [16–25], more
information on the activation functions [26], augmented vector
[27,28], etc. The proposed methods for estimating the time-
derivative of LKF include: Park' inequality [29], Jensen's inequality
[30], free-weighing matrices [31], and reciprocally convex optimiza-
tion [32]. In turn, these methods proved very useful in investigating
the stability problems of RNNs with time delays. Among the
stability analysis methods, some delay-dependent criteria for the
RNNs with time-varying delays have been contributed in works
[33–36,42]. For instance, in Ref. [33] the problem of delay-
dependent stability has been investigated by considering some
semi-positive-definite free matrices. Jensen's inequality combined
with convex combination method has been used in Ref. [35]. In Ref.
[36] a new improved delay-dependent stability criterion was pro-
posed, which has been derived by constructing a new augmented
LKF, containing a triple integral term, also by using Wirtinger-based
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integral inequality and two zero value free matrix equations. How-
ever, the introduced free-weighing matrices increase the calculation
complexity as well as computational complexity. For the RNNs with
interval time-varying delays, work [43] has contributed an improved
stability criterion by construction of a suitable augmented LKF and
utilization of Wirtinger-based integral inequality with reciprocally
convex approach. Following the work [37], both the ability and the
performance of neural networks are influenced considerably by the
choice of the activation functions. Apparently there is an essential
need to look for alternative methods of reducing the conservatism of
stability criteria for such neural networks. Thus, the delay-
partitioning approach appeared as an effective way to get a tighter
bound by calculating the derivative of the LKF, which would lead to
better results. However, as the partitioning number of delay
increases, the matrix formulation becomes more complex and the
dimensionality of the stability criterion grows bigger. Hence the
computational burden and computational time consumption growth
become a considerable problem. The activation function dividing
approach was proposed inwork [23], and some new improved delay-
dependent criteria for neural networks with time-varying delays
have been established. A more general activation function dividing
method for delay-dependent stability analysis of DNNs was pre-
sented in Ref. [38].

The above motivating discussion has given considerably incen-
tives to utilize a modified approach, albeit making use of the
existing knowledge, in order to arrive at less conservative, novel,
delay-dependent stability criteria for recurrent neural networks
with time-varying delays.

Firstly, a combined convex method is developed for the stability
of the recurrent neural network systems with time-varying delays.
This method can tackle both the presence of time-varying delays and
the variation of delays. As a first novelty, a new LKF is constructed by
taking more information on the state and the activation functions as
augmented vectors. It has been found by using reciprocal convex
approach and Wirtinger inequality to handle the integral term of
quadratic quantities. With the new LKF at hand, in Theorem 1, the
delay-dependent stability criterion in which both the upper and
lower bounds of delay derivative are available is then derived.
Secondly, unlike the delay partitioning method, a new dividing
approach of the bounding conditions on activation function is
utilized in Theorem 2. Considering the time and the improvement
of the feasible region, the bounding of activation functions
k�
i r ðf iðuÞ=uÞrkþ

i of RNNs with time-varying delays is divided into
two subintervals such as to obtain: k�

i r ðf iðuÞ=uÞrk�
i þαðkþ

i �k�
i Þ

and k�
i þαðkþ

i �k�
i Þr ðf iðuÞ=uÞrkþ

i (0rαr1), where the two
sub-intervals can be either equal or unequal. New activation function
conditions for the divided activation functions bounds are proposed
and utilized in Theorem 2. Thirdly, by utilizing the results of
Theorems 1 and 2, when only the upper bound of the derivative of
the time-varying delay is available, the corresponding new results are
proposed in Corollaries 1 and 2. Finally, this stability analysis method
was applied to a known example from the literature and the
respective results computed. These new results were compared with
the existing recent ones in order to verify and illustrate the effec-
tiveness of the new method and to demonstrate the improvements
obtained. Further, Section 2 presents the problem formulation and
Section 3 presents the new main results. Section 4 elaborates on the
illustrative example and comparison analysis, while conclusions are
drawn and further research outlined in Section 5.

This paper uses the following notations: CT represents the
transposition of matrix C. ℝn denotes n-dimensional Euclidean
space and ℝn�m is the set of all n�m real matrices. P40 means
that P is positive definite. Symbol n represents the elements
below the main diagonal of a symmetric block matrix, and
diag ⋯f g denotes a block diagonal matrix. SymðXÞ is defined as
SymðXÞ ¼ XþXT .

2. Problem formulation

Consider the following recurrent neural networks with discrete
time-varying delays:

_zðtÞ ¼ �AzðtÞþ f ðWzðt�hðtÞÞþ JÞ ð1Þ
where zðUÞ ¼ ½z1ðU Þ; :::; znðU Þ�T is the state vector; f ðUÞ ¼ ½f 1ðUÞ
; :::; f nðU Þ�T denote the neuron activation functions; J ¼ ½J1; :::; Jn�T Aℝn

is a vector representing the bias; A¼ diag fa1; :::; angAℝn�n is a constant
matrix of appropriate dimensions; W ¼ ½W1; :::;Wn�T Aℝn represents
thematrix of connectionweights; and hðtÞ is a time-varying delay having
the following bound properties

C1 : 0rhðtÞrh; hlDr _hðtÞrhuDo1;

C2 : 0rhðtÞrh; _hðtÞrhuD:

where h40 and hl
D; h

u
D are known constants.

The activation functions f iðUÞ; i¼ 1; :::;n are assumed to be
bounded and to satisfy the following bound conditions:

k�
i r f iðuÞ� f iðvÞ

u�v
rkþ

i ; uav; i¼ 1; :::;n ð2Þ

where k�
i and kþ

i are constants.
In the stability analysis of recurrent neural networks (1), for

simplicity, firstly we shift the equilibrium point zn to the origin by
letting x¼ z�zn. Then the system (1) can be converted into

_xðtÞ ¼ �AxðtÞþgðWxðt�hðtÞÞÞ ð3Þ
where gðUÞ ¼ ½g1ðU Þ; :::; gnðUÞ�T and gðWxðU ÞÞ ¼ f ðWxðUÞþznþ JÞ
� f ðWznþ JÞ with gið0Þ ¼ 0. Notice that functions giðU Þ ði¼ 1; :::;nÞ
satisfy the following bound conditions:

k�
i rgiðuÞ�giðvÞ

u�v
rkþ

i ; uav; i¼ 1; :::;n: ð4Þ

If v¼ 0 in (4), then these inequalities become

k�
i rgiðuÞ

u
rkþ

i ; 8ua0; i¼ 1; :::;n: ð5Þ

The objective of this paper is to explore of asymptotic stability
of recurrent neural networks (3) with time-varying delays and to
establish a novel analysis method. Before deriving the main results
of this contribution, the following lemmas are needed:

Lemma 1. [32,39]Consider the given positive integers n, m, a positive
scalar α in the interval ð0;1Þ, a given n�n matrix R40, two matrices
W1 and W2 in ℝn�m. For all vectors ξ in ℝm, define the function Θðα;RÞ
as

Θðα;RÞ ¼ 1
α
ξTWT

1RW1ξþ
1

1�α
ξTWT

2RW2ξ:

Then, if there exists a matrix X in ℝn�n such that
R X

n R

� �
40, the

following inequality holds true:

min
αA ð0;1Þ

Θðα;RÞZ
W1ξ

W2ξ

" #T
R X
n R

� � W1ξ

W2ξ

" #
:

Lemma 2. [39] For a given matrix R40, the following inequality
holds for all continuously differentiable functions σ in ½a; b�-ℝn:Z b

a
_σT ðuÞR _σðuÞduZ 1

b�a
ðσðbÞ�σðaÞÞTRðσðbÞ�σðaÞÞþ 3

b�a
δTRδ;

where δ¼ σðbÞþσðaÞ�ð2=b�aÞ R ba σðuÞdu.

Lemma 3. [40] Let ξAℝn, Φ¼ΦT Aℝn�n, and BAℝm�n such that
rank ðBÞon. Then, the following statements are equivalent:

(1) ξTΦξo0, Bξ¼ 0, ξa0,
(2) ðB? ÞTΦB? o0, where B? is a right orthogonal complement of B.
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Lemma 4. [41] For symmetric matrices of appropriate dimensions
R40 and Ω, and matrix Γ, the following two statements are
equivalent: (1) Ω�ΓRΓT o0, and (2) there exists a matrix Π of the
appropriate dimension such that

ΩþΓΠT þΠΓT Π

ΠT �R

" #
o0: ð6Þ

3. Main results

In this section, the new stability criterion is proposed for the
considered class of recurrent neural networks (1), albeit via the
equilibrium-shifted representation model (3). For simplicity of matrix
representations, the set block entry matrices eiði¼ 1;…;13ÞAℝ13n�n

(for example, eT2 ¼ ½0 I 0 0 0 0 0 0 0 0 0 0 0�) are given and defined as
follows:

ξT ðtÞ ¼ xT ðtÞ xT ðt�hðtÞÞ xT ðt�hÞ _xT ðtÞ _xT ðt�hðtÞÞ _xT ðt�hÞ
h

gT ðWxðtÞÞ gT ðWxðt�hðtÞÞÞ
gT ðWxðt�hÞÞ 1

hðtÞ
R t
t�hðtÞ x

T ðsÞds 1
h�hðtÞ

R t�hðtÞ
t�h xT ðsÞds

R t
t�hðtÞ g

T ðWxðsÞÞds
Z t�hðtÞ

t�h
gT ðWxðsÞÞds

#
;

ωT ðtÞ ¼ xT ðtÞ xT ðt�hÞ
Z t

t�hðtÞ
xT ðsÞds

Z t�hðtÞ

t�h
xT ðsÞds

"
Z t

t�h
gT ðWxðsÞÞds xT ðt�hðtÞÞ

�
;

αT ðt; sÞ ¼ xT ðtÞ xT ðsÞ _xT ðsÞ gT ðWxðsÞÞ xT ðt�hðtÞÞ�
h

;

βT ðsÞ ¼ ½xT ðsÞ _xT ðsÞ gT ðWxðsÞÞ�;
Π0

1 ¼ ½e1 e3 0 0 e12þe13 e2�;Π1
1 ¼ ½0 0 e10 0 0 0�;Π2

1 ¼ ½0 0 0 e11 0 0�;

Π0
2 ¼ ½e4 e6 e1 �e3 e7�e9 0�;

Π1
2 ¼ ½0 0 e2 e2 0 e5�;Π3 ¼ ½e1 e4 e7�;Π4 ¼ ½e2 e5 e8�;

Π0
5 ¼ ½0 0 e1�e2 e12 0�;Π1

5 ¼ ½e1 e10 0 0 e2�;
Π6 ¼ ½e4 0 0 0 e5�;Π7 ¼ ½e3 e6 e9�;Π0

8 ¼ ½0 0 e2�e3 e13 0�;
Π1

8 ¼ ½e1 e11 0 0 e2�;
Π0

9 ¼ ½he1 0 e1�e3 e12þe13 he2�;Π1
9 ¼ ½0 e10 0 0 0�;Π2

9 ¼ ½0 e11 0 0 0�;

Π0
10 ¼ ½0 e1�e2 e12 0 e2�e3 e13�;Π1

10 ¼ ½e10 0 0 0 0 0�;
Π2

10 ¼ ½0 0 0 e11 0 0�;
Φ1 ¼ Symð½e7�e1W

TKm�D1WeT4þ½e1WTKp�e7�D2WeT4Þ
þSymð½e9�e3W

TKm�D5WeT6þ½e3WTKp�e9�D6WeT6Þ;
Φ2j∇k

d
j ¼ ð1�∇k

dÞSymf½e8�e2W
TKm�D3WeT5þ½e2WTKp�e8�

D4WeT5g;
Σ ¼ Symð½Π0

1PðΠ0T
2 þϒ1j∇k

d
jΠ

1T
2 ÞÞþΦ2j∇k

d
j �ð1�∇k

dÞ½e1 Π4 e2�
Q ½e1 Π4 e2�T þSymðΠ0

5Qϒ2j∇k
d
jΠ

T
6Þ

þSymðΠ0
8Rϒ2j∇k

d
j Π

T
6Þþð1�∇k

dÞ½e1 Π4 e2�R½e1 Π4 e2�T

þSymðΠ0
9Nϒ2j∇k

d
jΠ

T
6Þ;

Σ1 ¼ SymðΠ1
1PðΠ0T

2 þϒ1j∇k
d
jΠ

1T
2 ÞÞþΠ1

5Qϒ2j∇k
d
jΠ

T
6þΠ1

9Nϒ2j∇k
d
jΠ

T
6Þ;

Σ2 ¼ SymðΠ2
1PðΠ0T

2 þϒ1j∇k
d
jΠ

1T
2 ÞÞþΠ1

8Rϒ2j∇k
d
jΠ

T
6þΠ2

9Nϒ2j∇k
d
jΠ

T
6Þ;

ϒ1j∇k
d
j ¼ diagfI; I; �ð1�∇k

dÞI; ð1�∇k
dÞI; I; ð1�∇k

dÞIg;
ϒ2j∇k

d
j ¼ diagfI; I; I; I; I; ð1�∇k

dÞIg; k¼ 1;2;∇1
d ¼ hlD;∇

2
d ¼ huD;

Η ¼ ½�A 0 0� I 0 0 0 I 0 0 0 0 0�;Γa ¼Π0
10þhΠ1

10;Γb ¼Π0
10þhΠ2

10;

Ψ ¼Φ1þ½e1 Π3 e2�Q ½e1 Π3 e2�T �½e1 Π7 e2�R½e1 Π7 e2�T
þ½e1 Π3 e2�N½e1 Π3 e2�T

�½e1 Π7 e2�N½e1 Π7 e2�þh2Π3ZΠT
3þh2e4GeT4�YTΦY ;

Y ¼ ½e1�e2 e1þe2�2e10 e2�e3 e2þe3�2e11�T ;
Κ ¼ �Symð½e7�e1W

TKm�T1½e7�e1W
TKp�T

þ½e8�e2W
TKm�T2½e8�e2W

TKp�T þ½e9�e3W
TKm�T3½e9

�e3W
TKp�T Þ�Symð½e7�e8�ðe1�e2ÞWTKm�T4½e7�e8

�ðe1�e2ÞWTKp�T

þ½e8�e9�ðe2�e3ÞWTKm�T5½e8�e9�ðe2�e3ÞWTKp�T Þ;

Χ ¼ Z Λ

n Z

� �
; Φ¼ Ξ S

n Ξ

� �
; Ξ ¼ G 0

0 3G

� �
; S¼

S11 S12
S21 S22

" #
;

Θa ¼ �Symð½e7�e1W
T ðKmþKαÞ�T1½e7�e1W

TKm�T

þ½e8�e2W
T ðKmþKαÞ�T2½e8�e2W

TKm�T

þ½e9�e3W
T ðKmþKαÞ�T3½e9�e3W

TKm�T Þ; Kα ¼ αðKp�KmÞ;

Θb ¼ �Symð½e7�e1W
TKp�T4½e7�e1W

T ðKmþKαÞ�T

þ½e8�e2W
TKp�T5½e8�e2W

T ðKmþKαÞ�T

þ½e9�e3W
TKp�T6½e9�e3W

T ðKmþKαÞ�T Þ;
Ωa ¼ �Symð½e7�e8�ðe1�e2ÞWT ðKmþKαÞ�L1½e7�e8

�ðe1�e2ÞWTKm�T

þ½e8�e9�ðe2�e3ÞWT ðKmþKαÞ�L2½e8�e9�ðe2�e3ÞWTKm�T Þ;

Ωb ¼ �Symð½e7�e8�ðe1�e2ÞWT ðKmþKαÞ�L3½e7�e8

�ðe1�e2ÞWTKp�T

þ½e8�e9�ðe2�e3ÞWT ðKmþKαÞ�L4½e8�e9�ðe2�e3ÞWTKp�T Þ:
ð7Þ

Then the first main result is stated as follows:

Theorem 1. For a given scalar h, any one hlD and hu
D with C1, diagonal

matrices kp ¼ diagfkþ
1 ; ::::; kþ

n g and km ¼ diagfk�
1 ; ::::; k�

n g, system
model (3) is asymptotically stable, if there exist the positive definite
matrices PAℝ6n�6n, QAℝ5n�5n, RAℝ5n�5n, NAℝ5n�5n, ZAℝ3n�3n,
GAℝn�n, diagonal matrices Di ¼ diagðd1i; d2i;…;dniÞZ0, ði¼ 1; …;6Þ,
T i ¼ diagðt1i; t2i;…; tniÞZ0; ði¼ 1; :::;5Þ, and any matrix ΛAℝ3n�3n,
with matrices SijAℝn�nði; j¼ 1;2Þ and matrix Π of appropriate
dimensions, satisfying the following linear matrix inequalities:

ðΗ? ÞTΩ1ðΗ? ÞþðΗ? ÞTΓaΠT þΠΓT
a ðΗ? Þ Π

n �Χ

" #
o0; ð8Þ

ðΗ? ÞTΩ2ðΗ? ÞþðΗ? ÞTΓbΠ
T þΠΓT

b ðΗ? Þ Π

n �Χ

" #
o0; ð9Þ

Χ40; Φ40 ð10Þ
where Ω1 ¼ ΣþhΣ1þΨþΚ , Ω2 ¼ ΣþhΣ2þΨþΚ, and Σ, Σ1, Σ2, Γa,
Γb, Ψ , K, X, Φ are defined in (7), and Η? is the right orthogonal
complement of H.

Proof. For positive diagonal matrices Diði¼ 1; :::;6Þ and positive
definite matrices P;Q ;R;N; Z;G, we construct the LKF as

V ¼ ∑
6

i ¼ 1
ViðxtÞ ð11Þ

where individual Lyapunov function and Lyapunov–Krasovskii
functional are

V1 ¼ωT ðtÞPωðtÞ;

V2 ¼ 2 ∑
n

i ¼ 1
ðd1i

Z wixiðtÞ

0
ðgiðsÞ�k�

i sÞdsþd2i

Z wixiðtÞ

0
ðkþ

i s�giðsÞÞdsÞ

þ2 ∑
n

i ¼ 1
ðd3i

Z wixiðt�hðtÞÞ

0
ðgiðsÞ�k�

i sÞds

þd4i

Z wixiðt�hðtÞÞ

0
ðkþ

i s�giðsÞÞdsÞ
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þ2 ∑
n

i ¼ 1
ðd5i

Z wixiðt�hÞ

0
ðgiðsÞ�k�

i sÞdsþd6i

Z wixiðt�hÞ

0
ðkþ

i s�giðsÞÞdsÞ;

V3 ¼
Z t

t�hðtÞ
αT ðt; sÞQαðt; sÞdsþ

Z t�hðtÞ

t�h
αT ðt; sÞRαðt; sÞds;

V4 ¼
Z t

t�h
αT ðt; sÞNαðt; sÞds;

V5 ¼ h
Z t

t�h

Z t

s
βT ðuÞZβðuÞduds;

V6 ¼ h
Z t

t�h

Z t

s
_xT ðuÞG_xðuÞduds:

The time derivative of V1 can be represented as

_V1 ¼ 2ωT ðtÞP _ωðtÞ ¼ ξT ðtÞfSymððΠ0
1þhðtÞΠ1

1þðh�hðtÞÞΠ2
1Þ

PðΠ0
2þΠ1

2ϒ1j _hðtÞjÞT ÞgξðtÞ ð12Þ

where ϒ1j _hðtÞj ¼ diagfI; I; �ð1� _hðtÞÞI; ð1� _hðtÞÞI; I; ð1� _hðtÞÞIg:
Also, it is fairly easy to calculate

_V2 ¼ 2½gðWxðtÞÞ�xðtÞWKm�TD1W _xðtÞþ2½xðtÞWKp�gðWxðtÞÞ�TD2W _xðtÞ

þð1� _hðtÞÞf2½gðWxðt�hðtÞÞÞ�xðt�hðtÞÞWKm�TD3W _xðt�hðtÞÞ
þ2½xðt�hðtÞÞWKp�gðWxðt�hðtÞÞÞ�TD4W _xðt�hðtÞÞg
þ2½gðWxðt�hÞÞ�xðt�hÞWKm�TD5W _xðt�hÞþ2½xðt�hÞWKp

�gðWxðt�hÞÞ�TD6W _xðt�hÞ
¼ ξT ðtÞfðΦ1þΦ2j _hðtÞjÞgξðtÞ ð13Þ

where Φ1 is defined in (7) and Φ2j _hðtÞj ¼ ð1� _hðtÞÞSymf½e8�e2W
T

Km�D3WeT5þ½e2WTKp�e8�D4WeT5g.
The calculation of _V3 gives

_V3 ¼ αT ðt; tÞQαðt; tÞ�ð1� _hðtÞÞαT ðt; t�hðtÞÞQαðt; t�hðtÞÞ

þ2
Z t

t�hðtÞ
αT ðt; sÞQϒ2j _hðtÞjηds

þð1� _hðtÞÞαT ðt; t�hðtÞÞRαðt; t�hðtÞÞ�αT ðt; t�hÞRαðt; t�hÞ

þ2
Z t�hðtÞ

t�h
αT ðt; sÞRϒ2j _hðtÞjηds

¼ ξT ðtÞf½e1 Π3 e2�Q ½e1 Π3 e2�T �ð1� _hðtÞÞ½e1 Π4 e2�Q ½e1 Π4 e2�T

þSymððΠ0
5þhðtÞΠ1

5ÞQϒ2j _hðtÞjΠ
T
6Þ

þð1� _hðtÞÞ½e1 Π4 e2�R½e1 Π4 e2�T �½e1 Π7 e2�R½e1 Π7 e2�T

þSymððΠ0
8þðh�hðtÞÞΠ1

8ÞRϒ2j _hðtÞjΠ
T
6ÞgξðtÞ ð14Þ

where ϒ2j _hðtÞj ¼ diagfI; I; I; I; I; ð1� _hðtÞÞIg, η¼ ½_xðtÞ 0 0 0
_xðt�hðtÞÞ�T .

The calculation of _V4 leads to

_V4 ¼ αT ðt; tÞNαðt; tÞ�αT ðt; t�hÞNαðt; t�hÞþ2
Z t

t�h
αT ðt; sÞNϒ2j _hðtÞjηds

¼ ξT ðtÞ ½e1 Π3 e2�N½e1 Π3 e2�T
� �½e1 Π7 e2�N½e1 Π7 e2�T

þSymððΠ0
9þhðtÞΠ1

9þðh�hðtÞÞΠ2
9ÞNϒ2j _hðtÞjΠ

T
6ÞgξðtÞ ð15Þ

Furthermore, by using Lemma 1 and Jensen's inequality, we can
derive

_V5 ¼ h2βT ðtÞZβðtÞ�h
Z t

t�hðtÞ
βT ðsÞZβðsÞds�h

Z t�hðtÞ

t�h
βT ðsÞZβðsÞds

rh2βT ðtÞZβðtÞ� h
hðtÞ

� � Z t

t�hðtÞ
βðsÞds

� �T

Z
Z t

t�hðtÞ
βðsÞds

� �

� h
h�hðtÞ

� � Z t�hðtÞ

t�h
βðsÞds

 !T

Z
Z t�hðtÞ

t�h
βðsÞds

 !

rh2βT ðtÞZβðtÞ�
R t
t�hðtÞ βðsÞdsR t�hðtÞ
t�h βðsÞds

2
4

3
5
T

Z Λ

n Z

� � R t
t�hðtÞ βðsÞdsR t�hðtÞ
t�h βðsÞds

2
4

3
5

¼ ξT ðtÞ h2Π3ZΠT
3�ΓΧΓT

n o
ξðtÞ ð16Þ

where Γ ¼Π0
10þhðtÞΠ1

10þðh�hðtÞÞΠ2
10.

Finally, the time derivative _V6 is readily obtained as

_V6 ¼ h2 _xT ðtÞG_xðtÞ�h
Z t

t�h
_xT ðsÞG_xðsÞds ð17Þ

According to Lemmas 1 and 2, it can be found that

�h
Z t

t�h
_xT ðsÞG_xðsÞds¼ �h

Z t

t�hðtÞ
_xT ðsÞG_xðsÞds�h

Z t�hðtÞ

t�h
_xT ðsÞG_xðsÞds

r� h
hðtÞ½xðtÞ�xðt�hðtÞÞ�TG½xðtÞ�xðt�hðtÞÞ�� h

h�hðtÞ½xðt�hðtÞÞ

�xðt�hÞ�TG½xðt�hðtÞÞ�xðt�hÞ�

� 3h
hðtÞ½xðtÞþxðt�hðtÞÞ� 2

hðtÞ
Z t

t�hðtÞ
xðsÞds�TG½xðtÞþxðt�hðtÞÞ

� 2
hðtÞ

Z t

t�hðtÞ
xðsÞds�

� 3h
h�hðtÞ½xðt�hðtÞÞþxðt�hÞ� 2

h�hðtÞZ t�hðtÞ

t�h
xðsÞds�TG½xðt�hðtÞÞþxðt�hÞ� 2

h�hðtÞ
Z t�hðtÞ

t�h
xðsÞds�

¼ � h
hðtÞ

xðtÞ�xðt�hðtÞÞ
xðtÞþxðt�hðtÞÞ� 2

hðtÞ
R t
t�hðtÞ xðsÞds

" #T

Ξ
xðtÞ�xðt�hðtÞÞ

xðtÞþxðt�hðtÞÞ� 2
hðtÞ
R t
t�hðtÞ xðsÞds

" #

� h
h�hðtÞ

xðt�hðtÞÞ�xðt�hÞ
xðt�hðtÞÞþxðt�hÞ� 2

h�hðtÞ
R t�hðtÞ
t�h xðsÞds

2
4

3
5
T

Ξ
xðt�hðtÞÞ�xðt�hÞ

xðt�hðtÞÞþxðt�hÞ� 2
h�hðtÞ

R t�hðtÞ
t�h xðsÞds

2
4

3
5

r�

xðtÞ�xðt�hðtÞÞ
xðtÞþxðt�hðtÞÞ� 2

hðtÞ
R t
t�hðtÞ xðsÞds

xðt�hðtÞÞ�xðt�hÞ
xðt�hðtÞÞþxðt�hÞ� 2

h�hðtÞ
R t�hðtÞ
t�h xðsÞds

2
666664

3
777775

T

Φ

xðtÞ�xðt�hðtÞÞ
xðtÞþxðt�hðtÞÞ� 2

hðtÞ
R t
t�hðtÞ xðsÞds

xðt�hðtÞÞ�xðt�hÞ
xðt�hðtÞÞþxðt�hÞ� 2

h�hðtÞ
R t�hðtÞ
t�h xðsÞds

2
666664

3
777775

Hence

_V6ðxtÞrξT ðtÞ h2e4GeT4�YTΦY
n o

ξðtÞ: ð18Þ

On the grounds of (4) and (5), for any positive diagonal matrix
Ti ¼ diagðt1i; t2i;…; tniÞZ0; ði¼ 1;…;5Þ, the following inequality
holds true:

0r�2 ∑
n

i ¼ 1
t1i giðWixiðtÞÞ�k�

i WixiðtÞ
� �

giðWixiðtÞÞ�kþ
i WixiðtÞ

� �
�2 ∑

n

i ¼ 1
t2i giðWixiðt�hðtÞÞÞ�k�

i Wixiðt�hðtÞÞ� �
giðWixiðt�hðtÞÞÞ�

�kþ
i Wixiðt�hðtÞÞ�
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�2 ∑
n

i ¼ 1
t3i giðWixiðt�hÞÞ�k�

i Wixiðt�hÞ� �
giðWixiðt�hÞÞ�

�kþ
i Wixiðt�hÞ�

�2 ∑
n

i ¼ 1
t4i giðWixiðtÞÞ�giðWixiðt�hðtÞÞÞ�k�

i ðxiðtÞ�xiðt�hðtÞÞÞ� �

� giðWixiðtÞÞ�giðWixiðt�hðtÞÞÞ�kþ
i ðxiðtÞ�xiðt�hðtÞÞÞ� ��2 ∑

n

i ¼ 1
t5i

� giðWixiðt�hðtÞÞÞ�giðWixiðt�hÞÞ�k�
i ðxiðt�hðtÞÞ�xiðt�hÞÞ� �

� giðWixiðt�hðtÞÞÞ�giðWixiðt�hÞÞ�kþ
i ðxiðt�hðtÞÞ�xiðt�hÞÞ� �

¼ ξT ðtÞΚξðtÞ ð19Þ

In order to handle the term _hðtÞ, which occurred in the above
derivative, let define quantity ∇d in the following set:

Ψd : ¼ ∇dj∇dAconv ∇1
d ;∇

2
d

� 	� 	 ð20Þ
where conv denotes the convex hull, ∇1

d ¼ hl
D, and ∇2

d ¼ huD. Then,
there exists a parameter θ40 such that _hðtÞ can be expressed as
convex combination of the vertices as follows:

_hðtÞ ¼ θ∇1
dþð1�θÞ∇2

d: ð21Þ

If a matrix Mj _hðtÞj is affine dependent on _hðtÞ, then Mj _hðtÞj can be
expressed as convex combinations of the vertices

Mj _hðtÞj ¼ θMj∇1
d
j þð1�θÞMj∇2

d
j ð22Þ

It follows from (22), if a stability condition is affine dependent
on _hðtÞ, then the only need is to check the vertex values of _hðtÞ
instead of checking all the values of _hðtÞ [43].

From expressions (12)–(22), we can get

_VrξT ðtÞðΩ�ΓΧΓT ÞξðtÞ ð23Þ
where Ω¼ ΣþhðtÞΣ1þðh�hðtÞÞΣ2þΨþΚ; and Γ is defined in (16).

By virtue of Lemma 3, it follows that ξT ðtÞfΩ�ΓΧΓT gξðtÞo0
with 0¼ΗξðtÞ is equivalent to ðΗ? ÞT ðΩ�ΓΧΓT ÞðΗ? Þo0. Then by
Lemma 4, inequality ðΗ? ÞT ðΩ�ΓΧΓT ÞðΗ? Þo0 is equivalent to the
inequality

ðΗ? ÞTΩðΗ? ÞþðΗ? ÞTΓΠT þΠΓT ðΗ? Þ Π

n �Χ

" #
o0; ð24Þ

where Π is a matrix of appropriate dimensions. Based on inequal-
ity (24) and the convex optimization approach, we can find
precisely that inequality (24) holds if and only if inequalities
(8)–(10) do hold. Thus, then system (3) is asymptotically stable
and hence the system (1) too. This completes the proof.

Remark 1. Recently, the reciprocally convex optimization techni-
que and the Wirtinger inequality was proposed in Refs. [32,39]
respectively, and these two methods were utilized in deriving (18).
In Lemma 2, it can be noticed the term ð1=ðb�aÞÞ
ðσðbÞ�σðaÞÞTRðσðbÞ�σðaÞÞ is equal to Jensen's inequality and the
newly appeared term ð3=ðb�aÞÞδTRδ can reduce the LKF enlarge-
ment of the estimation. The usage of reciprocally convex optimiza-
tion method avoids the enlargement of hðtÞ and h�hðtÞ while only
introduces matrices S;Λ. Then, the convex optimization method is
used to handle _VðxtÞ. During the above proof procedure, the
dedicated construction of LKF (11) does have full information on
the recurrent neural network system dynamics. It is therefore that
the conservatism is reduced.

Remark 2. In Theorem 1, firstly, the terms ð1=h�hðtÞÞR t�hðtÞ
t�h xT ðsÞds and ð1=hðtÞÞ R tt�hðtÞ x

T ðsÞds are used for the vector
ξðtÞ. This treatment can separate the time derivative of the LKF into

yields hðtÞ-dependent and ðh�hðtÞÞ-dependent. Secondly, the
states xðt�hðtÞÞ and xðt�hÞ are taken as intervals of integral terms,
as shown in the second and third terms of V2. Therefore con-
siderably more information on the cross terms in ðgðWxðt�hðtÞÞÞ,
xðt�hðtÞÞ, _xðt�hðtÞÞ and ðgðWxðt�hÞÞ, xðt�hÞ, _xðt�hÞ are being
utilized. Thirdly, notice the introduction of xðtÞ, xðt�hðtÞÞ as
integral terms in V3, V4, and of the term

R t�hðtÞ
t�h αT ðt; sÞRαðt; sÞds in

V3, which before have not proposed in the literature. These
considerations highlight the main differences in the construction
of the LKF candidate in this paper.

Remark 3. In the stability criteria for delayed neural networks,
many works choose the delay-partitioning number as two as a
kind of a tradeoff between the computational burden and the
improvement of feasible region in stability conditions. However,
when the condition 0rhðtÞrh is divided into 0rhðtÞrh=2 and
h=2rhðtÞrh, the matrix formulation becomes more complex and
the dimension of stability conditions grows larger because of more
augmented vector. Inspired by work [23] on the activation func-
tions dividing method for neural networks with time-varying
delays, we have divided the bounding of the activation function
k�
i r f iðuÞ=urkþ

i for the considered time-varying delay RNNs into
k�
i r f iðuÞ=urk�

i þαðkþ
i �k�

i Þ and k�
i þαðkþ

i �k�
i Þr f iðuÞ=urkþ

i ,
0rαr1. This new activation partitioning method for time-
varying delay RNNs is more general and less conservative. The
new bounding partitioning approach is utilized instead of using
delay-partitioning method; this latter technique is used in the
subsequent Theorem 2. Thus through Theorems 1 and 2 less
conservative stability criteria are derived.

Now, based on the results of Theorem 1, a new stability
criterion for system (3) is introduced by utilizing the new bound-
ing partitioning approach.

Theorem 2. For the given scalars 0rαr1 and h, any one hlD and huD
satisfying C1, and diagonal matrices kp ¼ diagfkþ

1 ; ::::; kþ
n g and

km ¼ diagfk�
1 ; ::::; k�

n g, system (3) is asymptotically stable, if there
exist positive definite matrices PAℝ6n�6n, QAℝ5n�5n, RAℝ5n�5n,
NAℝ5n�5n, ZAℝ3n�3n, GAℝn�n, diagonal matrices Di ¼
diagðd1i; d2i;…; dniÞZ0, ði¼ 1; :::;6Þ, T i ¼ diagðt1i; t2i;…; tniÞ Z0,
ði¼ 1; :::;6Þ, Li ¼ diagðl1i; l2i;…; lniÞZ0, ði¼ 1; :::;4Þ, and any matrix
ΛAℝ3n�3n, along with matrices SijAℝn�nði; j¼ 1;2Þ and Π of appro-
priate dimensions, satisfying the following linear matrix inequalities

ðΗ? ÞTΘ1ðΗ? ÞþðΗ? ÞTΓaΠT þΠΓT
a ðΗ? Þ Π

n �Χ

" #
o0 8Δ¼ a; b

ð25Þ

ðΗ? ÞTΘ2ðΗ? ÞþðΗ? ÞTΓbΠ
T þΠΓT

b ðΗ? Þ Π

n �Χ

" #
o0 8Δ¼ a;b

ð26Þ

Χ40; Φ40 ð27Þ

where Θ1 ¼ ΣþhΣ1þΨþΘΔþΩΔ, Θ2 ¼ ΣþhΣ2þΨþΘΔþΩΔ;

8Δ¼ a; b and Σ, Σ1, Σ2, Ψ , Γa, Γb, X, Φ, Θa, Θb, Ωa, Ωb are defined
in (7), and where Η? is the right orthogonal complement of H.

Proof. While considering the same Lyapunov–Krasovskii func-
tional as proposed in Theorem 1, we divide the bounding on
activation function (5) into two sub-intervals, thus denoting the
Case 1 and the Case 2 within this proof.

Case 1: Notice

k�
i rgiðuÞ�giðvÞ

u�v
rk�

i þαðkþ
i �k�

i Þ; 0rαr1 ð28Þ
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which by choosing v¼ 0, it is equivalent to

½giðuÞ�k�
i u�½giðuÞ�ðk�

i þαðkþ
i �k�

i ÞÞu�o0: ð29Þ
From (29), for any positive definite diagonal matrices
T1 ¼ diagðt11; t12;…; t1nÞZ0, T2 ¼ diagðt21; t22;…; t2nÞZ0, and
T3 ¼ diagðt31; t32;…; t3nÞZ0 the following inequality is satisfied:

0r�2 ∑
n

i ¼ 1
t1i giðWixiðtÞÞ�k�

i WixiðtÞ
� �

giðWixiðtÞÞ
�

�ðk�
i þαðkþ

i �k�
i ÞÞWixiðtÞ

��2 ∑
n

i ¼ 1
t2i giðWixiðt�hðtÞÞÞ�

�k�
i Wixiðt�hðtÞÞ

�
giðWixiðt�hðtÞÞÞ�

�ðk�
i þαðkþ

i �k�
i ÞÞWixiðt�hðtÞÞ

��2 ∑
n

i ¼ 1
t3i giðWixiðt�hÞÞ�

�k�
i Wixiðt�hÞ

�
giðWixiðt�hÞÞ�ðk�

i þαðkþ
i �k�

i ÞÞWixiðt�hÞ� �
¼ ξT ðtÞΘaξðtÞ ð30Þ

For (28), the following conditions are fulfilled:

k�
i rgiðWixiðtÞÞ�giðWixiðt�hðtÞÞÞ

WixiðtÞ�Wixiðt�hðtÞÞ rk�
i þαðkþ

i �k�
i Þ;

k�
i rgiðWixiðt�hðtÞÞÞ�giðWixiðt�hÞÞ

Wixiðt�hðtÞÞ�Wixiðt�hÞ rk�
i þαðkþ

i �k�
i Þ ð31Þ

For i¼ 1;⋯;n, the above two conditions are equivalent to

giðWixiðtÞÞ�giðWixiðt�hðtÞÞÞ�k�
i WiðxiðtÞ�xiðt�hðtÞÞÞ� �

� giðWixiðtÞÞ�giðWixiðt�hðtÞÞÞ�ðk�
i þαðkþ

i �k�
i ÞÞWiðxiðtÞ

�
�xiðt�hðtÞÞÞ�r0;

giðWixiðt�hðtÞÞÞ�giðWixiðt�hÞÞ�k�
i Wiðxiðt�hðtÞÞ�xiðt�hÞÞ� �

� giðWixiðt�hðtÞÞÞ�giðWixiðt�hÞÞ�
�ðk�

i þαðkþ
i �k�

i ÞÞWiðxiðt�hðtÞÞ�xiðt�hÞÞ�r0 ð32Þ

Therefore, for any positive definite matrices L1 ¼ diag l11;⋯; l1n
� 	

,
L2 ¼ diag l21;⋯; l2n

� 	
, the following inequality holds true:

0r�2 ∑
n

i ¼ 1
l1i giðWixiðtÞÞ�giðWixiðt�hðtÞÞÞ�k�

i WiðxiðtÞ�xiðt�hðtÞÞÞ� ��

� giðWixiðtÞÞ�giðWixiðt�hðtÞÞÞ�ðk�
i þαðkþ

i �k�
i ÞÞWiðxiðtÞ

�
�xiðt�hðtÞÞÞ�g�2 ∑

n

i ¼ 1
l2i giðWixiðt�hðtÞÞÞ�giðWixiðt�hÞÞ��

�k�
i Wiðxiðt�hðtÞÞ�xiðt�hÞÞ

�
:

� giðWixiðt�hðtÞÞÞ�giðWixiðt�hÞÞ�ðk�
i þαðkþ

i �k�
i ÞÞWiðxiðt�hðtÞÞ�

�xiðt�hÞÞ�g ¼ ξT ðtÞΩaξðtÞ ð33Þ

From the proof of Theorem 1, when k�
i r

ðgiðuÞ�giðvÞ=u�vÞrk�
i þαðkþ

i �k�
i Þ, then an upper bound of _V

can be found as

_VrξT ðtÞfΘþΘaþΩa�ΓΧΓT gξðtÞ: ð34Þ
with 0¼ΗξðtÞ, where Θ¼ ΣþhðtÞΣ1þðh�hðtÞÞΣ2þΨ , and Γ as
defined in (16).
Case 2: Notice

k�
i þαðkþ

i �k�
i ÞrgiðuÞ�giðvÞ

u�v
rkþ

i ð35Þ

For this case, let define positive definite diagonal matrices
T4 ¼ diagðt41; t42;…; t4nÞZ0;T5 ¼ diagðt51; t52;…; t5nÞZ0; T6 ¼
diagðt61; t62;…; t6nÞZ0 and L3 ¼ diag l31;⋯; l3n

� 	
, L4 ¼ diag

l41;⋯; l4n
� 	

. Then by applying a similar procedure as the one

used in Case 1, ultimately we obtain

_VrξT ðtÞfΘþΘbþΩb�ΓΧΓT gξðtÞ: ð36Þ
with 0¼ΗξðtÞ.
Thus, for k�

i r f iðuÞ=urkþ
i an upper bound of _V is obtained as

follows:

_VrξT ðtÞfΘþΘΔþΩΔ�ΓΧΓT gξðtÞ 8Δ¼ a; b ð37Þ
where ΘΔ, ΩΔð8Δ¼ a; bÞ. Similarly as in the proof of Theorem 1,
inequality (37) holds precisely if and only if inequalities (25) and
(26) are satisfied. Thus the feasibility of satisfying inequalities
(25)–(27) means the recurrent neural network (3) is asymptoti-
cally stable, and so is network (1). This completes the proof.

Remark 4. In Theorem 1, we consider that hðtÞ satisfies C1,
but it should be noted there are many systems satisfying the
condition C2. Therefore we can introduce Corollary 1 in order to
analyze the stability of recurrent neural networks with the
condition C2 by setting D3;D4 ¼ 0, R¼ 0 and changing LKF terms
V1, V2, V3, V4.

In Corollary 1 below, block entry matrices ~eiAℝ12n�n, will be
used and the following notations are defined for the sake of
simplicity of matrix notation:

~ξ
T ðtÞ ¼ ½xT ðtÞ xT ðt�hðtÞÞ xT ðt�hÞ _xT ðtÞ _xT ðt�hÞ gT ðWxðtÞÞ

gT ðWxðt�hðtÞÞÞ gT ðWxðt�hÞÞ
1

hðtÞ
R t
t�hðtÞ x

T ðsÞds 1
h�hðtÞ

R t�hðtÞ
t�h xT ðsÞds

R t
t�hðtÞ g

T ðWxðsÞÞds
Z t�hðtÞ

t�h
gT ðWxðsÞÞds

#
; ~ωT ðtÞ ¼ xT ðtÞ xT ðt�hÞ

Z t

t�h
xT ðsÞds

�
Z t

t�h
gT ðWxðsÞÞds

�
; ~Η ¼ ½�A 0 0 � I 0 0 I 0 0 0 0 0�;

~Π
0
1 ¼ ½ ~e1 ~e3 0 ~e11þ ~e12�; ~Π1

1 ¼ ½0 0 ~e9 0�; ~Π2
1 ¼ ½0 0 ~e10 0�;

~Π2 ¼ ½ ~e4 ~e5 ~e1� ~e3 ~e6� ~e8�; ~Π3 ¼ ½ ~e1 ~e6�;
~Π4 ¼ ½ ~e2 ~e7�; ~Π5 ¼ ½ ~e1 ~e4 ~e6�; ~Π6 ¼ ½ ~e3 ~e5 ~e8�;
~Π
0
7 ¼ ½0 ~e1� ~e2 ~e11 0 ~e2� ~e3 ~e12�; ~Π

1
7 ¼ ½ ~e9 0 0 0 0 0�;

~Π
2
7 ¼ ½0 0 0 ~e10 0 0�; ~Γa ¼ ~Π

0
7þh ~Π

1
7; ~Γb ¼ ~Π

0
7þh ~Π

2
7;

~Φ1 ¼ Symð½ ~e6� ~e1W
TKm�D1W ~eT4þ½ ~e1WTKp� ~e6�D2W ~eT4Þ

þSymð½ ~e8� ~e3W
TKm�D5W ~eT5þ½ ~e3WTKp� ~e8�D6W ~eT5Þ;

~Ψ ¼ ~Σþ ~Φ1þ ~Π3
~Q ~Π

T
3�ð1�huDÞ ~Π4

~Q ~Π
T
4þ ~Π5

~N ~Π
T
5

� ~Π6
~N ~Π

T
6þh2 ~Π5Z ~Π

T
5þh2 ~e4G ~eT4� ~Y

T
Φ ~Y ;

~Σ ¼ Symð ~Π0
1
~P ~Π

T
2Þ; ~Σ1 ¼ Symð ~Π1

1
~P ~Π

T
2Þ; ~Σ2 ¼ Symð ~Π2

1
~P ~Π

T
2Þ;

~Y ¼ ½ ~e1� ~e2 ~e1þ ~e2�2 ~e9 ~e2� ~e3 ~e2þ ~e3�2~e10�T
~Κ ¼ �Symð½ ~e6� ~e1W

TKm�T1½~e6� ~e1W
TKp�T

þ½ ~e7� ~e2W
TKm�T2½~e7� ~e2W

TKp�T

þ½ ~e8� ~e3W
TKm�T3½~e8� ~e3W

TKp�T Þ
�Symð½ ~e6� ~e7�ð ~e1� ~e2ÞWTKm�T4½ ~e6� ~e7�ð ~e1� ~e2ÞWTKp�T

þ½ ~e7� ~e8�ð ~e2� ~e3ÞWTKm�T5½ ~e7� ~e8�ð ~e2� ~e3ÞWTKp�T Þ;
~Θa ¼ �Symð½ ~e6� ~e1W

T ðKmþKαÞ�T1½ ~e6� ~e1W
TKm�T

þ½ ~e7� ~e2W
T ðKmþKαÞ�T2½ ~e7� ~e2W

TKm�T
þ½ ~e8� ~e3W

T ðKmþKαÞ�T3½ ~e8� ~e3W
TKm�T Þ;

~Θb ¼ �Symð½ ~e6� ~e1W
TKp�T4½ ~e6� ~e1W

T ðKmþKαÞ�T

þ½ ~e7� ~e2W
TKp�T5½~e7� ~e2W

T ðKmþKαÞ�T

þ½ ~e8� ~e3W
TKp�T6½~e8� ~e3W

T ðKmþKαÞ�T Þ;
~Ωa ¼ �Symð½ ~e6� ~e7�ð ~e1� ~e2ÞWT ðKmþKαÞ�L1½~e6� ~e7

�ð ~e1� ~e2ÞWTKm�T þ½~e7� ~e8�ð~e2� ~e3ÞWT ðKmþKαÞ�L2½~e7
� ~e8�ð ~e2� ~e3ÞWTKm�T Þ;
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~Ωb ¼ �Symð½ ~e6� ~e7�ð ~e1� ~e2ÞWT ðKmþKαÞ�L3½ ~e6� ~e7
�ð ~e1� ~e2ÞWTKp�T þ½ ~e7� ~e8�ð ~e2� ~e3ÞWT ðKmþKαÞ�L4½ ~e7
� ~e8�ð~e2� ~e3ÞWTKp�T Þ ð38Þ

Corollary 1. For the given scalars h and huD satisfying C2, diagonal
matrices kp ¼ diagfkþ

1 ; ::::; kþ
n g and km ¼ diagfk�

1 ; ::::; k�
n g, system (3)

is asymptotically stable, if there exist positive matrices ~PAℝ4n�4n,
~NAℝ3n�3n, ~Q Aℝ2n�2n, ZAℝ3n�3n, GAℝn�n; diagonal matrices
Di ¼ diagðd1i; d2i;…; dniÞZ0; ði¼ 1;…;6Þ, Ti ¼ diagðt1i; t2i;…; tniÞZ0,
ði¼ 1; :::;5Þ, and any matrix ΛAℝ3n�3n along with matrices
SijAℝn�nði; j¼ 1;2Þ, and ~Π of appropriate dimensions, satisfying the
following linear matrix inequalities:

ð ~Η ? ÞT ~Ω1ð ~Η ? Þþð ~Η ? ÞT ~Γa ~Π
T þ ~Π ~Γ

T
a ð ~Η

? Þ ~Π

n �Χ

" #
o0 ð39Þ

ð ~Η ? ÞT ~Ω2ð ~Η ? Þþð ~Η ? ÞT ~Γb ~Π
T þ ~Π ~Γ

T
bð ~Η

? Þ ~Π

n �Χ

" #
o0 ð40Þ

Χ40; Φ40 ð41Þ
where ~Ω1 ¼ h ~Σ1þ ~Ψ þ ~Κ , ~Ω2 ¼ h ~Σ2þ ~Ψ þ ~Κ , and X, Φ are defined in
(7), ~Σ1, ~Σ2, ~Γa, ~Γb, ~Ψ , ~Κ and ~Η

? is the right orthogonal comple-
ment of ~Η are defined in (38).

Proof. Notice

~V ðxtÞ ¼ ∑
6

i ¼ 1

~V iðxtÞ

where

~V 1 ¼ ~ωT ðtÞ ~P ~ωðtÞ ð42Þ

~V 2 ¼ 2 ∑
n

i ¼ 1
ðd1i

Z wixiðtÞ

0
ðgiðsÞ�k�

i sÞdsþd2i

Z wixiðtÞ

0
ðkþ

i s�giðsÞÞdsÞ

þ2 ∑
n

i ¼ 1
ðd5i

Z wixiðt�hÞ

0
ðgiðsÞ�k�

i sÞdsþd6i

Z wixiðt�hÞ

0
ðkþ

i s�giðsÞÞdsÞ

ð43Þ

~V 3 ¼
Z t

t�hðtÞ

xðsÞ
gðWxðsÞÞ

" #T
~Q

xðsÞ
gðWxðsÞÞ

" #
ds ð44Þ

~V 4 ¼
Z t

t�h
βT ðsÞ ~NβðsÞds; ~V 5 ¼ V5; ~V 6 ¼ V6: ð45Þ

Therefore, we can get

_~V ðxtÞr ~ξ
T ðtÞð ~Ω� ~ΓΧ ~Γ

T Þ~ξðtÞ
where ~Ω ¼ hðtÞ ~Σ1þðh�hðtÞÞ ~Σ2þ ~Ψ þ ~Κ , ~Γ ¼ ~Π

0
7þhðtÞ ~Π1

7þðh� hðtÞÞ
~Π
2
7. Further the proof follows similar steps as before for deriving

(24). Thus, we can see that inequalities (39)–(41) do guarantee the
asymptotic stability of recurrent neural networks (3) hence the
networks (1) too.

Remark 5. Also for Theorem 2, we can introduce Corollary 2 in
order to analyze the stability of recurrent neural networks with
the condition C2 applicable by setting D3;D4 ¼ 0, Q ;R¼ 0 and
changing LKF terms V1;V2;V3;V4. The proof is very similar to the
proof of Corollary 1, and thus omitted here.

Corollary 2. For the given scalars 0rαr1 and h, huD satisfying C2,
diagonal matrices kp ¼ diagfkþ

1 ; ::::; kþ
n g and km ¼ diagfk�

1 ; ::::; k�
n g,

system (3) is asymptotically stable, if there exist positive matrices
~PAℝ4n�4n, ~NAℝ3n�3n, ~Q Aℝ2n�2n, ZAℝ3n�3n, GAℝn�n, diagonal
matrices Di ¼ diagðd1i; d2i;…; dniÞZ0; ði¼ 1;…;6Þ, T i ¼ diagðt1i;
t2i;…; tniÞZ0, ði¼ 1; :::;6Þ, Li ¼ diagðl1i; l2i;…; lniÞZ0; ði¼ 1; :::;4Þ,
and any matrix ΛAℝ3n�3n along with matrices SijAℝn�nði; j¼ 1;2Þ,
and ~Π of appropriate dimensions, satisfying the following linear
matrix inequalities:

ð ~Η ? ÞT ~Θ1ð ~Η ? Þþð ~Η ? ÞT ~Γa ~Π
T þ ~Π ~Γ

T
a ð ~Η

? Þ ~Π

n �Χ

" #
o0 8Δ¼ a; b ð46Þ

ð ~Η ? ÞT ~Θ2ð ~Η ? Þþð ~Η ? ÞT ~Γb ~Π
T þ ~Π ~Γ

T
bð ~Η

? Þ ~Π

n �Χ

" #
o0 8Δ¼ a; b ð47Þ

Χ40; Φ40 ð48Þ
where ~Θ1 ¼ h ~Σ1þ ~Ψ þ ~ΘΔþ ~ΩΔ, ~Θ2 ¼ h ~Σ2þ ~Ψ þ ~ΘΔþ ~ΩΔ, 8Δ¼ a; b
and X, Φ are defined in (7), ~Σ1, ~Σ2, ~Γa; ~Γb, ~Ψ , ~Θa, ~Θb, ~Ωa, ~Ωb, and
~Η
? is the right orthogonal complement of ~Η are defined in (38).
Though it should be noted, in some cases, the information on

the derivative of the delay may not be available. Then the criterion

Table 1
Delay bounds h with different hD .

Methods Condition of _hðtÞ hD ¼ 0:0 hD ¼ 0:1 hD ¼ 0:5 hD ¼ 0:9 Unknown

[11] _hðtÞrhD 1.3323 0.8245 0.3733 0.2343 0.2313

[33] _hðtÞrhD 1.3323 0.8402 0.4264 0.3214 0.3209

[34] _hðtÞrhD 1.5330 0.9331 0.4268 – 0.3215

[35] �hDr _hðtÞrhD – 0.8411 0.4267 0.3227 0.3215

[36] (Theorem 1) �hDr _hðtÞrhD 1.5575 1.0389 0.5478 0.4602 –

[36] (Corollary 1) _hðtÞrhD 1.5575 0.9430 0.4417 0.3632 0.3632

Theorem 1 �hDr _hðtÞrhD 1.8899 1.1240 0.5698 0.4737 –

Theorem 2(α¼ 0:7) �hDr _hðtÞrhD 2.1082 1.1778 0.5824 0.4824 –

Corollary 1 _hðtÞrhD 1.6386 0.9956 0.4464 0.3800 0.3695

Corollary 2 (α¼ 0:7) _hðtÞrhD 1.8211 1.0401 0.4535 0.3781 0.3781

Fig. 1. State trajectories of the system of Example 1.
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for such a situation can be derived from Corollaries 1 and 2 by
setting ~Q ¼ 0.

4. Illustrative example

In this section, the results of applying the proposed stability method
to an example from the literature (e.g., see Ref. [11] for instance) are
presented via a comparison analysis with those of the previous
relevant methods to show its effectiveness and demonstrate the
improvements. These results are given below in terms of the calcula-
tions in Table 1 and the computer simulations in Fig. 1.

Example 1. Consider a recurrent neural network of class (3) that
is defined by the following parameter matrices:

A¼
7:3458 0 0

0 6:9987 0
0 0 5:5949

2
64

3
75; W ¼

13:6014 �2:9616 �0:6936
7:4736 21:6810 3:2100
0:7290 �2:6334 �20:1300

2
64

3
75;

Km ¼ diagf0;0;0g; Kp ¼ diagf0:3680;0:1795;0:2876g: ð49Þ

For this recurrent neural network in which the condition
�hDr _hðtÞrhD applied, the results obtained by means of
Theorems 1 and 2 are summarized in Table 1, and given in
comparison with the existing recent ones. It can be seen that, as
compared to those in works [11,33–36], our results have improved
the feasible region where asymptotic stability holds. It is worth
pointing out the results based on Theorem 2 clearly provide larger
delay bounds than those of Theorem 1 when α¼ 0:7. This fact also
clearly demonstrates the effectiveness of the method with parti-
tioning the bounding conditions on the activation functions. For
the case of C2, the results obtained by Corollaries 1 and 2 are
shown in Table 1 too. Again it is seen our results are less
conservative than the existing ones.

The responses shown in Fig. 1 are obtained setting
xð0Þ ¼ ½1; �1; 2�T for the recurrent neural network with a time-
varying delay in Example 1, where the following quantities were
defined: h¼1.1778 for hD ¼ �hD ¼ 0:1, hðtÞ ¼ 0:1 sin ðtÞþ1:0778r
1:1778, gðxðtÞÞ ¼ ½0:3680 tanhðx1ðtÞÞ; 0:1795 tanhðx2 ðtÞÞ; 0:2876
tanhðx3ðtÞÞ�T . These results verify the asymptotic stability of the
considered class of time-varying delay RNNs obtained by means of
the theorems proved in the previous section.

5. Conclusions

The problem of delay-dependent stability conditions for recurrent
neural network (RNN) systems with time-varying delays has been
investigated and new method derived. Less conservative delay-
dependent stability criteria, which are expressed in terms of LMIs,
are derived by using a novel method of partitioning the bounding
conditions on network's activation function and a novel Lyapunov–
Krasovskii functional (KLF), especially derived for this purpose. This
new proposed method of stability analysis for the time-varying delay
RNNs has been applied to the illustrative example taken from the
literature. The obtained results are summarized in a comparison
table with those in the recent literature and also verified by the
asymptotic stability of state responses obtained via computer simu-
lation. The presented results clearly demonstrate reduced conserva-
tiveness and response improvements.

This new methodological approach can be extended to other
stability analysis problems for all kinds of neural networks, e.g. for
stability problems involving H-infinite performance, passivity, and
dissipativity too. In addition, by applying the main idea to the control
synthesis problem for dynamic networks, such as stochastic delayed
complex networks and Markovian jumping delayed complex net-
works, the feasible stability region can be enhanced. These aspects

will be studied in future works. Also, it is worth noting, constructing a
more suitable LKF and reducing the calculation enlargement in
estimating the derivative also needs further investigation.
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