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Abstract. This paper addresses the problem of synchronization for decentralized event-triggered
uncertain switched neural networks with two additive time-varying delays. A decentralized event-
triggered scheme is employed to determine the time instants of communication from the sensors
to the central controller based on narrow possible information only. In addition, a class of
switched neural networks is analyzed based on the Lyapunov–Krasovskii functional method and
a combined linear matrix inequality (LMI) technique and average dwell time approach. Some
sufficient conditions are derived to guarantee the exponential stability of neural networks under
consideration in the presence of admissible parametric uncertainties. Numerical examples are
provided to illustrate the effectiveness of the obtained results.
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1 Introduction

In recent years, neural networks (NNs) have become the active research field, and their
successive application used in various areas, such as image processing and optimization
problems [3,6,26]. Time delays, which always cause instability and degrade performance,
are ubiquitously present in many NNs due to the signal transmission (see [1, 12] and ref-
erences therein). Switched systems, which provide a unified framework for mathematical
modeling of many physical or man-made systems displaying switching features, such
as power electronics, flight control systems, network control systems, have been widely
studied recently [5, 22, 23]. The switched system consists of a collection of subsystems
and a switching signal governing the switching among them. In addition, the average
dwell time method introduced in [7] has been recognized to be flexible and efficient
in finding a suitable switching signal to guarantee the stability of switched systems or
improve the system performance [4, 20].

In the recent years, event-triggered control has received increasing attention in real
time control systems. Especially to the case of battery-powered wireless devices, reduc-
ing the number of network transmissions has an important effect on the battery life-
span [14, 15]. Therefore, how to saving limited network resource is a significant and
challenging task. The main task to design a decentralized event-triggered scheme for
saving the limited communication resources while guaranteeing that the drive response
system is synchronous. As a result, event-triggered scheme particularly decentralized
event-triggered scheme has received a lot of research interest, and some important results
have been published [9, 16]. In [18], network-based event-triggered filtering for Marko-
vian jump systems is studied. In this paper, the model of decentralized event-triggered
is for saving the limited communication resources while assure that the switched neural
networks with additive time-varying delay is exponentially stable.

Recently, a new type of systems with two additive time-varying delays were proposed
in [8], and the stability problem was further discussed in [11]. In networked systems, sig-
nals are communicated from one point to another may experience two network segments,
which can possibly produce two time-varying delays with different properties by cause of
variable network transmission conditions [13,23,28]. Moreover, synchronization has been
extensively studied due to its strong potential applications in engineering, such as secure
communication, robot queue, and chemical reaction [10, 27]. Synchronization strategies
can have communication between nodes, which cause the network congestion and waste
the network resources. In order to overcome the conservativeness of synchronization
strategies, the event-triggered strategy is proposed. Many results have been reported in
the literature for synchronization-based event-triggered problem [17, 19, 25]. In addition,
to the best of our knowledge, synchronization of uncertain switched neural networks with
two additive delay components via decentralized event-triggered scheme has not been
completely investigated, which motivates the study of this paper.

Based on the above discussions, in this paper, the problem of synchronization of
decentralized event-triggered uncertain switched neural networks with two additive delay
components is considered. By utilizing a novel Lyapunov–Krasovskii functional, integral
techniques, some sufficient conditions are expressed in terms of linear matrix inequalities
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(LMIs), which can be easily checked by using MATLAB LMI Control toolbox. Finally,
numerical examples are given to verify the effectiveness of the obtained criteria. The main
contributions of this paper are listed as follows: (i) a sufficient condition of exponential
stability with two additive time-varying delays for uncertain switched neural networks is
established by using average dwell time method, Lyapunov functional method, and some
mathematical techniques; and (ii) A decentralized event-triggered scheme is proposed to
synchronize the drive-response uncertain switched neural networks.

Notations. Throughout this manuscript, Rn and Rn×n denote the n-dimensional Eu-
clidean space and the set of all n×n real matrices, respectively. The superscript T denotes
the transposition, and the notation P > 0 means that P is real, symmetric and positive
definite; diag denotes the block-diagonal matrix; ‖·‖ refers to the Euclidean vector norm.
The notation ∗ always denotes the symmetric block in one symmetric matrix. λmin(A)
or λmax(A) denotes the maximum eigenvalue or the minimum eigenvalue of matrix A,
respectively. Matrices, if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2 Problem statement and preliminaries

Consider the following uncertain drive-response neural networks with two additive time-
varying delay components:

ẏ(t) = −
(
Wβ(t) +∆Wβ(t)(t)

)
y(t) +

(
Aβ(t) +∆Aβ(t)(t)

)
f
(
y(t)

)
+
(
Bβ(t) +∆Bβ(t)(t)

)
f
(
y
(
t− ĥ1(t)− ĥ2(t)

))
+
(
Cβ(t) +∆Cβ(t)(t)

) t∫
t−ρ̂(t)

f
(
y(s)

)
ds+ ν(t), (1)

ż(t) = −
(
Wβ(t) +∆Wβ(t)(t)

)
z(t) +

(
Aβ(t) +∆Aβ(t)(t)

)
f
(
z(t)

)
+
(
Bβ(t) +∆Bβ(t)(t)

)
f
(
z
(
t− ĥ1(t)− ĥ2(t)

))
+
(
Cβ(t) +∆Cβ(t)(t)

) t∫
t−ρ̂(t)

f
(
z(s)

)
ds+ ν(t) + u(t), (2)

where y(t) = [y1(t), y2(t), . . . , yn(t)]T ∈ Rn, z(t) = [z1(t), z2(t), . . . , zn(t)]T ∈ Rn is
the neuron state vector in the drive system (1) and the response system (2), respectively;
Wβ(t) = diag{wβ(t)i} with wβ(t)i > 0 (i = 1, 2, . . . , n); Aβ(t), Bβ(t), Cβ(t) ∈ Rn×n are
the connection weight matrix, discretely delayed connection weight matrix and the dis-
tributed delayed connection weight matrix, respectively; ν(t) = [ν1(t), ν2(t), . . . , νn(t) ∈
Rn] is an external input vector; u(t) ∈ Rn is the control input of the response system (2);
f(·) = [f1(·), . . . , fn(·)]T ∈ Rn is the neuron activation function;∆Wβ(t)(t),∆Aβ(t)(t),
∆Bβ(t)(t), ∆Cβ(t)(t) are time-varying parametric uncertainties, where β(t) denotes the
switching signal and takes the values in the finite set M = {1, 2, . . . ,m}, which means
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that the matrices Wβ(t), Aβ(t), Bβ(t), Cβ(t) are allowed to take values in the finite set
[(W1, A1, B1, C1)], . . . , [(Wm, Am, Bm, Cm)]. Corresponding to the switching signal
β(t), we have the switching sequence {xt0 ; (l0, t0), . . . (lk, tk), . . . , | lk ∈ M, k =
0, 1, 2 . . . }, it means that lth subsystem is active when t ∈ [tk, tk+1). In the drive-response
neural networks, ρ̂(t) represents the distributed delay, and ĥ1(t) and ĥ2(t) are additive
time-varying delays that satisfy

0 6 ĥ1(t) 6 ĥ1,
˙̂
h1(t) 6 µ1, 0 6 ĥ2(t) 6 ĥ2,

˙̂
h2(t) 6 µ2,

0 6 ρ̂(t) 6 ρ̂, ˙̂ρ(t) 6 µ3,

where ĥ1, ĥ2, ρ̂, µ1, µ2 and µ3 are known constants. Also, we denote ĥ(t) = ĥ1(t) +

ĥ2(t), ĥ = ĥ1 + ĥ2 and µ = µ1 + µ2. We assume that the matrices ∆Wl(t), ∆Al(t),
∆Bl(t), ∆Cl(t) are norm bounded and satisfy[

∆Wl(t) ∆Al(t) ∆Bl(t) ∆Cl(t)
]

= Gl(t)Fl(t)
[
X1l X2l X3l X4l

]
,

where Gl(t), X1l, X2l, X3l, X4l are known real constant matrices with appropriate
dimensions. The uncertain matrix Fl(t) satisfies FT

l (t)Fl(t) 6 I , t > 0. In order to sim-
plify the equations, we write [∆Wl(t)∆Al(t)∆Bl(t)∆Cl(t)] as [∆Wl ∆Al ∆Bl ∆Cl].

Assumption 1. Each neuron activation function fz(·) is bounded and there exist constants
l−z , l+z such that l−j 6 l+j and

l−z 6
fz(ρ1)− fz(ρ2)

ρ1 − ρ2
6 l+z

for all ρ1, ρ2 ∈ R, ρ1 6= ρ2, z ∈ N. For simplicity of presentation, we denote H1 =
diag{l−1 l

+
1 , l
−
2 l

+
2 , . . . , l

−
n l

+
n }, H2 = diag{(l−1 + l+1 )/2, (l−2 + l+2 )/2, . . . , (l−n + l+n )/2}.

Combining (1) and (2) with r(t) = y(t) − z(t), the synchronization error system can be
obtained as

ṙ(t) = −
(
Wl +∆Wl(t)

)
r(t) +

(
Al +∆Al(t)

)
g
(
r(t)

)
+
(
Bl +∆Bl(t)

)
× g
(
r
(
t− ĥ1(t)− ĥ2(t)

))
+
(
Cl +∆Cl(t)

) t∫
t−ρ̂(t)

g
(
r(s)

)
ds+ u(t), (3)

where g(r(t)) = f(z(t))− f(y(t)), and it can be checked that the function gz(·) satisfies
the following condition:

l−z 6
gz(ρ)

ρ
6 l+z , gz(0) = 0 ∀z ∈ R, ρ 6= 0, z ∈ N.

The decentralized event-triggered scheme is initiate to decrease the communication
burden. In this design, the (m) entries and the measurement errors r(t) are collected into
v̂ nodes, therefore the signals corresponding to node j ∈ {1, 2, . . . , v̂} are denoted by
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kj(t) ∈ Rnj for
∑v̂
j=1 nj = n. A decentralized event-triggered condition embedded in

the event generators (EGs) is used to decide whether the sampled data should be released
to the controller or not. We denote the release instants of the jth̄ event generator by
[tjkj h̄]∞Kj

= 0, and the next release instant tjkj+1h̄ of event generator j is determined
by

tjkj+1h̄ = tjkj h̄+ min
{
ih̄
∣∣ ωT

j

(
tjkj h̄+ ih̄

)
φ̄jlωj

(
tjkj h̄+ ih̄

)
> κjr

T
j

(
tjkh̄)φ̄jlrj

(
tjkh̄
)}
, (4)

where κj , φj > 0, j ∈ N, and also defined the error between the current sampling vector
and the latest transmission is

ωj
(
tjkj h̄+ ih̄

)
= rj

(
tjkj h̄+ ih̄

)
− rj

(
tjkj h̄

)
.

We will consider a decentralized event-triggered scheme in this paper, which is one
of the most important components for designing every control framework and reducing
the communication burden in the network. Generally, from (4), the set of release instants
{tjkj h̄} is a subset of {0, h̄, 2h̄, . . . }, i.e., all the sampled signals are transmitted to the
controller. The decentralized event-triggered communication scheme is designed to re-
duce some unwanted data transmissions. Therefore, the real-time detection hardware is
no longer needed. In this paper, we are interested in designing the following controller:

u(t) = Kβ(tkh̄)

[
rT
1

(
t1k1 h̄

)
, rT

2

(
t2k2 h̄

)
, . . . , rT

v̂

(
tv̂kv̂ h̄

)]
, t ∈ [tkh̄, tk+1h̄),

where Kβ(tkh̄) is the gain matrix to be determined. When β(tkh̄) = β(tk+1h̄) = l, the
lth subsystem is activated on [tkh̄, tk+1h̄) and

tkh̄ = max
j=1,2,...,v̂

{
tjkj h̄

}
, tk+1h̄ = min

j=1,2,...,v̂
max

i=1,2,...,v̂

{
tjkj+1

}
h̄
∣∣ tjkj+1 > tiki + 1.

Let v̂k = tk+1 − tk. Then the interval [tkh̄, tk+1h̄) can be shown as [tkh̄, tk+1h̄) =⋃v̂k−1
i=0 λi, where λi = [tkh̄+ ih̄, tkh̄+ ih̄+ h̄). Define ς1(t) = t− tkh̄− ih̄ for t ∈ λi.

It is easy to understand that ς1(t) is a piecewise-linear function satisfying

0 6 ς1(t) 6 h̄, t ∈ λi, ς̇1(t) = 1, t 6= tkh̄+ jh̄.

Therefore, the threshold error ωj(tkh̄+ jh̄) can be rewritten as

ωj
(
t− ς1(t)

)
= rj

(
t− ς1(t)

)
− rj

(
tjkj h̄

)
,

Denote ω(t− ς1(t)) = {ω1(t− ς2(t)), ω2(t− ς2(t)), . . . , ωv̂(t− ςn(t))}. Then the
control input ul(t) can be obtained as

ul(t) = Kl

(
r
(
t− ς1(t)

)
− ω

(
t− ς1(t)

))
. (5)
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Substituting (5) in system (3), which gives

ṙ(t) = −
(
Wl +∆Wl(t)

)
r(t) +

(
Al +∆Al(t)

)
g
(
r(t)

)
+
(
Bl +∆Bl(t)

)
g
(
r
(
t− ĥ1(t)− ĥ2(t)

))
+
(
Cl +∆Cl(t)

) t∫
t−ρ̂(t)

g
(
r(s)

)
ds

+Kl

(
r
(
t− ς1(t)

)
− ω

(
t− ς1(t)

))
for t ∈ λi. (6)

The following definitions and lemmas will play an important role in the derivation of
our result.

Definition 1. (See [22].) System (3) is said to be robustly exponentially stable under
switching signal β(t) if there exist some scalars k > 0 and η > 0 such that∥∥x(t)

∥∥ < ke−η(t−t0)
∥∥x(t0)

∥∥,
where ‖x(t0)‖ = sup−h6s60(‖x(s+ t)‖, ‖ẋ(s+ t)‖).

Definition 2. (See [22].) For any T2 > T1 > 0, let Nβ(T1, T2) denote the number of
switching β(t) over (T1, T2). If Nβ(T1, T2) 6 N0 + (T2 − T1)/Ta holds for Ta > 0,
N0 > 0, then Ta is called the average dwell time. It is commonly assumed in the literature
that N0 = 0.

Lemma 1 [Wirtinger-based integral inequality]. (See [12].) For any constant matrix
N̄ > 0, the following inequality holds for all continuously differentiable function θ̂ in
[a, b] → Rn; (b − a)

∫ b
a
θ̂T(λ)N̄ θ̂(λ) dλ > (

∫ b
a
θ̂(λ) dλ)TN̄(

∫ b
a
θ̂(λ) dλ) + 3%TN̄%,

where % =
∫ b
a
θ̂(λ) dλ− (2/(b− a))

∫ b
a

∫ b
a
θ̂(λ) dudλ.

Lemma 2. (See [3].) For scalars â and b̂ satisfying â 6 b̂ and a matrix R ∈ Sn+, the
following inequality holds:

∫ b̂
â
ṙT(s)Rṙ(s) ds > (1/(b̂− â))

∑3
k=0(2k + 1)ρT

kRρk.

Lemma 3. (See [26].) For a scalar α ∈ (0, 1), matrices R1, R2 ∈ Sn+ and Y1, Y2 ∈
Rn×n, the following matrix inequality[

1
αR1 0
∗ 1

1−αR1

]
6

[
R1 + (1− α)X1 Y (α)

∗ R2 + αX2

]
holds, where X1 = R1 − Y1R

−1
2 Y T

1 , X2 = R2 − Y2R
−1
1 Y T

2 and αY1 + (1− α)Y2.

3 Main results

In this section, our aim is to study the exponential stability of switched neural networks
with additive time-varying delays using the decentralized event-triggered design. First,
we consider the following nominal system:

ṙ(t) = −Wlr(t) +Alg
(
r(t)

)
+Blg

(
r
(
t− ĥ1(t)− ĥ2(t)

))
+ Cl

t∫
t−ρ̂(t)

g
(
r(s)

)
ds

+Kl

(
r
(
t− ς1(t)

)
− ω

(
t− ς1(t)

))
, (7)
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In order to make the presentation more sententious, we define

r̃i = [0n(i−1)n In 0n(34−i)n]; i = 1, 2, . . . , 34,

θ0m =

b∫
a

s1∫
a

· · ·
sm−1∫
a

x(sm) dsm · · · ds2 ds1,

Γ1 = col{r̃1 − r̃3, r̃2 + r̃3 − 2r̃24, r̃2 − r̃3 − 6r̃24 + 12r̃25,

r̃2 + r̃3 − 12r̃24 + 60r̃25 − 60r̃26},

Γ2 = col{r̃1 − r̃2, r̃1 + r̃2 − 2r̃21, r̃1 − r̃2 − 6r̃21 + 12r̃22,

r̃1 + r̃2 − 12r̃21 + 60r̃22 − 60r̃23},

ξT
1 (t) =

[
rT(t), rT

(
t− ĥ(t)

)
, rT(t− ĥ), rT

(
t− ĥ1(t)

)
, rT(t− ĥ1),

rT
(
t− ĥ2(t)

)
, rT(t− ĥ2), ṙ(t), gT

(
r(t)

)
gT
(
r
(
t− ĥ(t)

))
,

t∫
t−ĥ

rT(s) ds,

t∫
t−ĥ

t∫
β

rT(s) dsdβ,

0∫
−ĥ

t∫
t+β

ṙT(s) dsdβ,

t∫
t−ρ̂(t)

gT
(
r(s)

)
ds,

t∫
t−ρ̂

t∫
β

gT
(
r(s)

)
dsdβ, rT

(
t− ς1(t)

)
, rT(t− h̄), ωT

(
t− ς1(t)

)]
,

ξT
2 (t) =

[
1

ĥ1(t)

t∫
t−ĥ1(t)

ṙT(s) ds,
1

ĥ1 − ĥ1(t)

t−ĥ1(t)∫
t−ĥ1

ṙT(s) ds,
1

ĥ2(t)

t∫
t−ĥ2(t)

ṙT(s) ds

1

ĥ2 − ĥ2(t)

t−ĥ2(t)∫
t−ĥ2

ṙT(s) ds

]
, α1 =

ĥ− ĥ(t)

ĥ
, α2 =

h̄− ς1(t)

h̄
,

Γ3 = col{r̃16 − r̃17, r̃16 + r̃17 − 2r̃32, r̃16 − r̃17 − 6r̃32 + 12r̃33,

r̃16 + r̃17 − 12r̃32 + 60r̃33 − 60r̃34},

Γ4 = col{r̃1 − r̃16, r̃1 + r̃16 − 2r̃29, r̃1 − r̃16 − 6r̃29 + 12r̃30,

r̃1 + r̃16 − 12r̃29 + 60r̃30 − 60r̃31},

R̃ = diag{R3l, 3R3l, 5R3l, 7R3l}, M̃ = diag{M3l, 3M3l, 5M3l, 7M3l}
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ξT
3 (t) =

[
ṙT
(
t− ĥ(t)

)
, ṙT(t− ĥ),

ν0(t)

ĥ(t)
,
ν1(t)

ĥ(t)
,
ν2(t)

ĥ(t)
,

δ̂0(t)

ĥ− ĥ(t)
,

δ̂1(t)

ĥ− ĥ(t)
,

δ̂2(t)

ĥ− ĥ(t)

]
,

ξT
4 (t) =

[
ṙT
(
t− ς1(t)

)
, ṙT(t− h̄),

γ0(t)

ς1(t)
,
γ1(t)

ς1(t)
,
γ2(t)

ς1(t)
,

%̂0(t)

h̄− ς1(t)
,

%̂1(t)

h̄− ς1(t)
,

%̂2(t)

h̄− ς1(t)

]
$T

1 (t) =
[
rT(t), rT

(
t− ĥ(t)

)
, rT

(
t− ĥ

)
, ξT

3 (t)
]
,

$T
2 (t) =

[
rT(t), rT(t− ς1(t)), rT(t− h̄), ξT

4 (t)
]
.

3.1 Exponential stability analysis using decentralized event-triggered scheme

Theorem 1. For given scalars ĥu(u = 1, 2), ρ, ĥ, µ, h̄, µj (j = 1, 2, 3), the equilib-
rium point of system (7) is exponentially stable if there exist symmetric positive-definite
matrices Pl, Qil (i = 1, 2, . . . , 7), Rjl (l = 1, 2, 3, 4), S1l, S2l, W1l, M1l, M2l, positive
diagonal matrices Λfl > 0 (f = 1, 2) and the matrix φ̄l > 0, any matrices α̂1, α̂2, α̂3,
α̂4, α̂5, L1l, Tl, Usl (s = 1, 2) with appropriate dimensions and Y1, Y2, Y3, Y4 ∈ R4n×4n

such that the following linear matrix inequalities hold:

Π̂Ŝ =

Π̂α −ĥ1α̂Îe
−αĥ1 −ĥ2α̂L̂e−αĥ2

∗ −ĥ1R1e−αĥ1 0

∗ ∗ −ĥ2R2e−αĥ2

 6 0, (8)

where

Π̂α = ηT(t)Π̂η(t), Ŝ = 1, . . . , 4, Î = 1, 3, Ĵ = 2, 4, (9)

and

Π̂ = r̃T
1

{
αPl +Q1l +Q2l +Q3l +Q4l +Q5l +Q6l + ĥ2R4l +M1l

− π2

4
W1le

−αh̄ −H1Λ11 + α̂1 + α̂T
1 + α̂2 + α̂T

2 + ĥα̂5 + ĥTα̂T
5 − 2LlWl

}
r̃1

+ r̃T
3

{
−e−αĥQ4l

}
r̃3 + r̃T

1 {−α̂1 + α̂3}r̃4 − r̃T
1 {α̂3}r̃5 + r̃T

1 {−α̂2 + α̂4}r̃6

− r̃T
1 {α̂4}r̃7 + r̃T

1

{
Pl − L1l −WT

l L
T
1l

}
r̃8 + r̃T

1 {L1lAl +H2Λ1l}r̃9

+ r̃T
1 {L1lBl}r̃10 − r̃T

1 {α̂5}r̃11 − r̃T
1 {α̂5}r̃13 + r̃T

1 {L1lCl}r̃14

+ r̃T
1

{
Tl +

π2

4
W1l

}
r̃16 − r̃T

1 {Tl}r̃18 + r̃T
2

{
−(1− µ1)e−αĥQ1l −H1Λ21

}
r̃2

+ rT
2 {H2Λ2l}r̃10 − r̃T

4 {(1− µ1)e−αĥ1Q2l}r̃4 − r̃T
5

{
e−αĥ1Q5l

}
r̃5
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− r̃T
6

{
(1− µ2)e−αĥ2Q3l

}
r̃6 − r̃T

7

{
e−αĥ2Q6l

}
r7

+ r̃T
8

{
ĥ1R1l + ĥ2R2l + ĥ2R3l +

ĥ4

4
S1l + h̄2M2l + h̄2Wl − 2L1

}
r̃8

+ r̃T
8 {L1lAl}r̃9 + r̃T

8 {L1lBl}r̃10 + r̃T
8 {L1lCl}r̃14 + r̃T

8 {Tl}r̃16 − r̃T
8 {Tl}r̃18

+ r̃T
9

{
Q7l + ρ2S2l − Λ1l

}
r̃9 + r̃T

10

{
−(1− µ1)e−αĥQ7l − Λ2l

}
r̃10

− r̃T
11

{
4e−αĥR4l

}
r̃11 + r̃T

11

{
6

ĥ
R4le

−αĥ
}
r̃12 − r̃T

12

{
12

ĥ2
R4le

−αĥ
}
r̃12

− r̃T
13{S1l}re13 − r̃T

14

{
2(1− µ3)e−αρ̂S2l

}
r̃14 − r̃T

15

{
12

ρ̂2
(1− µ3)S2le

−αρ̂
}
r̃15

+ r̃T
16

{
−π

2

4
W1le

−αh̄ + κφ̄l

}
r̃16 − r̃T

16{κφ̄l}r̃18 + r̃T
18{κφ̄l − φ̄l}r̃18

− (2− α1)ΓT
1 R̃Γ1 − (1 + α1)ΓT

2 R̃Γ2 + r̃T
14

{
6

ρ̂
(1− µ3)S2le

−αρ̂
}
r15

− sym
{
ΓT

1

(
α1Y1 + (1− α1)Y2

)
Γ2

}
+ (1− α1)ΓT

1 Y1R̃
−1Y T

1 Γ1

+ α1Γ
T
2 Y

T
2 R̃

−1Y2Γ2 − (2− α2)ΓT
3 M̃Γ3 − (1 + α2)ΓT

4 M̃Γ4

− sym
{
ΓT

3

(
α2Y3 + (1− α2)Y4

)
Γ3

}
+ (1− α2)ΓT

3 Y3M̃
−1Y T

3 Γ3

+ α2Γ
T
4 Y

T
4 M̃

−1Y4Γ4. (10)

Then system (7) is exponentially stable for any switching signal with average dwell
time

Ta > T ∗a = ln
µ̂

α
.

Moreover, the estimator of state decay is given by

∥∥x(t)
∥∥ <√m̃

ñ
e−η(t−t0)

∥∥x(t0)
∥∥,

where for all l, j ∈M , µ̂ > 1 satisfies

Pl 6 µ̂Pj , Q1l 6 µ̂Q1j , Q2l 6 µ̂Q2j , Q3l 6 µ̂Q3j ,

Q4l 6 µ̂Q4j , Q5l 6 µ̂Q5j , Q6l 6 µ̂Q6j , Q7l 6 µ̂Q7j ,

R1l 6 µ̂R1j , R2l 6 µ̂R2j , R3l 6 µ̂R3j , R4l 6 µ̂R4j , (11)
S1l 6 µ̂S1j , S2l 6 µ̂S2j , M1l 6 µ̂M1j , M2l 6 µ̂M2j ,

Wl 6 µ̂Wj ,

η =
1

2

α− ln µ̂

Ta
, ñ = minl∈MλminPl,
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m̃ = max
l∈M

λmaxPl + ĥmax
l∈M

λmaxQ1l + ĥ1 max
l∈M

λmaxQ2l + ĥ2 max
l∈M

λmaxQ3l

+ ĥmax
l∈M

λmaxQ4l + ĥ1 max
l∈M

λmaxQ5l + ĥ2 max
l∈M

λmaxQ6l + ĥmax
l∈M

λmaxQ7l

+ ĥ2
1 max
l∈M

λmaxR1l + ĥ2
2 max
l∈M

λmaxR2l +
ĥ3

2
max
l∈M

λmaxR3l +
ĥ3

2
max
l∈M

λmaxR4l

+
ĥ6

6
max
l∈M

λmaxS1l +
ρ̂3

2
max
l∈M

λmaxS2l + h̄max
l∈M

λmaxM1l +
h̄3

2
max
l∈M

λmaxM2l

+ h̄3 max
l∈M

λmaxWl − h̄max
l∈M

λmaxWl,

and the controller gain is Kl = L−1
1l Tl.

Proof. Choose the LKF for system (7) as

V
(
r(t)

)
=

8∑
ι=1

Vι
(
r(t)

)
, (12)

where

V1

(
r(t)

)
= rT(t)Plr(t),

V2

(
r(t)

)
=

t∫
t−ĥ(t)

eα(s−t)rT(s)Q1lr(s) ds +

t∫
t−ĥ1(t)

eα(s−t)rT(s)Q2lr(s) ds

+

t∫
t−ĥ2(t)

eα(s−t)rT(s)Q3lr(s) ds +

t∫
t−ĥ

eα(s−t)rT(s)Q4lr(s) ds

+

t∫
t−ĥ1

eα(s−t)rT(s)Q5lr(s) ds +

t∫
t−ĥ2

eα(s−t)rT(s)Q6lr(s) ds

+

t∫
t−ĥ(t)

eα(s−t)gT(r(s))Q7lg
(
r(s)

)
ds

V3

(
r(t)

)
=

0∫
−ĥ1

t∫
t+β

eα(s−t)ṙT(s)R1lṙ(s) dsdβ +

0∫
−ĥ2

t∫
t+β

eα(s−t)ṙT(s)R2lṙ(s) dsdβ,

V4

(
r(t)

)
= ĥ

0∫
−ĥ

t∫
t+β

eα(s−t)ṙT(s)R3lṙ(s) dsdβ + ĥ

0∫
−ĥ

t∫
t+β

eα(s−t)rT(s)R4lr(s) dsdβ,

V5

(
r(t)

)
=
ĥ2

2

0∫
−ĥ

0∫
β

t∫
t+λ

eα(s−t)ṙT(s)S1lṙ(s) dsdβ dλ,
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V6

(
r(t)

)
= ρ̂(t)

0∫
−ρ̂(t)

t∫
t+β

eα(s−t)gT(r(s))S2lg
(
r(s)

)
dsdβ,

V7

(
r(t)

)
=

t∫
t−ς1(t)

eα(s−t)rT(s)M1lr(s) ds+ h̄

0∫
−h̄

t∫
t+β

eα(s−t)ṙT(s)M2lṙ(s) dsdβ,

and V8(r(t)) is the discontinuous functional of the form

V8

(
r(t)

)
= h̄2

t∫
t−ς1(t)

eα(s−t)ṙT(s)W1lṙ(s) ds

− π2

4

t∫
t−ς1(t)

eα(s−t)(r(s)−r(t−ς1(t)
))T

W1l

(
r(s)−r

(
t−ς1(t)

))
ds. (13)

The time derivative of
∑8
ι=1 Vι(r(t)) along the trajectory of system (7) is given by:

V̇1

(
r(t)

)
= 2rT(t)Plṙ(t),

V̇2

(
r(t)

)
6 rT(t)Q1lr(t)− (1− µ)e−αĥrT

(
t− ĥ(t)

)
Q1lr

(
t− ĥ(t)

)
+ rT(t)Q2lr(t)

− (1− µ1)e−αĥ1rT
(
t− ĥ1(t)

)
Q2lr

(
t− ĥ1(t)

)
+ rT(t)Q3lr(t)

− (1− µ2)e−αĥ2rT
(
t− ĥ2(t)

)
Q3lr

(
t− ĥ2(t)

)
+ rT(t)Q4lr(t)

− (1− µ)e−αĥrT(t− ĥ)Q4lr(t− ĥ) + rT(t)Q5lr(t)

− e−αĥ1rT(t− ĥ1)Q5lr(t− ĥ1) + rT(t)Q6lr(t)

− e−αĥ2rT(t− ĥ2)Q6lr(t− ĥ2)− αV2(t) + gT
(
r(t)

)
Q7lg

(
r(t)

)
− (1− µ)e−αĥgT

(
r
(
t− ĥ(t)

))
Q7lg

(
r
(
t− ĥ(t)

))
,

V̇3

(
r(t)

)
= ĥ1ṙ

T(t)R1lṙ(t)−
t∫

t−ĥ1

e−αĥ1 ṙT(s)R1lṙ(s) ds+ ĥ2ṙ
T(t)R2lṙ(t)

−
t∫

t−ĥ2

e−αĥ2 ṙT(s)R2lṙ(s) ds− αV3(t), (14)

V̇4

(
r(t)

)
= ĥ2ṙT(t)R3lṙ(t)− ĥ

t∫
t−ĥ

e−αĥṙT(s)R3lṙ(s) ds+ ĥ2rT(t)R4lr(t)

− ĥ
t∫

t−ĥ

e−αĥrT(s)R4lr(s) ds− αV4(t), (15)
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V̇5

(
r(t)

)
=
ĥ4

4
ṙT(t)S1lṙ(t)

−

( 0∫
−ĥ

t∫
t+β

ṙ(s) dsdβ

)T

S1l

( 0∫
−ĥ

t∫
t+β

ṙ(s) dsdβ

)
− αV5(t), (16)

V̇6

(
r(t)

)
6 ρ2gT

(
r(t)

)
S2lg

(
r(t)

)
− (1− µ3)ρ̂(t)

t∫
t−ρ̂(t)

e−αρ̂gT(r(s))S2lg
(
r(s)

)
ds− αV6(t), (17)

V̇7

(
r(t)

)
= rT(t)M1lr(t) + h̄2ṙT(t)M2lṙ(t)

− h̄
t∫

t−h̄

e−αh̄ṙT(s)M2lṙ(s) ds− αV7(t), (18)

V̇8

(
r(t)

)
= h̄2ṙT(t)W1lṙ(t)

− π2

4

[(
r(t)− r

(
t− ς1(t)

))T
W1β(t)

(
r(t)− r

(
t− ς1(t)

))]
− αV8(t).

Using Lemmas 1–3 in (15), (17) and (18), we have

−ĥ
t∫

t−ĥ

e−αĥrT(s)R4lr(s) ds 6 e−αĥ

[
−

( t∫
t−ĥ

rT(s) ds

)
R4l

( t∫
t−ĥ

r(s) ds

)

− 3

[
−

t∫
t−ĥ

rT(s) ds+
2

ĥ

t∫
t−ĥ

t∫
β

rT(s) dsdβ

]

×R4l

[
−

t∫
t−ĥ

r(s) ds+
2

ĥ

t∫
t−ĥ

t∫
β

r(s) dsdβ

]]
,

Also,

−ĥ
t−ĥ(t)∫
t−ĥ

e−αĥṙT(s)R3lṙ(s) ds− ĥ
t∫

t−ĥ(t)

e−αĥṙT(s)R3lṙ(s) ds

6 $T
2 (t)e−αh̄

(
−(2− α2)ΓT

2 M̃Γ2 − (1 + α2)ΓT
3 M̃Γ3

− sym
{
ΓT

2

(
α2Y2 + (1− α2)Y2

)
Γ3

}
+ (1− α2)ΓT

2 Y1M̃
−1Y T

2 Γ2 + α2Γ
T
3 Y

T
3 M̃

−1Y3Γ3

)
$2(t).
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From the Newton–Leibniz formula, the following equations are true for any matrices
α̂1, α̂3, α̂2, α̂4 and α̂5 with appropriate dimensions:

2ηT(t)Zα̂1

[
r(t)− r

(
t− ĥ1(t)

)
− ĥ1(t)

1

ĥ1(t)

t∫
t−ĥ1(t)

ṙ(s) ds

]
= 0,

2ηT(t)Zα̂3

[
r
(
t− ĥ1(t)

)
− r(t− ĥ1)−

(
ĥ1 − ĥ1(t)

) 1

ĥ1 − ĥ1(t)

t−ĥ1(t)∫
t−ĥ1

ṙ(s) ds

]
= 0,

2ηT(t)Zα̂2

[
r(t)− r

(
t− ĥ2(t)

)
− ĥ2(t)

1

ĥ2(t)

t∫
t−ĥ2(t)

ṙ(s) ds

]
= 0,

2ηT(t)Zα̂4

[
r
(
t− ĥ2(t)

)
− r(t− ĥ2)−

(
ĥ2 − ĥ2(t)

) 1

ĥ2 − ĥ2(t)

t−ĥ2(t)∫
t−ĥ2

ṙ(s) ds

]
= 0,

2ηT(t)Zα̂5

[
ĥr(t)−

t∫
t−ĥ

r(s) ds−
0∫
−ĥ

t∫
t+θ

ṙ(s) dsdθ

]
= 0.

Also,

ηT(t) =
[
ξT
1 (t), ξT

3 (t), ξT
4 (t), ξT

2 (t)
]

and Z = col
[ 18 times︷ ︸︸ ︷
1, 1, 1,

20 times︷ ︸︸ ︷
0, 0, 0

]
.

On the other hand, we have the following equality for any real matrix L1l:

2
[
rT(t)L1l + ṙT(t)L1l

][
−ṙ(t)−Wlr(t) +Alg

(
r(t)

)
+Blg

(
r
(
t− ĥ1(t)− ĥ2(t)

))
+ Cl

t∫
t−ρ̂(t)

g
(
r(s)

)
ds+Kl

(
r
(
t− ς1(t)

)
− ω

(
t− ς1(t)

))]
= 0. (19)

Combining and adding (12)–(19), we obtain

V̇
(
r(t)

)
6 ηT(t)Θ̄η(t),

where

Θ̄ =


Π̂α −ĥ1(t)α̂1e−αĥ1 −(ĥ1 − ĥ1(t))α̂3e−αĥ1 a1 a2

∗ −ĥ1(t)R1le
−αĥ1 0 0 0

∗ ∗ −(ĥ1 − ĥ1(t))R1le
−αĥ1 0 0

∗ ∗ ∗ b1 0
∗ ∗ ∗ ∗ b2

 < 0,
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a1 = −ĥ2(t)α̂2e−αĥ2 , a2 = −
(
ĥ2 − ĥ2(t)

)
α̂4e−αĥ2 ,

b1 = −ĥ2(t)R2le
−αĥ2 , b2 = −

(
ĥ2 − ĥ2(t)

)
R2le

−αĥ2 .

There exists a scalar ε > 0, such that

V̇
(
r(t)

)
6 −εηT(t)η(t) 6 −εrT(t)r(t) < 0 ∀r(t) 6= 0. (20)

Then the following linear matrix inequality leads for (ĥ1(t)→ ĥ1) and for ĥ1(t)→ 0:

Θ̄1 =

[
Σ̄11 Σ̄12

∗ Σ̄22

]
< 0, (21)

where

Σ̄11 =

[
Π̂α −ĥ1α̂1e−αĥ1

∗ −ĥ1R1le
−αĥ1

]
, Σ̄12 =

[
−ĥ2(t)α̂2e−αĥ2 −(ĥ2 − ĥ2(t))α̂4e−αĥ2

0 0

]
,

Σ̄22 =

[
−ĥ2(t)R2le

−αĥ2 0

∗ −(ĥ2 − ĥ2(t))R2le
−αĥ2

]
.

Θ̄2 =

[
Ξ̄11 Ξ̄12

∗ Ξ̄22

]
< 0, (22)

where

Ξ̄11 =

[
Π̂α −ĥ1α̂3e−αĥ1

∗ −ĥ1R1le
−αĥ1

]
, Ξ̄12 = Σ̄12, Ξ̄22 = Σ̄22.

It is easy to see that Θ̄2 results from Θ̄|ĥ1(t)=ĥ1
. Also, for our convenience we neglected

the zero row and zero column. The LMIs (21) and (22) imply (20) because

ĥ1(t)

ĥ1

ηT
1 (t)Θ̄1η1(t) +

ĥ1 − ĥ1(t)

ĥ1

ηT
2 (t)Θ̄2η2(t) = ηT(t)Θ̄η(t) < 0.

Define

ηT
1 (t) =

[
ξ1(t),

1

ĥ1(t)

t∫
t−ĥ1(t)

ṙT(s) ds,
1

ĥ2(t)

t∫
t−ĥ2(t)

ṙT(s) ds

1

ĥ2 − ĥ2(t)

t−ĥ2(t)∫
t−ĥ2

ṙT(s) ds

]
,
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ηT
2 (t) =

[
ξ1(t),

1

ĥ1 − ĥ1(t)

t−ĥ1(t)∫
t−ĥ1

ṙT(s) ds,
1

ĥ2(t)

t∫
t−ĥ2(t)

ṙT(s) ds

1

ĥ2 − ĥ2(t)

t−ĥ2(t)∫
t−ĥ2

ṙT(s) ds

]
,

and Θ̄ is convex in ĥ1(t) ∈ [0, h1]. In Θ̄1, for ĥ2(t) → ĥ2 and ĥ2(t) → 0, gives (9).
Similarly, for ĥ2(t) → ĥ2 and ĥ2(t) → 0 in (Θ̄2), gives the LMI (16). Also Π̂1 and Π̂2

can be get from (Θ̄1) because

ĥ2(t)

ĥ2

ηT
3 (t)Π̂1η3(t) +

ĥ2 − ĥ2(t)

ĥ2

ηT
4 (t)Π̂2η4(t) = ηT

1 (t)Θ̄1η(t)1(t) < 0,

and Θ̄1 is convex in ĥ2(t) ∈ [0, ĥ2].
Define

ηT
3 (t) =

[
ξ1(t),

1

ĥ1(t)

t∫
t−ĥ1(t)

ṙT(s) ds,
1

ĥ2(t)

t∫
t−ĥ2(t)

ṙT(s) ds

]
,

ηT
4 (t) =

[
ξ1(t),

1

ĥ1(t)

t∫
t−ĥ1(t)

ṙT(s) ds,
1

ĥ2 − ĥ2(t)

t−ĥ2(t)∫
t−ĥ2

ṙT(s) ds

]
,

where Π̂1 and Π̂2 are defined in (16). Similarly, Π̂3 and Π̂4 can get from (Θ̄2) because

ĥ2(t)

ĥ2

ηT
5 (t)Π̂3η5(t) +

ĥ2 − ĥ2(t)

ĥ2

ηT
6 (t)Π̂4η6(t) = ηT

2 (t)Θ̄2η(t)2(t) < 0,

and Θ̄2 is convex in ĥ2(t) ∈ [0, ĥ2]. Define

ηT
5 (t) =

[
ξ1(t),

1

ĥ1 − ĥ1(t)

t−ĥ1(t)∫
t−ĥ1

ṙT(s) ds,
1

ĥ2(t)

t∫
t−ĥ2(t)

ṙT(s) ds

]
,

ηT
6 (t) =

[
ξ1(t),

1

ĥ1 − ĥ1(t)

t−ĥ1(t)∫
t−ĥ1

ṙT(s) ds,
1

ĥ2 − ĥ2(t)

t−ĥ2(t)∫
t−ĥ2

ṙT(s) ds

]
,

where Π̂3, Π̂4 are defined in (8).
Furthermore, when t ∈ [tk, tk+1), (8) result in

V (t) = Vβ(t) 6 e−α(t−tk)Vβ(tk)(tk). (23)
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Using (11), at the switching instant tl, we have

V (t) = Vβ(tl)(tl) 6 µ̂Vβ(t−l )(t
−
l ), l = 1, 2, . . . . (24)

Together with (23) and (24), with the relation k = Nβ(t, t0) 6 (t− t0)/Ta,

V (t) 6 e−α(t−tk)µ̂Vβ(t−k )(t
−
k ) 6 · · · 6 e−α(t−t0)µ̂Vβ(t−0 )(t

−
0 )

6 eα−ln(µ̂/Ta)(t− t0)Vβ(t0)(t0).

Moreover, for any t ∈ [0, h], from the definition of LKFs in (12), the following inequali-
ties hold:

λminPl
∥∥r(t)∥∥2

6 rT(t)Plr(t) 6 V (t) 6 e−α−ln(µ̂/Ta)(t− t0)Vβ(t0)(t0)

6 m̄
∥∥r(t0)

∥∥2
.

Therefore, we have∥∥r(t)∥∥2
6

1

n̄
V (t) 6

m̄

n̄
e−(α−ln(µ̂/Ta)(t− t0)

∥∥r(t0)
∥∥2
.

This implies ∥∥r(t)∥∥ 6

√
m̄

n̄
e−(α−ln(µ̂/Ta))/2(t− t0)

∥∥r(t0)
∥∥.

Therefore, from Definition 1, the synchronization error system (7) is exponentially stable.

Based on Theorem 1, we presents the exponential stability for uncertain switched
neural networks using decentralized event-triggered scheme.

Theorem 2. For given scalars ĥu(u = 1, 2), ρ, ĥ, µ, h̄, µj (j = 1, 2, 3), the equilib-
rium point of system (6) is exponentially stable if there exist symmetric positive-definite
matrices Pl, Qil (i = 1, 2, . . . , 7), Rjl (j = 1, 2, 3, 4), S1l, S2l, M1l, M2l, positive
diagonal matrices Λfl > 0 (f = 1, 2), scalars ε > 0, the matrix φ̄l > 0 and any
matrices α̂1, α̂2, α̂3, α̂4, α̂5, L1l, Tl, Usl (s = 1, 2) with appropriate dimensions and
Y1, Y2, Y3, Y4 ∈ R4n×4n, such that the following linear matrix inequalities hold:

Π̂Ŝ =


Π̂α −ĥ1α̂Îe

−αĥ1 −ĥ2α̂L̂e−αĥ2 Υ

∗ −ĥ1R1e−αĥ1 0 0

∗ ∗ −ĥ2R2e−αĥ2 0
∗ ∗ ∗ −εI

 6 0, (25)

where

Π̂α = ηT(t)Π̂η(t), Υ = col
[
L1Gl,

6 times︷ ︸︸ ︷
0, 0, 0, L1Gl,

26 times︷ ︸︸ ︷
0, 0, 0

]
,

Ŝ = 1, . . . , 4, Î = 1, 3, Ĵ = 2, 4,
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and

Π̂ = r̃T
1

{
αPl +Q1l +Q2l +Q3l +Q4l +Q5l +Q6l + ĥ2R4l +M1l −

π2

4
W1le

−αh̄

−H1Λ11 + α̂1 + α̂T
1 + α̂2 + α̂T

2 + ĥα̂5 + ĥTα̂T
5 − 2LlWl

}
r̃1

+ r̃T
3

{
−e−αĥQ4l

}
r̃3 + r̃T

1 {−α̂1 + α̂3}r̃4 − r̃T
1 {α̂3}r̃5 + r̃T

1 {−α̂2 + α̂4}r̃6

− r̃T
1 {α̂4}r̃7 + r̃T

1 {Pl − L1l −WT
l L

T
1l}r̃8 + r̃T

1 {L1lAl +H2Λ1l}r̃9

+ r̃T
1 {L1lBl}r̃10 − r̃T

1 {α̂5}r̃11 − r̃T
1 {α̂5}r̃13 + r̃T

1 {L1lCl}r̃14

+ r̃T
1

{
Tl +

π2

4
W1l

}
r̃16 − r̃T

1 {Tl}r̃18 + r̃T
2

{
−(1− µ1)e−αĥQ1l −H1Λ21

}
r̃2

+ rT
2 {H2Λ2l}r̃10 − r̃T

4

{
(1− µ1)e−αĥ1Q2l

}
r̃4 − r̃T

5

{
e−αĥ1Q5l

}
r̃5

− r̃T
6

{
(1− µ2)e−αĥ2Q3l

}
r̃6 − r̃T

7

{
e−αĥ2Q6l

}
r7

+ r̃T
8

{
ĥ1R1l + ĥ2R2l + ĥ2R3l +

ĥ4

4
S1l + h̄2M2l + h̄2Wl − 2L1

}
r̃8

+ r̃T
8 {L1lAl}r̃9 + r̃T

8 {L1lBl}r̃10 + r̃T
8 {L1lCl}r̃14 + r̃T

8 {Tl}r̃16 − r̃T
8 {Tl}r̃18

+ r̃T
9 {Q7l + ρ2S2l − Λ1l}r̃9 + r̃T

10

{
− (1− µ1)e−αĥQ7l − Λ2l

}
r̃10

− r̃T
11

{
4e−αĥR4l

}
r̃11 + r̃T

11

{
6

ĥ
R4le

−αĥ
}
r̃12 − r̃T

12

{
12

ĥ2
R4le

−αĥ
}
r̃12

− r̃T
13{S1l}re13 − r̃T

14

{
2(1− µ3)e−αρ̂S2l

}
r̃14 + r̃T

14

{
6

ρ̂
(1− µ3)S2le

−αρ̂
}
r15

− r̃T
15{

12

ρ̂2
(1− µ3)S2le

−αρ̂}r̃15 − r̃T
16{κφ̄l}r̃18 + r̃T

16

{
−π

2

4
W1le

−αh̄ + κφ̄l

}
r̃16

+ r̃T
18{κφ̄l − φ̄l}r̃18 − (2− α1)ΓT

1 R̃Γ1 − sym
{
ΓT

1

(
α1Y1 + (1− α1)Y2

)
Γ2

}
+ (1− α1)ΓT

1 Y1R̃
−1Y T

1 Γ1 + α1Γ
T
2 Y

T
2 R̃

−1Y2Γ2 − (2− α2)ΓT
3 M̃Γ3

− (1 + α2)ΓT
4 M̃Γ4 − sym

{
ΓT

3

(
α2Y3 + (1− α2)Y4

)
Γ3

}
+ (1− α2)ΓT

3 Y3M̃
−1Y T

3 Γ3 + α2Γ
T
4 Y

T
4 M̃

−1Y4Γ4 − (1 + α1)ΓT
2 R̃Γ2.

System (6) is exponentially stable for any switching signal with average dwell time
Ta > T ∗a = ln(µ̂/α). Moreover, the estimator of state decay is given by ‖x(t)‖ <√
m̃/ñe−η(t−t0)‖x(t)‖, where, for all l, j ∈M , µ̂ > 1 satisfies

Pl 6 µ̂Pj , Q1l 6 µ̂Q1j , Q2l 6 µ̂Q2j , Q3l 6 µ̂Q3j , Q4l 6 µ̂Q4j ,

Q5l 6 µ̂Q5j , Q6l 6 µ̂Q6j , Q7l 6 µ̂Q7j , R1l 6 µ̂R1j , R2l 6 µ̂R2j ,

R3l 6 µ̂R3j , R4l 6 µ̂R4j , S1l 6 µ̂S1j , S2l 6 µ̂S2j , M1l 6 µ̂M1j ,

M2l 6 µ̂M2j , Wl 6 µ̂Wj ;
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η =
1

2

(
α− ln

µ̂

Ta

)
, ñ = minl∈MλminPl,

m̃ = max
l∈M

λmaxPl + ĥmax
l∈M

λmaxQ1l + ĥ1 max
l∈M

λmaxQ2l

+ ĥ2 max
l∈M

λmaxQ3l + ĥmax
l∈M

λmaxQ4l + ĥ1 max
l∈M

λmaxQ5l

+ ĥ2 max
l∈M

λmaxQ6l + ĥmax
l∈M

λmaxQ7l + ĥ2
1 max
l∈M

λmaxR1l

+ ĥ2
2 max
l∈M

λmaxR2l +
ĥ3

2
max
l∈M

λmaxR3l +
ĥ3

2
max
l∈M

λmaxR4l

+
ĥ6

6
max
l∈M

λmaxS1l +
ρ̂3

2
max
l∈M

λmaxS2l + h̄max
l∈M

λmaxM1l

+
h̄3

2
max
l∈M

λmaxM2l + h̄3 max
l∈M

λmaxWl − h̄max
l∈M

λmaxWl.

Moreover, the controller gain is K = L−1
1 T , and the other parameters are same as in

Theorem 1.

Proof. Replacing Wl, Al, Bl, Cl in (10) with Wl +GlFl(t)X1l, Al +GlFl(t)X2l, Bl +
GlFl(t)X3l, Cl +GlFl(t)X4l, respectively, and following the similar line in the proof of
Theorem 1, we obtain

Π̂α + ΨaF (t)Ψb +
(
ΨaF (t)Ψb

)T
6 0, (26)

where

Ψa = col[L1Gl, 0, 0, 0︸ ︷︷ ︸
6 times

, L1Gl, 0, 0, 0︸ ︷︷ ︸
26 times

],

Ψb = col[−X1l, 0, 0, 0︸ ︷︷ ︸
7 times

, X2lX3l, 0, 0, 0, X4l, 0, 0, 0︸ ︷︷ ︸
20 times

].

By Lemma in [1], the necessary and sufficient condition satisfy inequality (26), and
there exists a scalar ε > 0 such that

Π̂α < ε−1Ψ−1
a Ψa + εΨ−1

b Ψb. (27)

Now, by applying the Schur complement lemma in (27), we get (25), which guarantees
that the drive system (1) and the response system (2) are synchronous. This completes the
proof.

Remark 1. In the absence of switching signal, control input and distributed delays the
nominal system (7) is reduced to the following neural networks:

ṙ(t) = −Wr(t) +Ag
(
r(t)

)
+Bg

(
r
(
t− ĥ1(t)− ĥ2(t)

))
. (28)

Then by Theorem 1, it is easy to have the following corollary.
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Corollary 1. For given scalars ĥu (u = 1, 2), ρ̂, ĥ, µ, h̄, µj (j = 1, 2, 3), system (28)
is asymptotically stable if there exist symmetric positive-definite matrices P , Qi (i =
1, 2, . . . , 7), Rj (l = 1, 2, 3, 4), S1, positive diagonal matrices Λfl (f = 1, 2), and any
matrices α̂1, α̂2, α̂3, α̂4, α̂5, L1, U1, with appropriate dimensions and Y1, Y2 ∈ R4n×4n,
such that the following linear matrix inequalities hold:

Π̂Ŝ =


Π̂α −ĥ1α̂Î −ĥ2α̂L̂

∗ −ĥ1R1 0

∗ ∗ −ĥ2R2

 6 0,

where Π̂α = ηT(t)Π̂η(t), Ŝ = 1, . . . , 4, Î = 1, 3, Ĵ = 2, 4, and the remaining terms are
defined in Theorem 1.

Proof. The LKF can be chosen as in Theorem 1. Then applying the same procedure of
Theorem 1 we can get that system (28) is asymptotically stable.

Remark 2. It will be mentioned that condition (9) in Theorem 1 is dependent on the
additive time-varying delay ĥ1(t), ĥ2(t), which cannot be solved directly by LMI tool.
Noted that Π̂ is a linear function on the variable ĥ1(t), ĥ2(t) it is easy to show that
condition (9) is satisfied for all 0 6 ĥ1(t) 6 ĥ1, 0 6 ĥ2(t) 6 ĥ2 if Π̂ĥ1(t), ĥ2(t)=0 < 0
and Π̂ĥ1(t)=ĥ1, ĥ2(t)=ĥ2

< 0.

Remark 3. In the available existing literature, the stability problem has been discussed
for various NNs through different techniques. In [5], the authors studied the stability
problem of switched Hopfield NNs of neutral type with additive time-varying delay using
Jensen integral inequality and Finser lemma. In [11], the authors discussed the problem of
generalized neural networks with additive time-varying delay by using integral inequality
technique (IIT), Writinger double integral inequality (WDII). Furthermore, some pioneer-
ing works have been done to transform the event-triggered control for synchronization
of switched neural networks in [19], and event-triggered synchronization strategy for
complex dynamical networks was studied in [17]. The model considered in the present
study is more practical than that proposed by [5, 19], because in this paper we consider
event-triggered switched neural networks with additive time-varying delay. The scheme
of event-triggered sampling is an effective way within the electronic chips with limited
capacity and energy for their great abilities to reduce the data transmission and power
consumption. which is the main contribution and motivation of our work. Hence, the
results presented in this paper are essentially new.

Remark 4. In general, if size of the LMIs increase then the computation burden will also
increase. However, large size of LMIs yield better system performances. In this paper,
the proposed criteria are employed by the several integral inequalities; as a result, some
computational complexity can occur in the proposed criterion. To avoid the computational
burden, in future the Finsler’s lemma was applied in the proof of the main results, which in
turn to reduce the computational burden. Moreover, in the future work, we will focus on
lower computational complexity of the stability problems while maintaining the desired
system performances.
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4 Numerical examples

Example 1. Consider the uncertain switched neural networks (6) with parameter as fol-
lows:

W1 =

[
5 0
0 4

]
, W2 =

[
3 0
0 7

]
,

A1 =

[
1 0.4
−2 0.1

]
, B1 =

[
0.5 0.7
0.7 0.4

]
, C1 =

[
0.5 −0.3
0.2 1.2

]
,

A2 =

[
0.3 0.2
0.4 0.1

]
, B2 =

[
−0.5 0.2
0.1 −0.2

]
, C2 =

[
0.1 0.4
−0.3 −0.1

]
,

I =

[
1 0
0 1

]
, G1 =

[
1 0
0 1

]
, G2 =

[
0.5 0
0 0.5

]
,

Xk1 = diag{0.1, 0.1}, Xk2 = diag{0.2, 0.2}, k = 1, 2, 3, 4.

Also let ĥ1 = 1.2, ĥ2 = 1.5, ρ̂ = 0.1, µ1 = 0.2, µ2 = 0.3, h̄ = κ = 0.1, µ3 = 0.1,
α = 0.1, µ̂ = 1.05, H1 = 0, H2 = 0.5I . By using the Matlab LMI control Toolbox,
we solve the linear matrix inequalities in Theorem 2, we get the following control gain
matrices and the event triggered parameters. Due to page limitation we omitted the
feasible solutions:

K1 =

[
0.0273 −0.0004
−0.0000 0.0302

]
, K2 =

[
−0.5038 −0.0902
−0.0301 −0.1652

]
,

φ̄1 =

[
0.1000 0.0120
0.0120 0.0410

]
, φ̄2 =

[
0.6111 0.1089
0.1089 0.8148

]
, ε = 0.0023.

For given µ̂ = 1.05, Theorem 2 gives T ∗a = ln µ̂/α = 0.4879. Then by using
Theorem 2 and taking Ta = 0.5, η = 0.0012, we obtain∥∥x(t)

∥∥ < 19.5261e−0.0012(t−t0)
∥∥x(t0)

∥∥.
In the simulation Fig. 1, (a) and (b) depict the synchronization state trajectories y1(t),
y2(t) of system (6) and z1(t), z2(t) of its response system, respectively. Figure 1(c)
describes the synchronization error curves of the state variables r1(t), r2(t) between the
drive system and the corresponding response system, the switching signal is plotted in
Fig. 1(d). It can also be verified that the LMI (25) are even feasible for larger upper delay
bounds ĥ1 and ĥ2, which indicates that the system is exponentially synchronized.

Example 2. Consider the neural network (46) with the following parameters:

W =

[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1

0 1

]
.
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Figure 1. Panels (a)–(d) contain the simulation results of the synchronization state trajectories, error curves and
switching signal of system (6).

Table 1. Comparison of the number of the
decision variables involved in Corollary 1.

Methods number of decision
variables involved

[28] 36.5n2 + 8.5n

[13] 32.5n2 + 8.5n

[2] 21.5n2 + 8.5n

Corollary 1 13.5n2 + 8.5n

Table 2. Allowable upper bounds of ĥ2 for different
values of ĥ1 with µ1 = 0.7, µ2 = 0.1.

ĥ1 0.8 1.0 1.2

ĥ2 by [28] 0.8831 0.6832 0.4043

ĥ2 by [13] 1.5666 1.3668 1.1664

ĥ2 by [21] 1.9528 1.7992 1.6441

ĥ2 by [24] 1.9666 1.8351 1.6803

ĥ2 by Corollary 1 2.0147 1.9215 1.7361

In this example, the activation functions are given as g1(r) = 0.4 tanh(r) and g2(r) =
0.8 tanh(r). It is easy to check that Assumption 1 holds with H2 = diag{0.4, 0.8} when
µ = 0.8 (µ1 = 0.7, µ1 = 0.1) and µ = 0.9 (µ1 = 0.7, µ1 = 0.2). Let ĥ1 and ĥ2 be
the upper bounds of time-varying delays ĥ1(t) and ĥ2(t), respectively, and ˙̂

h1(t) 6 µ1,
˙̂
h2(t) 6 µ2. Solving LMIs in Corollary 1 by using Matlab LMI toolbox, we can calculate
allowable upper bounds of ĥ1(t) and ĥ2(t), which are given in Table 2.
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5 Conclusion

The problem of synchronization of decentralized event-triggered has been addressed for
uncertain switched neural networks with two additive time-varying delays. To reduce the
communication burden in the network, the novel decentralized event-triggered commu-
nication scheme has been proposed. By using the Lyapunov functional method, convex
combination techniques and Wirtinger-based integral inequality some sufficient condi-
tions in terms of linear matrix inequalities have been derived to guarantee the exponential
stability of the neural networks under consideration. Numerical examples are provided to
demonstrate the effectiveness of the obtained results. In future work, we will utilize the
proposed method to deal with stochastic neural networks, fuzzy neural networks, or other
types of neural networks with time-varying delays.
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