1,458 research outputs found

    A Harmonized Compositional Assurance Approach for Safety-Critical Systems

    Get PDF
    Safety-critical systems, those whose failure could end up in loss or injuries to people or the environment, are required to go through laborious and expensive certification processes. These systems have also increased their complexity and as it has already been done in other domains, they have applied component-based system developments to deal with complexity. However, components are difficult to assess as certification is done at system level and not at component level. Compositional certification approach proposes to get incremental credit by accepting that a specific component complies with specific standard’s requirements and it is correctly integrated. The objective is to support integration of new components while the previously integrated components do not need to work for re-acceptance. We propose (1) the use of assurance modelling techniques to provide us the mechanism to understand the common basis of standards shared by different domains such as the avionics, automotive and the medical devices design. We propose (2) an assurance decomposition methodology offering guidance and modelling mechanisms to decompose the responsibilities associated with the life-cycle of safety-critical components. This methodology ensures a hierarchy of assurance and certification projects where the responsibilities and project tasks can be specified and its accomplishment can be assessed to determine the compliance of functional safety standards. Assurance decomposition supports the reuse of components as it guides us not just for standards compliance but specifically on the understanding and tailoring of those standards for component assurance and support when those components are integrated into the final system. We propose (3) a contract-based approach to support the integration of reused components and at the same time, the proposal supports the identification of assumptions, a very laborious and time consuming task. Assurance Contracts are defined to ensure incremental compliance once the components are integrated. The objective of this assurance contracts is to ensure the overall compliance of the system with the selected standards and reference documents such as guidelines or advisory circulars. The defined approach to assurance contracts specification attempts to balance the need for unambiguity on the composition while maintaining the heterogeneity of the information managed. The claims classification offers an easy method to support the assessment of contract completeness and the structured expressions provide a semi-formal language to specify the assumptions and guarantees of a component. This work has been mainly framed in a European collaborative research projects such as OPENCOSS a Large-scale integrating project (IP) with 17 partners from 9 countries to develop a platform for safety assurance and certification of safety-critical systems (compliance with standards, robust argumentation, evidence management, process transparency), SAFEADAPT an FP7 project with 9 partners and RECOMP an ARTEMIS project.. The results of this work have been presented to the standardization group of the Object Management Group responsible for the SACM (Structured Assurance Case Metamodel) standard specification, which currently discusses its inclusion in future versions. The (4) tools presented and used in this work have been included in the results of an open tool platform developed within the OPENCOSS project that is being released in PolarSys. PolarSys is an Eclipse Industry Working Group created by large industry players and by tools providers to collaborate on the creation and support of Open Source tools for the development of embedded systems

    Towards a Formal Basis for Modular Safety Cases

    Get PDF
    Safety assurance using argument-based safety cases is an accepted best-practice in many safety-critical sectors. Goal Structuring Notation (GSN), which is widely used for presenting safety arguments graphically, provides a notion of modular arguments to support the goal of incremental certification. Despite the efforts at standardization, GSN remains an informal notation whereas the GSN standard contains appreciable ambiguity especially concerning modular extensions. This, in turn, presents challenges when developing tools and methods to intelligently manipulate modular GSN arguments. This paper develops the elements of a theory of modular safety cases, leveraging our previous work on formalizing GSN arguments. Using example argument structures we highlight some ambiguities arising through the existing guidance, present the intuition underlying the theory, clarify syntax, and address modular arguments, contracts, well-formedness and well-scopedness of modules. Based on this theory, we have a preliminary implementation of modular arguments in our toolset, AdvoCATE

    How to increase efficiency with the certification of process compliance

    Get PDF
    Certification as well as self-assessment of safety-critical systems is an expensive and time-consuming activity due to the necessity of providing numerous deliverables. These deliverables can be process-related or product-related. Process-related deliverables are aimed at showing compliance with normative documents (e.g., safety standards), which impose specific requirements on the development process (e.g., reference models for the safety life-cycles). In this lecture, we limit our attention to process-related deliverables and we propose a solution aimed at reducing time and cost related to their provision. Our solution consists of the combination of three approaches: the safety-oriented process line engineering approach, the process-based argumentation line approach, and the model driven certification-oriented approach. More specifically, we define how these three approaches are combined and which techniques, tools and guidelines should be used to implement the resulting approach. Then, via small-sized but realistic process-fragments, we illustrate it. Finally, we present a roadmap for future research directions.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Heterogeneous models and analyses in the design of real-time embedded systems - an avionic case-study

    Get PDF
    The development of embedded systems according to Model-Driven Development relies on two complementary activities: system mod- eling on the one hand and analysis of the non-functional properties, such as timing properties, on the other hand. Yet, the coupling be- tween models and analyses remains largely disregarded so far: e.g. how to apply an analysis on a model? How to manage the analysis process? This paper presents an application of our research on this topic. In particular, we show that our approach makes it possible to combine heterogeneous models and analyses in the design of an avionic system. We use two languages to model the system at di erent levels of abstraction: the industry standard AADL (Ar- chitecture Analysis and Design Language) and the more recent implementation-oriented CPAL language (Cyber-Physical Action Language). We then combine di erent real-time scheduling analy- ses so as to gradually de ne the task and network parameters and nally validate the schedulability of all activities of the system

    Managing Complex Safety Cases

    Full text link

    Regulatory Compliance in Multi-Tier Supplier Networks

    Get PDF
    Over the years, avionics systems have increased in complexity to the point where 1st tier suppliers to an aircraft OEM find it financially beneficial to outsource designs of subsystems to 2nd tier and at times to 3rd tier suppliers. Combined with challenging schedule and budgetary pressures, the environment in which safety-critical systems are being developed introduces new hurdles for regulatory agencies and industry. This new environment of both complex systems and tiered development has raised concerns in the ability of the designers to ensure safety considerations are fully addressed throughout the tier levels. This has also raised questions about the sufficiency of current regulatory guidance to ensure: proper flow down of safety awareness, avionics application understanding at the lower tiers, OEM and 1st tier oversight practices, and capabilities of lower tier suppliers. Therefore, NASA established a research project to address Regulatory Compliance in a Multi-tier Supplier Network. This research was divided into three major study efforts: 1. Describe Modern Multi-tier Avionics Development 2. Identify Current Issues in Achieving Safety and Regulatory Compliance 3. Short-term/Long-term Recommendations Toward Higher Assurance Confidence This report presents our findings of the risks, weaknesses, and our recommendations. It also includes a collection of industry-identified risks, an assessment of guideline weaknesses related to multi-tier development of complex avionics systems, and a postulation of potential modifications to guidelines to close the identified risks and weaknesses

    Improving Hazard Analysis and Certification of Integrated Modular Avionics

    Get PDF
    Integrated modular avionics systems present new opportunities and benefits for developing advanced aircraft avionics, as well as a series of challenges related to hazard analysis and certification. This paper addresses some of those challenges and proposes a new procedure for improving hazard analysis of integrated modular avionics systems. A significant objective of integrated modular avionics architectures is the ability to develop individual software applications independently and then integrate those applications onto one platform. It has been very difficult for both designers and certifiers to understand and predict how the system will behave when the applications are integrated into one system. Traditional fault-based hazard analysis techniques are limited with respect to this problem. Therefore, this paper uses a different technique, called Systems-theoretic Process Analysis, to identify hazardous behavior that emerges when individual applications are integrated. Systems-theoretic process analysis is a systems-theoretic hazard analysis technique that accounts for hazardous behavior due to component interaction, including cases when the components have not failed or faulted. Systems-theoretic process analysis is extended in this paper to account for behavior that emerges when software applications share data, which is a requirement in aircraft systems. The paper illustrates the new approach with an example that includes real-world avionics functions
    • …
    corecore