7 research outputs found

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Hardware evolution of a digital circuit using a custom VLSI architecture

    Get PDF
    This research investigates three solutions to overcoming portability and scalability concerns in the Evolutionary Hardware (EHW) field. Firstly, the study explores if the V-FPGA—a new, portable Virtual-Reconfigurable-Circuit architecture—is a practical and viable evolution platform. Secondly, the research looks into two possible ways of making EHW systems more scalable: by optimising the system’s genetic algorithm; and by decomposing the solution circuit into smaller, evolvable sub-circuits or modules. GA optimisation is done is by: omitting a canonical GA’s crossover operator (i.e. by using an algorithm); applying evolution constraints; and optimising the fitness function. The circuit decomposition is done in order to demonstrate modular evolution. Three two-bit multiplier circuits and two sub-circuits of a simple, but real-world control circuit are evolved. The results show that the evolved multiplier circuits, when compared to a conventional multiplier, are either equal or more efficient. All the evolved circuits improve two of the four critical paths, and all are unique. Thus, it is experimentally shown that the V-FPGA is a viable hardware-platform on which hardware evolution can be implemented; and how hardware evolution is able to synthesise novel, optimised versions of conventional circuits. By comparing the and canonical GAs, the results verify that optimised GAs can find solutions quicker, and with fewer attempts. Part of the optimisation also includes a comprehensive critical-path analysis, where the findings show that the identification of dependent critical paths is vital in enhancing a GA’s efficiency. Finally, by demonstrating the modular evolution of a finite-state machine’s control circuit, it is found that although the control circuit as a whole makes use of more than double the available hardware resources on the V-FPGA and is therefore not evolvable, the evolution of each state’s sub-circuit is possible. Thus, modular evolution is shown to be a successful tool when dealing with scalability

    Dynamically reconfigurable bio-inspired hardware

    Get PDF
    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable coprocessor architectures for cryptographic algorithms, image processing, automotive applications, and different general purpose functions. On the other hand we have bio-inspired hardware, a large research field taking inspiration from living beings in order to design hardware systems, which includes diverse topics: evolvable hardware, neural hardware, cellular automata, and fuzzy hardware, among others. Living beings are well known for their high adaptability to environmental changes, featuring very flexible adaptations at several levels. Bio-inspired hardware systems require such flexibility to be provided by the hardware platform on which the system is implemented. In general, bio-inspired hardware has been implemented on both custom and commercial hardware platforms. These custom platforms are specifically designed for supporting bio-inspired hardware systems, typically featuring special cellular architectures and enhanced reconfigurability capabilities; an example is their partial and dynamic reconfigurability. These aspects are very well appreciated for providing the performance and the high architectural flexibility required by bio-inspired systems. However, the availability and the very high costs of such custom devices make them only accessible to a very few research groups. Even though some commercial FPGAs provide enhanced reconfigurability features such as partial and dynamic reconfiguration, their utilization is still in its early stages and they are not well supported by FPGA vendors, thus making their use difficult to include in existing bio-inspired systems. In this thesis, I present a set of architectures, techniques, and methodologies for benefiting from the configurability advantages of current commercial FPGAs in the design of bio-inspired hardware systems. Among the presented architectures there are neural networks, spiking neuron models, fuzzy systems, cellular automata and random boolean networks. For these architectures, I propose several adaptation techniques for parametric and topological adaptation, such as hebbian learning, evolutionary and co-evolutionary algorithms, and particle swarm optimization. Finally, as case study I consider the implementation of bio-inspired hardware systems in two platforms: YaMoR (Yet another Modular Robot) and ROPES (Reconfigurable Object for Pervasive Systems); the development of both platforms having been co-supervised in the framework of this thesis

    Tissu numérique cellulaire à routage et configuration dynamiques

    Get PDF
    In the design of new machines or in the development of new concepts, mankind has often observed nature, looking for useful ideas and sources of inspiration. The design of electronic circuits is no exception, and a considerable number of realizations have drawn inspiration from three aspects of natural systems : the evolution of species (Phylogenesis), the development of an organism starting from a single cell (Ontogenesis), and learning, as performed by our brain (Epigenesis). These three axes, grouped under the acronym POE, have for the most part been exploited separately : evolutionary principles allow to solve problems for which it is hard to find a solution with a deterministic method, while some electronic circuits draw inspiration from healing process in living beings to achieve self-repair, and artificial neural networks have the capability to efficiently execute a wide range of tasks. At this time, no electronic tissue capable of bringing them together seems to exist. The introduction of reconfigurable circuits called Field Programmable Gate Arrays (FPGAs), whose behavior can be redefined as often as desired, made prototyping such systems easier. FPGAs, by allowing a relatively simple implementation in hardware, can considerably increase the systems' performance and are thus extensively used by researchers. However, they lack plasticity, not being able to easily modify themselves without an external intervention. This PhD thesis, developed in the framework of the European POEtic project, proposes to define a new reconfigurable electronic circuit, with the goal of supplying a new substrate for bio-inspired applications that bring all three axes into play. This circuit is mainly composed of a microprocessor and an array of reconfigurable elements, the latter having been designed during this thesis. Evolutionary processes are executed by the microprocessor, while epigenetic and ontogenetic mechanisms are applied in the reconfigurable array, to entities seen as multicellular artificial organisms. Relatively similar to current commercial FPGAs, this subsystem offers however some unique features. First, the basic elements of the array have the capability to partially reconfigure other elements. Auto-replication and differentiation mechanisms can exploit this capability to let an organism grow or to modify its behavior. Second, a distributed routing layer allows to dynamically create connections between parts of the circuit at runtime. With this feature, cells (artificial neurons, for example) implemented in the reconfigurable array can initiate new connections in order to modify the global system behavior. This distributed routing mechanism, one of the major contributions of this thesis, induced the realization of several algorithms. Based on a parallel implementation of Lee's algorithm, these algorithms are totally distributed, no global control being necessary to create new data paths. Four algorithms have been defined implemented in hardware in the form of routing units connected to 3, 4, 6, or 8 neighbors. These units are all identical and are responsible for the routing processes. An analysis of their properties allows us to define the best algorithm, coupled with the most efficient neighborhood, in terms of congestion and of the number of transistors needed for a hardware realization. We finish the routing chapter by proposing a fifth algorithm that, unlike the previous ones, is constructed only through local interactions between routing units. It offers a better scalability, at the price of increased hardware overhead. Finally, the POEtic chip, in which one of our algorithms has been implemented, has been physically realized. We present different POE mechanisms that take advantage of its new features. Among these mechanisms, we can notably cite auto-replication, evolvable hardware, developmental systems, and self-repair. All of these mechanisms have been developed with the help of a circuit simulator, also designed in the framework of this thesis

    Exploiting development to enhance the scalability of hardware evolution.

    Get PDF
    Evolutionary algorithms do not scale well to the large, complex circuit design problems typical of the real world. Although techniques based on traditional design decomposition have been proposed to enhance hardware evolution's scalability, they often rely on traditional domain knowledge that may not be appropriate for evolutionary search and might limit evolution's opportunity to innovate. It has been proposed that reliance on such knowledge can be avoided by introducing a model of biological development to the evolutionary algorithm, but this approach has not yet achieved its potential. Prior demonstrations of how development can enhance scalability used toy problems that are not indicative of evolving hardware. Prior attempts to apply development to hardware evolution have rarely been successful and have never explored its effect on scalability in detail. This thesis demonstrates that development can enhance scalability in hardware evolution, primarily through a statistical comparison of hardware evolution's performance with and without development using circuit design problems of various sizes. This is reinforced by proposing and demonstrating three key mechanisms that development uses to enhance scalability: the creation of modules, the reuse of modules, and the discovery of design abstractions. The thesis includes several minor contributions: hardware is evolved using a common reconfigurable architecture at a lower level of abstraction than reported elsewhere. It is shown that this can allow evolution to exploit the architecture more efficiently and perhaps search more effectively. Also the benefits of several features of developmental models are explored through the biases they impose on the evolutionary search. Features that are explored include the type of environmental context development uses and the constraints on symmetry and information transmission they impose, genetic operators that may improve the robustness of gene networks, and how development is mapped to hardware. Also performance is compared against contemporary developmental models
    corecore