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ABSTRACT 

Keywords: Control Circuit, Critical-Path Circuits, Evolutionary Hardware, Evolved Hardware, Field-

Programmable Gate Array, Finite-State Machine, Modular Evolution, Portability, Real-

World Applications, Two-Bit Multiplier, Virtual Reconfigurable Circuit, Scalability 

This research investigates three solutions to overcoming portability and scalability concerns in the 

Evolutionary Hardware (EHW) field. 

Firstly, the study explores if the V-FPGA—a new, portable Virtual-Reconfigurable-Circuit architecture—is a 

practical and viable evolution platform. 

Secondly, the research looks into two possible ways of making EHW systems more scalable: by optimising the 

system’s genetic algorithm; and by decomposing the solution circuit into smaller, evolvable sub-circuits or 

modules. 

GA optimisation is done is by: omitting a canonical GA’s crossover operator (i.e. by using an     algorithm); 

applying evolution constraints; and optimising the fitness function. The circuit decomposition is done in 

order to demonstrate modular evolution. 

Three two-bit multiplier circuits and two sub-circuits of a simple, but real-world control circuit are evolved. 

The results show that the evolved multiplier circuits, when compared to a conventional multiplier, are either 

equal or more efficient. All the evolved circuits improve two of the four critical paths, and all are unique. 

Thus, it is experimentally shown that the V-FPGA is a viable hardware-platform on which hardware evolution 

can be implemented; and how hardware evolution is able to synthesise novel, optimised versions of 

conventional circuits. 

By comparing the     and canonical GAs, the results verify that optimised GAs can find solutions quicker, 

and with fewer attempts. Part of the optimisation also includes a comprehensive critical-path analysis, where 

the findings show that the identification of dependent critical paths is vital in enhancing a GA’s efficiency. 

Finally, by demonstrating the modular evolution of a finite-state machine’s control circuit, it is found that 

although the control circuit as a whole makes use of more than double the available hardware resources on 

the V-FPGA and is therefore not evolvable, the evolution of each state’s sub-circuit is possible. Thus, modular 

evolution is shown to be a successful tool when dealing with scalability. 
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DEFINITIONS 

     -Selection A selection scheme which selects   best individuals from a population, and 

creates   mutants from these best individuals (Engelbrecht, 2007, p. 139). 

Cartesian Genetic Programming Invented by Miller & Thomson (2000), CGP is a method of arranging the 

nodes of a circuit using the Cartesian coordinate system. 

CP Vector The collective logic responses of one particular external output when 

evaluated using all the sets of test vectors. 

Critical Path An output’s critical path includes only the relevant circuitry required for 

that output to function. Thus, it is the direct path linking certain external 

inputs to a particular external output. 

Crossover Process of combining two individuals’ genes in order to create new 

offspring. 

Decomposition Kalganova (2000, p. 2) defines decomposition as “breaking a large logic 

circuit into several relatively smaller ones.” 

Divide and Conquer The process of dividing a problem into two or more sub-problems until the 

sub-problems become simple enough to solve. The solved sub-problems 

can then be recombined to offer a solution for the original problem. 

Elitism The process of ensuring the best individual survives from one generation to 

the next. 

Evolvability The ability for an EHW system to produce individuals fitter than those 

found in previous generations (Altenberg, 1994). 

Field-Programmable Gate Array An IC specifically designed to be reconfigured and programmed by a 

designer after manufacturing. 

Finite-State Machine A simple computational model containing finite number of states. 

According to the received inputs, the machine transitions from one state to 

another (Daciuk, 1998). FSM are used as tools to design both computer 

programs and sequential logic circuits. 
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Fitness Function The fitness function is a mathematical formula that is used to assess an 

individual’s ability. An individual is said to be fit if it successful fulfils the 

requirements of a predefined objective function. 

Fitness Landscape A fitness landscape is a visual metaphor used to describe the fitness of all 

the possible solutions within the search space. There are peaks and valleys 

within the landscape, with the highest peaks representing the fittest 

solutions (Hubert, n.d.). Peaks can be grouped together, or scattered. 

Genetic Operator The programming syntax used to add genetic diversity to population. 

Examples include selection, mutation, elitism and crossover. 

Genotype The string of integers that represent the necessary logic and routing data 

needed to implement a particular digital circuit. 

Genotype-Phenotype Mapping The process of encoding a digital circuit, or phenotype, into a genotype 

(Vassilev & Miller, 2000). 

Mutation   The process of randomly changing random genes within a chromosome. 

On-Chip Evolution An evolutionary setup which incorporates the evolutionary algorithm on a 

separate processor incorporated into the same chip containing the target 

EHW (Torresen, 2004, p. 6). 

Output Element  The logic response of a single external output when evaluated using a 

single test vector. 

Output Vector The collective logic responses of all external outputs when evaluated using 

a single test vector. 

Phenotype   The genotype’s circuit 

Portability   The ability of a system to be implemented on different target platforms. 

Scalability Refers to an EHW problem being unsolvable due to the scale of the desired 

solution. The complexity of a circuit greatly impacts the GA’s search space. 

As a result, complex circuits become exponentially difficult to evolve. 

Scalability becomes more prominent if: the EHW system uses too few LEs—

the desired circuit cannot be evolved due to a lack of resources; or too 

many LEs—the search space is too large. 

Search Space   The set of all the potential solutions. 
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Soft-Processor A microprocessor core that is implemented using the programmable logic 

of semiconductor devices. 

Stalling Effect The fitness of a population does not increase over a substantial number of 

generations. 

System on a Programmable Chip Mead (2001) defines an SOPC as “a set of functional blocks built on a 

programmable devices, with at least one computing engine.” The 

programmable device is usually an FPGA, while the computing engine is 

usually a soft-processor. 

Test Vector A combination of logic high and low signals sent to the V-FPGA’s external 

inputs in order to evaluate a phenotype’s response. 

Tournament Selection A selection scheme which selects a group of   random individuals from a 

population of   individuals, where     (Engelbrecht, 2007, p. 137). 

Very-Large-Scale Integration An IC architecture which combines thousands of transistors onto a single 

chip. 
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NOMENCLATURE 
.vi LabVIEW VI file-extension 

ANN Artificial Neural Network 

API Application-Program Interface 

ASIC Application-Specific Integrated 

Circuit 

CGP Cartesian Genetic Programming 

      Clock line used by the LCM and 

RCM 

CP Critical Path 

CPLD Complex Programmable Logic 

Device 

DAQ  Data Acquisition 

DSM  Dynamic State Machine 

        Data line used by the LCM 

         Data line used by the RCM 

EDA  Electronic Design Automation 

EHW  Evolutionary Hardware 

EA  Evolutionary Algorithm 

FPGA  Field-Programmable Gate Array 

FSM  Finite-State Machine 

GA  Genetic Algorithm 

GDD Generalised Disjunction 

Decomposition 

HA  Half Adder 

HDL  Hardware Description Language 

IC  Integrated Circuit 

IO  Input or Output 

LCM  Logic Configuration Memory 

LE  Logic Element 

LUT  Look-up Table 

MOSFET Metal-Oxide-Semiconductor 

Field-Effect Transistor 

NI  National Instruments 

NQF National Qualifications 

Framework 

NRF National Research Foundation 

PC  Personal Computer 

PIG  Processing Integrated Grid 

PLA  Programmable Logic Array 

RAM  Random-Access Memory 

RCM  Routing Configuration Memory 

RM  Routing Matrix 

SOC  System on Chip 

SOPC  System on a Programmable Chip 

V-FPGA Virtual Field-Programmable-

Gate-Array 
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VI Virtual Instrument (LabVIEW 

routine) 
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Chapter 1 INTRODUCTION 

INTRODUCTION 

This chapter introduces the field of Evolutionary Hardware and its significance in 
the context of modern VLSI microelectronics. Evolutionary Hardware makes use of 
special nature-inspired search algorithms. The chapter discusses these algorithms 
as well as identifies challenges surrounding the research field, and why it has not 
yet been widely implemented in industry. Finally, the key objectives for this 
research are noted, and a paper structure is outlined. 

1.1 Background 

The development of microelectronics has boomed over the last four decades. Initially, in the sixties, 

integrated circuits (ICs) only hosted about 10 to 100 transistors (EngineersGarage, 2012). This was known as 

the Small- to Medium-Scale Integration era. During this era, IC developments were largely funded by the 

United States government for use in the military and space fields (Schnee, 1978). It was only later, in the 

seventies, that the manufacturing costs of ICs fell, allowing private firms to start penetrating industrial and 

consumer markets. By the mid-eighties, the transistor count on ICs well exceeded the 1000 range, thereby 

marking the Very-Large-Scale Integration (VLSI) age. Common examples of VLSI chips include 

microprocessors and Field-Programmable Gate Arrays (FPGAs). Today, ICs can typically contain millions of 

transistors, with programmable-logic device manufacturer Xilinx setting an industry record for 6.8 billion 

transistors on an FPGA chip (Yannou, 2011). 

This rapid growth of technology was first observed by Intel’s co-founder, Gordon Moore, when in 1965 he 

predicted that the number of transistors on ICs would double approximately every two years (Moore, 1965). 

However, as the transistors count increases, there has been a desire to make computer hardware more 

complex and physically smaller. 

Consequently, this is causing a bottleneck in the development of circuit designs. Enhancements in hardware 

design have been achieved by improving hardware-fabrication processes and using better-designed 

components, rather than optimising conventional circuits to make them more efficient. 

Traditional circuit-design methodologies “rely on rules that have been developed over many decades” and 

require more human expertise for increasingly complex designs, which may be costly (Gordon & Bentley, 

2002, p. 1). Complex designs are often tackled using powerful design tools, such as Electronic Design 
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Automation (EDA), high-level abstraction design-techniques and advanced IP-core libraries. However, the 

design-productivity gap is still increasing (Cancare, et al., 2011). 

One solution to this design problem is Evolutionary Hardware (EHW). EHW is a combination of three 

disciplines: Computer Science, Electronics Engineering and Biology (Stomeo, et al., 2005, p. 1). Through 

modelling biological and natural intelligence, engineers and scientists have been able to mimic natural 

evolution in software for use in hardware design. 

EHW has had a growing interest from many institutes across the world. Conferences, such as the Institute of 

Electrical and Electronics Engineers’ International Conference on Evolvable Systems (IEEE ICES), allow 

researchers to share ideas and solutions in this research area. The IEEE (2013) describes the conference as 

“the leading conference in the field of evolvable hardware and systems.” The conference’s domain now 

covers a large array of research topics, including circuit diagnostics, self-repairing systems, evolutionary 

hardware design, real-world applications of evolvable hardware and evolutionary robotics. (See Thompson 

(1995), Higuchi et al. (1999), Hauschildt (n.d.), Barlow & Edwards (2001) and Moreno et al. (1998) as 

examples) 

Despite the increased research and resources in the field, EHW systems remain largely unusable in real-world 

applications (Keymeulen, et al., 2003). Only a few engineering applications have shown promise (Higuchi, et 

al., 1999) (Mataric & Cliff, 1996), even though early pioneers claiming that evolution will soon be applied to 

large-scale machines (de Garis, et al., 1997). Researchers have raised a number of issues that have retarded 

the growth of EHW applications. These include the difficulties in configuring EHW platforms, scalability (Bedi, 

2009), evolution time and problem complexity (Krohling, et al., 2002). 

1.2 Evolutionary Hardware 

EHW can be categorized into two main areas (Greenwood & Tyrrell, 2006, p. 9), namely Evolvable Hardware 

and Evolved Hardware: 

1. Evolvable Hardware, or open-ended evolution, refers to hardware devices that can autonomously 

adapt to dynamic environments (artificially-intelligent systems), or automatically recover from 

hardware failures (fault-tolerant systems) (Sekanina & Freidl, 2005). Thus, open-ended evolution 

continuously evolves solution according to the environmental stimuli, while the best solution found 

so far is executed (Cancare, et al., 2011). Examples include temperature and radiation tolerant 

electronics (Keymeulen, et al., 2004) (Stocia, et al., 2004), robot controllers (Nolfi & Floreano, 2000) 

and image filters (Sekanina, 2002). 

2. Evolved Hardware, or complete evolution, refers to the automatic synthesis of novel hardware 

circuits. Once a solution is found, the evolution is stopped. Evolved hardware is often more 

efficient—uses less hardware components—than conventional circuits (Miller & Job, 1999). 

An example of this efficiency was demonstrated by in 2003, when Koza et al. (2003) examined six 

different circuit patents, filed between 2000 and 2001, which were issued to universities or 
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commercial enterprises. Koza et al. (2003) used EHW to automatically synthesize new circuits that 

duplicated the patented circuits’ functionality. It was found that only one of the six evolved circuits 

infringed on the original circuits’ patents. This example clearly highlights the power of EHW, since 

Koza et al. (2003) only had to identify the desired outcome of the synthesized circuits; and had 

minimal knowledge on how the circuitry worked. 

This research will concentrate on the advantages and downfalls of Evolved Hardware—in particular, how it 

can be applied when creating control circuitry. But first, in order to understand Evolved Hardware, one needs 

to examine the two fundamental parts that all EHW systems make use of: an Evolutionary Algorithm (EA) and 

an evolution platform. 

1.2.1 Overview of Evolutionary Algorithms 

Natural evolution is a process, taken by organisms or systems, with the aim of optimising the survival rate of 

the species within a dynamically changing environment (Engelbrecht, 2007). Darwin (1859) first coined the 

term “natural selection”, which became the theoretical foundation of biological evolution. The Darwinian 

theory of evolution, as summarised by Engelbrecht (2007, p. 127), states: 

In a world with limited resources and stable populations, each individual 

competes with others for survival. Those individuals with the “best” 

characteristics or traits are more likely to survive and to reproduce, and those 

characteristics will be passed on to their offspring. These desirable 

characteristics are inherited by the following generations, and over time become 

dominant among the population. 

The second part of the summary states: 

During the production of a child organism, random events cause random 

changes to the child organism’s characteristics. If these new characteristics are 

of benefit to the organism, then the chances of survival for that organism are 

increased. 

Taking cues from biology, computer scientists have been able to code various search algorithms that mimic 

evolution, which are collectively known as EAs. EAs and biological evolution share many commonalities, 

which have been highlighted using bold text in the quotations above, and are discussed further below: 

 A population with individuals: An initial population is established in which all the individuals 

represent potential solutions to the computer problem. 

 Selection and survival of the best individuals: Individuals are first evaluated using a problem-

specific fitness function. A fitness function is a function that evaluates how closely an individual is to 
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achieving the desired objective. Fitness is often represented as a percentage, where a     -fit 

individual would be considered completely fit. Once fitness is established, a selection operator is 

applied to the population. Many selection operators exist, but fundamentally, they all select one or 

more of the fittest individuals from the population, usually with a degree of randomness. Then, 

these selected individuals become the parents that produce offspring. 

 Reproduction to produce offspring: The selected parents reproduce using a crossover operator. 

Crossover recombines two parents in such a way as to allow the best characteristics of each parent 

to be passed to the offspring. 

 Random Changes: A randomised mutation operator is applied to each offspring, thereby making 

each offspring unique. This allows diversity to be introduced into the new population. The above 

crossover and mutation procedures are repeated until a completely new population of offspring is 

produced—called a generation. 

1.2.2 Using Evolutionary Algorithms to Evolve Hardware 

When EAs are applied to digital logic, either at gate-level (by using gates such as AND, OR, XOR-gates), or 

function-level (by using micro-circuits such as adders, multipliers, multiplexers), they can be used to 

automatically design and synthesise complex circuits. This is essentially how most EHW systems are 

implemented. The level at which the evolution is performed is called “granularity”, with gate-level evolution 

being fine, and function-level evolution being course (Cancare, et al., 2011, p. 2). 

Various forms of EAs have been used to solve EHW problems. Examples of EAs include Cartesian Genetic 

Programming (CGP) (Miller & Thomson, 2000), Adaptive Genetic Algorithms (Ko, et al., 1997), Parallel 

Genetic Algorithms (Wang, et al., 2007) and Particle Swarm Optimisation (Eberhart & Kennedy, 1995). One of 

the more researched EAs used in EHW is the Genetic Algorithm (GA) (used by Gordon (2005), Sekanina & 

Friedl (2005), Martin & Poli (2002)). 

Rustem (2012) claims that from 1990 to 2010, over 80 000 GA
1
 journal papers have been published by 

Springer. In 2010 alone, approximately 12 200 papers were published. The trend seems to be increasing, 

showing that the GA-research field is still in its infancy. 

GAs are often referred to as search algorithms because they search, in a structured manner, for a solution 

that possesses the correct combination of parameters. “The set of all possible combinations of parameter 

values” is known as the GA’s search space (Gordon, 2005, p. 17). Thus, since there are millions of 

combinations of circuits a GA has to search through, GAs typically have large search spaces from which a 

solution needs to be found. 

                                                                 

1
 To clarify—“80 000 GA journal papers” includes all GAs relating to the computer-science field, and not necessarily GAs relating to only 

EHW. 
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Figure 1.1 shows an overview of an EHW system using a GA. The GA is executed using a continuous loop. 

Every iteration of the loop produces a new generation of individuals. 

In EHW, each individual is represented using a hardware chromosome—also called the genotype. A 

hardware chromosome is a string of integers that represents a certain circuit configuration when decoded. 

Each single integer in the hardware chromosome is referred to as a hardware gene.  

The decoded circuit is known as the phenotype. Phenotypes are configured in terms of functionality (the 

function of each component) and routing (how the components are connected to one another). 

 

Figure 1.1 Overview of the Hardware Evolution process using a Genetic Algorithm 

The Figure 1.1’s loop starts by creating an initial population of hardware chromosomes using random values, 

with each hardware chromosome representing a circuit and a potential solution. The chromosome are then 

decoded into the phenotypes and downloaded onto the EHW platform. The phenotypes are evaluated using 

a fitness function in order to establish which circuits have the most desirable characteristics. This is done by 

either implementing and testing the phenotypes using a simulated software model, or loading the circuits 

Evaluate Phenotypes using 
a Fitness Function

1 0 1 1 0 1 0 0 0 0

1 1 1 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 1 0 0 0 0

1 1 1 1 0 1 0 0 0 0

1 0 1 1 1 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1

1 0 1 1 0 1 0 0 0 0

1 1 1 1 0 1 0 0 0 0

1 0 1 1 0 1 0 0 0 0

1 0

1

1 0 1 0 0 0

Select Parents

Crossover

Mutation

New Population

Parent 1

Parent 2

Offspring

Hardware Gene

Mutated Gene

77%

70%

61%

33%

Fitness Value

Mutated Offspring

Hardware Chromosome

Have the terminating 
conditions been met?
If not, use offspring to 

create a new generation.

      STOP LOOP

Download Genotypes onto
Target Platform

Stronger 
chromosomes are 
favoured for 
Crossover 

0

0

1

   START LOOP 

77%

70%

61%

33%

Repeat until enough 
offspring are produced



 Page 6 |Hardware Evolution of a Digital Circuit using a Custom VLSI Architecture 

onto reconfigurable hardware. There are many different types of reconfigurable hardware testing platforms, 

which are discussed in the next section.  

Once evaluation is complete, the GA operators are applied to the chromosomes, namely: selection, 

crossover and mutation. These genetic operators are used to maintain genetic diversity in the population. 

The above process is iterated until either a perfectly fit individual is found, or a predefined number of 

generations are executed.  

1.2.3 Hardware Evolution Platforms 

To explore the different platforms
2
 on which evolved circuits can be evaluated, we need to first consider the 

rate at which modern circuits and components are advancing. The field of EHW is very reliant on the 

underlying platform technology it is based on. The idea of implementing evolutionary characteristics into 

hardware and software systems has been around since the 1950s (Rustem, 2012), but it is only since the 

early 1990s that the hardware platforms have not constrained EHW systems (Iwata, et al., 1996). In addition, 

more recently, in the field of microelectronics, the feature size of components has decreased from 2-3µm in 

2002 to 0.09µm in 2004 (Greenwood & Tyrrell, 2006), allowing for faster EHW systems to be implemented 

and thus allowing greater advancements to be made in the EHW field. 

There are four major digital hardware platforms on which EHW has been tested (Lambert, et al., 2009): 

1. Application-Specific Integrated Circuits (ASICs): These application-specific ICs are designed to 

execute EHW within very specific parameters. The chips are custom made according to the 

designer’s EHW needs. ASICs are considered to be the least flexible hardware platform; and because 

of their uniqueness, are expensive to manufacture. 

2. Programmable Logic Arrays (PLAs): A PLA chip provides limited flexibility in that it can only 

implement circuits consisting of AND and/or OR-gates. They are considered cheap devices. 

3. Complex Programmable Logic Devices (CPLDs): Similarly to PLAs, CPLDs also have limited 

flexibility—they can implement circuits using AND, OR and/or XOR-gates. 

4. Field-Programmable Gate Arrays (FPGAs): These devices are very flexible (allows for the 

reconfiguration of a circuit’s routing and functionality), readily available and competitively priced 

when compared to ASICs. 

Due to point four above, FPGA’s have become the preferable choice for many EHW researchers (see 

(Moreno, et al., 1998) (Lambert, et al., 2009) (Sekanina & Freidl, 2005) (Smith, 2010) as examples), and thus 

this research will make use of the FPGA platform to evolve a control circuit. However, before exploring 

FPGAs further, it is first necessary to discuss the design of a control circuit using a finite-state machine. 

                                                                 

2 “Platform” in this case refers to the target hardware (i.e. board, IC, or chip) on which the evolved circuits (phenotypes) are 
implemented. 
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1.3 Evolving a Finite-State Machine 

In the previous sections, the EHW field was broadly introduced. We will now describe, in the section below, 

the opportunity EHW presents when synthesising the control circuitry of a finite-state machine (FSM). 

State machines are one of the oldest and most used ways of modelling the behaviour of systems (Wright, 

2005). They are actively used in systems of: hardware design; biology; genetic; processing and retrieval of 

text information; and verification (Kryvyi, 2011). All state machines, regardless of their application, make use 

of the following fundamental principles: 

 The whole system is described using a set of states 

 The machine can only be in one state at a time 

 To change to another state, a triggering event has to be initiated 

A FSM, which is simply a state machine with a predefined finite number of states, can be used to help aid the 

design of a sequential-logic control system. FSMs consist of a set of states, an initial state, a set of finite 

inputs/outputs and a finite number of triggering events (Black, 2008). 

Consider the following example of a FSM, being implemented in hardware as a sequential circuit, as 

explained by Floyd (2009, p. 436). A general FSM’s circuitry, as shown in Figure 1.2, consists of a 

combinational-logic and memory section. The memory, which is often implemented using flip-flops, stores 

the state variable, i.e. current state’s number. At any given time, the memory is in a state called the current 

state, and transitions to the next state on a clock pulse according to the conditions on the excitation lines. 

The combinational logic controls the system’s excitation lines according the system’s inputs. 

 

Figure 1.2 A general FSM’s circuit implemented as a sequential circuit 

Now, consider the combinational logic. In order to advance to the next state, a triggering or input condition 

needs to be met. If met, the relevant excitation lines are activated, thereby initiating the next state-variable 

in memory. The state variable is communicated to the combinational logic via the state-variable lines. 
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Most FSM are cyclic in nature, and execute unconditionally. There are many examples of FSM circuits used as 

cyclic control systems. Examples include counters, traffic lights, wristwatches, turnstiles and elevators (see 

(Floyd, 2009) (Harel, 1986) (Wright, 2005) for examples). 

In evolved hardware, much emphasis has been placed on evolving simple, functional circuits, as opposed to 

evolving real-world FSM circuits. The functional circuits include multipliers, adders, filters and oscillators (see 

(Vassilev, et al., 1999), (Sekanina & Freidl, 2005), (Sekanina, 2002), (Thompson, 1995) for examples). These 

simple circuits have been popular because they are small and practical enough to evolve, while still allowing 

the researcher the ability to test and adjust new EHW platforms, GAs and architectures. 

Nevertheless, Rustem (2012) did manage to evolve a complex six-state, four-input/four-output FSM. Two key 

points, taken from Rustem’s (2012) research, include: 

1. The FSM was evolved using a software simulation, i.e. it was not evolved using a hardware platform 

2. The final circuit was tested on a CPLD and not an FPGA 

These two points are significant, as even though this research will also aim to evolve a four-input/four-

output FSM, it will differ to previous research by not simulating the evolution and not using a CPLD. Instead, 

the FSM will be evolved and implemented on an FPGA platform. 

1.4 Problem Statement 

There are three main problems addressed in this study: 

1. The difficulty of configuring modern FPGAs to implement EHW 

2. The influence of different genetic operators on the efficiency of EHW GAs 

3. Using modular evolution to address scalability issues when evolving FSMs 

1.4.1 The Virtual Reconfigurable Architecture 

Altera (2013) describes FPGAs as “semiconductor devices that can be programmed after manufacturing.” 

This is a particularly vital advantage in that an FPGA allows the designer to reconfigure the hardware 

architecture according to the designer’s EHW needs. 

In order to understand this reconfiguration, first consider the simplified internal structure of an FPGA, shown 

in Figure 1.3, consisting of IO blocks, logic blocks, routing switches and wires. FPGAs use thousands of basic 

programmable logic blocks which are arranged in a row/column matrix formation and connected via 

reconfigurable interconnections. By allowing the logic blocks to communicate to one another and to external 

hardware via the IO blocks, complex combinational logic and sequential logic operations can be performed. 

This allows the user to implement any hardware circuit on the FPGA by simply reprogramming the chip’s 

configuration. 
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Figure 1.3 Overview of an FPGA with a virtual reconfigurable layer 

When programming an FPGA, the designer makes use of the FPGA vendor’s software, which loads the 

circuit’s configuration data onto the FPGA using a configuration bitstream. The bitstream is a sequence of 

bits which describes all the necessary data needed to implement the user-defined circuit, and is stored in the 

FPGA’s configuration memory. In the case of EHW, the hardware genotypes would be decoded into an FPGA 

bitstream in order to implement the phenotype circuit. 

The initial FPGAs used for EHW, such as the Xilinx 6200 used by Thompson (1996) and Gers, et al. (1998), 

offered many evolutionary-friendly features, including partial reconfigurations, access to single logic blocks, 

an open architecture and protection against illegal configurations (Haddow & Tufte, 2001). However, the 

Xilinx 6200 FPGA is now obsolete and most modern FPGAs have become less EHW-friendly. 

FPGA manufactures have prohibited the modification of the configuration memory or bitstreams, claiming 

that it is “intellectual property” or “proprietary to the vendor” (Bedi, 2009, p. 2) (Majzoobi, et al., 2012, p. 

200). The only FPGA devices capable of performing bitstream configurations are the “Xilinx 4000” and the 

“Xilinx Virtex series” (Smith, 2010, p. 1) (Bedi, 2009, p. 1). Still, even though these FPGAs can be used, few 

evolution features, found on the original Xilinx 6200, have been retained. 

To overcome this problem, Xilinx introduced JBits. JBits is a set of Java classes that allow the designer access 

the FPGA’s bitstream via an application-program interface (API) (Guccione & Levi, 1999). This, in turn, gives 

the designer the capability of designing, modifying and dynamically modifying circuits on JBits-enabled FPGA 

devices. 

However, JBits has shortcomings: larger EHW chromosomes can be cumbersome to dynamically decode into 

bitstreams; JBits can only be used on Xilinx FPGAs; JBits can only be configured using external hardware 

attached to configuration ports. 
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In light of the above-mentioned problems, a more promising solution, used in this research, is the virtual-

reconfigurable-circuit (VRC) architecture. A VRC, as shown in Figure 1.3, is a virtual reconfigurable layer 

residing on top of the FPGA hardware layer. The VRC allows the designer access to its virtual configuration 

memory (i.e. a set of registers) and bitstream (i.e. the chromosome), thus allowing run-time configuration of 

the FPGA to be performed. 

Notice, in Figure 1.3, that the VRC only makes use of a portion of the FPGA’s available logic blocks. This is 

because VRCs maintain complete encapsulation during evolution. Designers thus have the opportunity to 

utilise the remaining logic blocks for other digital functions, such as implementing a soft-processor. 

There is no standard for VRCs—each VRC is unique, and thus VRCs are made to the exact requirements of a 

given EHW application. Different designers may create different virtual architectures that perform similarly, 

but utilise different methodologies. 

In 2010, Smith presented a VRC architecture called the Virtual-FPGA (V-FPGA). It was shown, through 

software simulation, that the V-FPGA was successfully configured to implement a clock-divider circuit. 

However, the V-FPGA also presented a drawback. Smith (2010, p. 2) noted that any reconfigurable 

architecture, which is built on top of an FPGA architecture, creates inevitable “inefficient resource 

utilisation”. This disadvantage, however, is negligible for prototyping EHW applications. Most VRC 

architectures have shown promise in the EHW field (Sekanina & Freidl, 2005). 

1.4.2 Optimising Genetic Operators for use on the Virtual-FPGA 

Variations in GAs—such as changing the population size, crossover, selection and mutation—may a have vast 

impact on the performance of the algorithm. From the literature, GA operators are usually optimised for 

each EHW system according to the makeup of the evolutionary platform and architecture, the complexity of 

the circuit being evolved, the fitness function and the representation of the hardware chromosome. Thus, 

every GA is unique to the specific application. 

Vassilev et al. (1999) tested the effectiveness of the crossover and mutation operators in a GA configured to 

evolve a two-bit multiplier. They did this by examining the GA’s fitness landscape
3
. The setup made use of a 

VRC which could reconfigure 16 LEs according to their function and routing. Each cell could function as either 

a two-input logic gate or a 2-1 multiplexer. Restrictions were also applied to the circuits’ outputs: Outputs 

could only be connected to a select number of cells. 

Vassilev et al. concluded that uniform crossover was not a favourable operator for evolving the functionality 

and internal connectivity of the evolved multiplier. Furthermore, Vassilev et al. states, “the mutation 

landscapes appear to be relatively smooth, and therefore, it is feasible for an evolutionary search.” Although 

                                                                 

3 Fitness Landscape: A collective term for the fitness values of all the possible solutions within the search space. 
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many EHW researchers have, and still do, obtain success using crossover (see (University of Heidelberg, 

2011) (Miller & Thomson, 1998)), Vassilev et al. suggests that by omitting crossover and using mutation only, 

the GA may be optimised. 

The above findings were successfully demonstrated by both Vassilev & Miller (2000) and Selanina & Freidl 

(2005). The latter evolved both an adder and multiplier circuit by omitting crossover, constraining the LEs’ 

functionality and using effective fitness functions. 

It is important to note that all the sources, used in this section, have implemented different EHW 

architectures, platforms, cell restrictions and GAs. Thus, because each EHW system is unique, it would be 

advantageous to investigate the outcome of optimising the EHW GA—as done by Selanina & Freidl (2005)—

to evolve a two-bit multiplier on the V-FPGA. 

Evolving a multiplier circuit is a good starting point when experimenting with a new EHW architecture and 

setup. Multipliers have been well researched (Miller & Thomson (1998), Vassilev et al. (1999) and Selanina & 

Freidl (2005)), are mathematically useful and are relatively uncomplicated. 

1.4.3 Scalability 

Since EHW makes use of search algorithms that need to explore large search spaces, the intricacy and sheer 

scale of finding a solution becomes more apparent as the solution circuit becomes more complex. Many 

researchers have recognised that scalability is a hindrance in the successful implementation of EHW in real-

world applications (Gordon & Bentley, 2005) (Vassilev & Miller, 2000). 

Scalability, in this context, refers to the difficulty of finding a satisfactory solution for large, complex 

problems—those found in real-world applications—due to the GA’s search space being too large, or the 

solution being too complex to be implemented on the EHW system. To put scalability in context, remember 

that EHW systems have to evolve circuitry by placing logic gates—often thousands of logic gates in larger 

systems—in very specific configurations. In addition, as the complexity of the circuit increases, so the 

genotype length and the time required to calculate the fitness of each phenotype also increases. This results 

in there being billions of potential solutions which are cumbersome and time-consuming to explore, even 

with evolutionary techniques. 

One suggested solution to scalability is function-level evolution, which uses micro-circuits as the building 

blocks for larger complex circuits (Higuchi, et al., 1997) (Antola, et al., 2007). However, function-level 

evolution merely moves the problem: A designer is still needed to successfully identify the suitable function-

level circuits. Also, function-level evolution is inheritably inefficient due to the evolution not being performed 

at the lowest gate-level. For instance, a three-bit multiplier requires only 23 LEs using gate-level evolution 

(Vassilev & Miller, 2000); compared to 14 LEs and 7 three-input binary multipliers (Miller, et al., 2000). 
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A more reasonable approach, which follows on from function-level evolution, is modular evolution. (Some 

literature refers to modular evolution as incremental evolution.) Modular evolution simplifies an EA’s search 

space by decomposing the desired circuit into smaller modules, and then re-assembling the smaller modules 

once evolved. This process of circuit decomposition-and-assembly is inspired by the divide-and-conquer 

principle, which has been observed in biological systems (Torresen, 1998) (Wang, et al., 2007). 

Since each module, or sub-circuit, can be independently evolved using gate-level components, the evolution 

allows for fine-granularity (Gordon, 2005). Gordon (2005, p. 16) goes on to further state that modularisation 

in evolutionary designs have “proved useful in many respects”, however have still not caught up with the 

modular evolution used in “biological organisms”. For example, mammals are modular, comprising of sub-

components such as organs and tissue. Each sub-component has been specifically evolved in order for the 

mammal to thrive in its natural environment. 

Modular evolution is not a new concept. Torresen (1998) showed, through experimentation, that the 

number of generations required, when using smaller sub-systems, “can be substantially reduced when 

compared to direct evolution.” Similar results are concluded by Vassilev & Miller (2000): “To evolve digital 

circuits using modules is faster, since the building blocks of the circuit are sub-circuits rather than two-input 

gates.” 

This research will demonstrate that by modularising EHW problems, EHW systems are able to synthesise 

larger, complex circuits that are typically not directly evolvable due to scalability. In particular, unlike the 

previous research, the modular evolution will be applied to a FSM’s circuitry. 

1.5 Statement of Objectives 

1.5.1 Major Objectives 

With the above background considered, there are three major objectives addressed in this research: 

1. This research will form a continuation of the research done on the V-FPGA architecture designed by 

Smith (2010). Smith (2010) first introduced the V-FPGA in his paper entitled, “A Virtual VLSI 

Architecture for Computer Hardware Evolution”. The paper’s objective was to “provide and method 

to facilitate hardware evolution” and “not to demonstrate hardware evolution.” It thus follows that 

this study will aim to show, by successfully implementing and demonstrating evolved hardware on 

an FPGA, that practically the V-FPGA is a viable evolution platform. 

2. Following Vassilev et al. (1999) and Selanina & Freidl’s (2005) research, this study will explore the 

effectiveness of optimising the EHW GA for use on the V-FPGA by omitting the crossover operator, 

applying evolution constraints and optimising the fitness function. The GA will be used to evolve 

smaller circuits, such as a two-bit multiplier, in order to provide a viable means of studying major 

EHW issues, such as: scalability, evolution time, circuit efficiency and the V-FPGA configuration. 
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3. Finally, once the V-FPGA and GA are optimised, modular evolution will be demonstrated by evolving 

the circuitry required for a simple, but real-world FSM. This will aim to show that larger control 

circuits may be scalable if the evolution process is constrained. 

1.5.2 Minor Objectives 

In order to achieve the major objectives, the following minor milestones have to be attained: 

 The V-FPGA architecture has to be verified through simulation. 

 A genotype representation of the phenotype has to be devised, i.e. a standard by which all the 

phenotypes’ data can be represented and modified in software. 

 A software procedure for decoding the genotypes into phenotypes has to be programmed. 

 An effective fitness function, which correctly evaluates the outcome of each phenotype, must be 

developed. 

 The size of the GA’s search space needs to be investigated. 

 A critical-path analysis of each circuit needs to be completed in order to understand the manner in 

which the circuits are evolved. With this knowledge, better fitness functions and operators can be 

developed to further enhance the EHW system’s efficiency. 

1.6 Methodology 

The research methodology is outlined as follows: 

1. Create a V-FPGA VHDL file and simulate a two-bit multiplier using software. 

2. Create a larger V-FPGA, and download the VHDL file onto an FPGA chip. 

3. Create a LabVIEW GA which can evolve a two-bit multiplier. 

4. Optimise the GA, through experimentation, by adjusting different operators. 

5. Use the optimised GA to evolve the combinational circuits used in a FSM. 

To create a V-FPGA VHDL-based file, the following parameters have to be defined: the number of logic 

elements (LEs); the number external inputs and the number of external outputs. Initially, the V-FPGA will be 

configured to use four external inputs, eight LEs and four external outputs. This configuration will be 

adequate to implement a two-bit multiplier on the V-FPGA. Through software simulation, the conventional 

two-bit multiplier will then be tested, thereby validating if V-FPGA architecture works correctly. 

Once the simulation is successful, a larger V-FPGA will be configured using four external inputs, twenty LEs 

and four external outputs. This V-FPGA configuration will be used, in conjunction with the GA, to evolve the 

control and multiplier circuits. To do this, V-FPGA will be downloaded onto an FPGA chip. 

The GA will be programmed using LabVIEW software on a PC. Since the GA and V-FPGA will not be executed 

on the same processor, this research will demonstrate off-chip evolution. Off-chip evolution occurs when the 
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evolutionary algorithm is performed on a separate processor not incorporated into the chip containing the 

target EHW (Torresen, 2004). 

A two-bit multiplier will first be evolved using different GAs operators, constraints and fitness functions. For 

the successfully implemented GA, the number of generations, fittest parent per generation, phenotype and 

evolution time will be recorded. Appropriate statistical and design comparisons will be made between the 

evolved phenotype and the conventional multiplier circuit. 

Finally, an example eight-variable FSM case study will be also be evolved. This case study will demonstrate 

the modular evolution of a FSM’s state circuits. Since the V-FPGA and GA will be constrained to only evolve 

forward-feed circuits, only the combinational section of the FSM will be evolved. Similar to the evolved two-

bit multiplier, the evolution time, number of generations and final phenotype will also be recorded. 

1.7 Paper Structure 

The dissertation will continue with a literature review in Chapter 2. The chapter will begin with a brief history 

of the EHW field; and will conclude by identifying several difficulties hindering the implementation of real-

world applications. 

Chapter 3 will discuss the V-FPGA architecture. The chapter will be presented in twofold: first, how to 

configure a circuit’s LEs within the V-FPGA; second, how to configure a circuit’s routing structure using a 

specialised Routing Matrix. The chapter will close with the simulation of a two-bit multiplier. 

Chapter 4 will illustrate the evolution of a two-bit multiplier using the V-FPGA architecture. The chapter will 

start by describing the experimental hardware setup. Part of the setup will include configuring and compiling 

the V-FPGA on an FPGA chip. Once configured, the effectiveness of two different GAs will be investigated. 

Finally, the chapter will end with an account of three evolved multiplier phenotypes as well as a discussion 

on the arising evolution difficulties, the possible causes and solutions. 

Chapter 5 will be to demonstrate a means of overcoming scalability by using modular evolution. The chapter 

will starts by introducing a case study and a real-world FSM. Then, the FSM will be modelled using a state 

and block diagram. Finally, each state’s combinational sub-circuit in the FSM will be is independently 

evolved. The chapter will end with a discussion. 

The final chapter will conclude the research by reviewing the study’s contributions, and presenting 

considerations for future work. 
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Chapter 2 LITERATURE REVIEW 

LITERATURE REVIEW 

This chapter surveys the benefits and shortcomings of previous EWH systems.  The 
chapter starts with a brief history of the EHW field, which was primarily driven by 
the development of reconfigurable FPGAs. Then, from the literature, several 
difficulties of implementing real-world applications are identified. In particular, 
scalability is addressed in detail, with a number of solutions being proposed. 

2.1 A History Driven by Target Platforms 

2.1.1 The Early Years 

EHW can first be traced back to 1993, when de Garis (1993) published a paper on “Darwin Machines”. It was 

proposed that Darwin Machines would use EHW to evolve artificial nervous systems, which would be used to 

control artificial creatures and/or robots. de Garis believed that “software configurable hardware”, in 

particular FPGAs, would allow the Darwin Machines to be realised “within a year or two”. 

However, this was not to be. In 1995 Xilinx introduced the XC6200 FPGA device-family—the first 

reconfigurable FPGAs (Lazzaro, 2010). It was only after the introduction of the XC6200 that the first research 

on implemented EHW was published. The research, conducted by Thompson (1996) over a three week 

period, showed how an EHW system managed to evolve a frequency discriminator able to distinguish 

between 1kHz and 10kHz square waves. The XC6216 FPGA allowed Thompson to directly reconfigure the 

FPGA’s logic blocks by manipulating the configuration bitstream. 

Thompson’s work can be considered an important milestone in EHW, since it was the first publication to 

demonstrate the advantages of EHW through bitstream manipulation. 

However, in addition to the evolution, Thompson’s experimentation revealed that the evolved discriminator 

was susceptible to external conditions, such as temperature, and was device-dependent, i.e. the evolved 

discriminator malfunctioned when implemented on different FPGAs. These factors made the evolution 

volatile. 

To address this volatility, Thompson turned his attention to the EHW system’s “robustness”. Robustness, as 

defined by Thompson (1998, p. 1), means “to be able to maintain satisfactory operation when certain 

variations in the circuit’s environment or implementation occur.” To increase robustness, Thompson created 
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an “Evolvatron” tool to simultaneously test the evolved circuits in different conditions and on different 

devices. By testing the circuits in all conditions, a more precise fitness function could be used to accurately 

award fitness values (Thompson, 1999). The Evolvatron proved to be a success. 

Besides Thompson, other notable research done before 2000 was conducted by Torresen (1999), Higuchi, et 

al. (1999) and Macias (1999). 

Torresen and Thompson’s research have similarities: Both used the Xilinx 6200 FPGA and both initially lacked 

robustness. Torresen managed to evolve a character recognition system which performed as expected, 

however lacked “noise robustness”. His paper also highlighted some reasons as to why EHW had not yet 

been widely applied—mostly due to scalability. 

Higuchi, et al.’s research, in contrast to Torresen and Thompson, investigated an ASIC, which was named the 

“GRD chip”, to dynamically reconfigure gates within the chip. The GRD chip, which made use of a RISC 

processor, evolved the hardware using an Artificial Neural Network (ANN) algorithm. The aim of the study 

was to introduce an EHW chip capable of solving a variety of real-world problems, such as robot navigation 

and the control of a prosthetic hand. 

Similarly, Macias also created an EHW ASIC, called the “Processing Integrated Grid”, or simply PIG, consisting 

of a reconfigurable-element grid which allowed the implementation any large digital circuit. What made the 

PIG architecture unique is that it was capable of parallel reconfiguration. Hence, different elements within 

the circuit could be evolved simultaneously. 

2.1.2 The Virtual-Reconfigurable-Circuit Era 

Besides specialised ASIC chips, most FPGA-based EHW research before 2000 was performed on a Xilinx 

XC6200 device. Cancare, et al. (2011) and Hollingworth, et al. (2000) highlight some of the XC6200 features: 

 Safe Reconfiguration: The FPGA could not be physically damaged through implementing illegal 

bitstream configurations that created short circuits. 

 Partial Reconfiguration: Selected portions of the FPGA could be reconfigured independently. 

 Fast Reconfiguration: The FPGA used a parallel interface, allowing faster configurations compared 

to previous devices. 

 Static Random-Access Memory (RAM): The FPGA made use of static RAM that could be swiftly 

accessed and rewritten through standard interfaces. 

 Known Data Format: The well-known bitstream format allowed the designer to alter individual 

parts of the configuration. 

In 1998, Xilinx withdrew the XC6200 device-family from further development, thereby indirectly halting any 

EHW research done using direct bitstream-manipulations (Lazzaro, 2010). The reasoning behind the 
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discontinuation, as Cancare, et al (2011, p. 3) explains, is that “the open bitstream format was allowing the 

reverse engineering of proprietary-hardware intellectual-property cores.” 

Later in 1998, Xilinx released the Virtex FPGA family to replace the XC6200. It retained most of the XC6200 

features, but had drawbacks: Virtex FPGAs did not allow the designer direct access to the FPGA’s bitstream 

or static RAM. In addition, the Virtex series allowed multi-directional routing, thus allowing unsafe and 

potentially damaging routing configurations (Hollingworth, et al., 2000). 

Subsequently, the discontinuation was a major turning point. To combat the Virtex shortfalls, many 

designers attempted direct bitstream-manipulation by means of well defined APIs such as JBits (as discussed 

in Chapter 1) (Hollingworth, et al., 2000). However, although successful, JBits was limited and clumsy, and 

there was a need to find a more universal and standardised EHW approach—one which did not rely purely 

on Virtex FPGAs. As such, researchers proposed VRCs. 

VRC-based solutions, such as those designed by Slorach & Sharman (2000), Sekanina & Azeddien (2000), 

Sekanina & Freidl (2005) and Smith (2010), generally always consisted of: 

 Logic Elements (LEs): Programmable elements, sometimes called cells 

 Programmable Interconnection Network: Connected the LEs and external IOs 

 Configuration Memory: Stored the VRC’s virtual bitstream so that the desired circuit could be 

implemented 

To create a VRC, the above components would first be modelled at a higher level of abstraction, using either 

C++ or C. Thereafter, an executable file would be generated to produce the required Hardware-Description-

Language (HDL) code needed to deploy the VRC on a target FPGA. 

VRC architectures were able to make EHW systems portable by providing a standardised, device-

independent means of configuring circuits on FPGAs through virtual bitstreams. Thus, VRCs provided a major 

advantage over specialised direct-bitstream-FPGA and ASIC systems. 

2.1.3 Future Platforms 

The latest research done by Dobai & Sekanina (2013) investigated two new potential target platforms: 

Xilinx’s latest EHW offering—a stand-alone programmable system-on-chip (SOC) called Zynq-7000; and a 

hybrid-VRC architecture. 

The Zynq-7000 integrates programmable logic with a dual-core ARM processor. The main difference between 

the Zynq and previous FPGAs is that FPGAs are typically built around the programmable logic, with on-chip 

processors being an extension, i.e. part of the programmable logic is configured into a soft-processor. On the 

contrary, the Zynq-7000 is an FPGA platform built around its hard-processor (Dobai & Sekanina, 2013). Thus, 

the processor and programmable logic are independent, and can be accessed and configured independently. 
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For example, the configuration bitstream can be downloaded from memory onto the programmable logic 

without utilising the processor. 

Hybrid VRCs make use of both direct-bitstream and VRC architectures, and can thus only be used on specific 

Xilinx FPGAs. Essentially, a hybrid VRC uses the direct-bitstream approach to program the LEs’ functionality, 

and the VRC architecture to route the LEs. In this way, hybrids are able to take advantage of VRCs’ faster 

reconfigurations, while lowering the hardware resources needed to implement the VRC. 

Finally, Dobai & Sekanina (2013, p. 7) concluded that “the hybrid approach represent computationally equal 

power to the pure VRCs.” However, VRCs still present device-independent advantages. In addition, although 

the Zynq platform is promising, further work is needed to “exploit all the features and advantages of this 

platform.” 

2.2 Factors Delaying Real-World Applications 

There has been extended research, with some success, into VRCs and target platforms to improve the 

portability of EHW systems. Thus, systems are becoming less device and application specific. However, there 

are additional factors which are delaying the field’s progress.  

Many researchers agree that real-world applications of EHW systems, such as the control circuitry on robots, 

have been, and still are, a major challenge (Higuchi, et al., 1999) (Cancare, et al., 2011) (Wang, et al., 2007) 

(Sekanina, 2003). From the literature, the following key areas have been identified as troublesome: 

1. Performance: Conventional circuit-design methods currently outperform EHW. For example, only 

basic adder and multiplier circuits have been evolved. 

2. Cost: Designing and manufacturing an EHW ASIC, or using the latest FPGAs, is costly. 

3. Time: For intrinsic evolution, testing each chromosome becomes increasingly time-consuming as 

the number of external IOs increase.  

4. Scalability: Digital circuits generally do not scale proportionally. For example, a two-bit multiplier 

can be evolved within 5000 generations, whereas a 3-bit multiplier could take as much as three 

million generations to evolve (Miller, et al., 1999). 

5. Chromosome Length: Most EHW chromosomes use one-to-one mapping, where one gene 

configures either a single LE or a routing node. Thus, to evolve larger circuits, the length of the 

chromosome can be cumbersome and computationally taxing. 

6. Variety of Research: Because the research field is varied (with each system using different target 

platforms, EAs and being designed for different applications) the research is scattered with each 

researcher’s work tending to be isolated. Also, most literature only describes the EHW system 

and/or relevant results. Little technical detail such as coding and exact architecture implementation 

is included. 
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It is vital for designers to consider all the above factors holistically when designing EHW systems, as they all 

interlink. The factors are now discussed further in the subsections below. 

2.2.1 Performance, Cost and Time 

On both the Xilinx (2013) and Altera (2013) websites, the FPGA manufacturers state that FPGAs provide 

faster time-to-market and no non-recurring engineering costs—the costs of developing, designing and 

testing an IC—when compared to ASICs. Xilinx (2013) further states that FPGA devices do not require 

“complex and time-consuming floor-planning, place-and-route, timing-analysis and mask stages.” Thus, 

FPGAs provide a clear advantage over ASICs when considering costs and flexibility—which are two important 

points considered by EHW researchers. 

However, as discussed in Section 2.1.2 , FPGAs can be limiting, and as FPGA vendor’s release newer models, 

procuring the latest technology, such as the Zynq platform, can also be costly. 

Generally, VRCs do help to minimise FPGA costs, since they have no special hardware requirements. But, 

even so, designers should be aware that although cheaper, VRCs do compromise on performance. This is 

because VRCs, by their very nature, are secondary configurable layers, which make use of FPGA logic blocks 

configured as multiplexers and registers to implement logic. Direct-bitstream evolution, on the other hand, 

does not require additional hardware resources. Thus, the evolution can be performed at higher frequencies 

with the evaluation of individuals being faster (Dobai & Sekanina, 2013). 

To address evaluation times in VRCs, researchers have proposed multi-VRC solutions (Wang, et al., 2007) 

(Cancare, et al., 2011). Multi-VRCs, as the term suggests, make use of several independent VRCs 

implemented on a single commercial FPGA chip. This allows the EA to simultaneously download and evaluate 

different individuals on different VRCs, thereby dramatically reducing evolution time and improving 

performance. 

2.2.2 Scalability and Chromosome Length 

Scalability and chromosome length are directly related. As the complexity, i.e. number external IOs, of the 

solution circuit increases, so does the size of the search space and length of the chromosome string. Long 

chromosome strings are an inevitable side-effect of complex systems. Thus, by simplifying or scaling-down 

complex circuits, chromosomes string can be reduced. 

In Chapter 1, scalability and function-level evolution was briefly introduced, and modular evolution using 

circuit decomposition was proposed as a solution. These techniques are all based on reducing the EA’s 

search space. However, a different approach to scalability is to increase the EA’s computing power. To do 

this, researchers have proposed parallel evolution (Wang, et al., 2007) (Cancare, et al., 2011). Parallel-

evolution schemes make use of two or more independent EAs, i.e. the EAs run in parallel, thereby allowing 

multiple circuits to be evolved simultaneously. 
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2.2.2.1 Overcoming Scalability using a Multifaceted Approach 

In 2007, Wang, et al. (p. 33) evolved both three-bit adders and multipliers in less than three seconds, which 

was reportedly “untouchable by any other reported evolvable system.” The research showed that three-bit 

adders/multipliers were scalable if a mutifaceted approch was taken. Wang, et al. (p. 25) suggested 

overcoming scalability using three techniques: optimising the EA; limiting the chromosome length; and 

“decreasing the computational complexity of the problem.” 

Firstly, Wang, et al. made use of a GA optimised, as suggested in Chapter 1, by omitting the crossover 

operator. Also, a multi-VRC platform was used, thereby allowing the GA to test the candidate circuits faster. 

Although not done by Wang, et al., other optimisations could also include finding more effective mutation 

and crossover operators (if used), and improving the fitness function (see (Martin & Poli, 2002) and (Vassilev, 

et al., 1999)). 

Secondly, the chromosome length was limited by decomposing the solution circuit into modules, as done in 

modular evolution. There are different ways of decomposing circuits, each with varying levels of success and 

complexity. Examples include Shannon decomposition (Kalganova, 2000), disjunction decomposition 

(Stomeo, et al., 2006) and output decomposition. Wang, et al. made use of output decomposition, which 

decomposes a circuit according the number of external outputs. Figure 2.1 shows the decomposition of a 

two-bit multiplier into two modules. Each module has the same external inputs, but only half of the available 

external outputs. 

 

Figure 2.1 Output decomposition of a four-output circuit. 

Thirdly, to decrease the computational complexity, parallel evolution was used. It is important to understand 

that unlike modular evolution, parallel evolution does not decrease the complexity of the solution circuit. It 

only improves the computational capacity of the evolution. Wang, et al. used a two-core system, with each 

core running independent GAs and VRCs, and evolving a single sub-circuit. Theoretically, there was no limit 

to the number of implemented cores and VRCs. 

The results showed that modular evolution decreased the number of generations required from over 18-

million generations for standard evolution, to approximately 133 thousand. In addition, parallel evolution 

was able to improve the evolution time from approximately 77 seconds for standard evolution, to a mere 2.6 

seconds. 
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Finally, Wang, et al. (2007) acknowledge that more complex circuits would still need to be tested, adding that 

“future work will be devoted to applying this scheme to other more complex real-world applications.” 

2.2.3 Variety of Research 

The diversity of EHW research may be considered both beneficial and problematic: beneficial because 

diversity promotes progress and unique solutions; problematic because there is little standardisation within 

the field. 

To analyse the diverse EHW research, EHW systems can be classified, as suggested by Torresen (2004), into 

the following categories: evolutionary algorithm, evolution level, target platform/architecture, degree of 

evolution and scope. The evolutionary algorithm, evolution level and target platform have been discussed in 

Chapter 1. Thus, the remaining categories are defined below: 

 Fitness Computation: Refers to the manner in which the fitness of a circuit is computed. Extrinsic 

evolution only downloads the elite chromosome to the target platform. Thus, much of the evolution 

is simulated. Intrinsic evolution implements and tests each chromosome in hardware. 

 Degree of Evolution: Refers to the whether or not “the evolutionary algorithm is performed on a 

separate processor incorporated into the chip containing the target EHW” (Torresen, 2004, p. 6). 

Off-chip evolution does not make use of an incorporated processor, while on-chip evolution does. 

Complete evolution does not use a processor, but rather uses specialised hardware. 

 Scope: Static evolution only puts the evolved circuit to use once evolution is complete. Static 

evolution is typically used in Evolved Hardware. Dynamic evolution is undertaken while the evolved 

circuit is used. Thus, dynamic evolution is used in Evolvable Hardware. 

Table 2.1 shows an overview of eleven EHW research papers conducted from 1996 to 2013. 

Table 2.1 Overview of FPGA and ASIC-based EHW applications, found in literature 
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Robot control system 
(Thompson, et al., 1996) 

GA Gate Direct-
Bitstream on 
FPGA 

Extrinsic On Chip Dynamic 

Function-level EHW 
(Higuchi, et al., 1997) 

ANN Function Direct-
Bitstream on 
FPGA and PLD 

Extrinsic On chip Dynamic 

Proposed ASIC for a CATV 
modem and prosthetic 
EMG-controlled hand 
(Murakawa, et al., 1999) 

ANN Gate ASIC Intrinsic On chip Dynamic 

Crossover optimisation 
(Martin & Poli, 2002) 

GA Gate VRC on FPGA Extrinsic Off chip Static 

Human gene recognition GA Gate VRC on FPGA Extrinsic Off Chip Static 
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(Yasunaga, et al., 2003) 

Digital circuit synthesis 
(Sekanina & Freidl, 2005) 

GA Gate VRC on FPGA Intrinsic Complete Static 

Sequential and 
combinational logic 
synthesis (Popa, et al., 
2006)  

GA Gate Direct-
bitstream on 
FPGA and CPLD 

Extrinsic Off chip  Static 

Multiplier and adder 
synthesis (Wang, et al., 
2007) 

GA Function VRC on FPGA Intrinsic Complete Static 

Proposed EHW system for 
use on an Inverse 
Pendulum Problem 
(Cancare, et al., 2010) 

GA Gate or 
Function 

Direct-
Bitstream on 
FPGA 

Extrinsic On chip Dynamic or 
Static 

Analogue circuit synthesis 
(University of Heidelberg, 
2011) 

GA Gate ASIC Extrinsic Off chip Static 

Image filtering (Dobai & 
Sekanina, 2013) 

GA Function Zynq-7000, VRC 
Hybrid on FPGA 

Intrinsic Complete Dynamic or 
Static 

From the table, the variations in the research are apparent. Most research deals with simple digital/analogue 

circuit synthesis, image filtering and system refinements. Again, there is little evidence of real-world 

applications being implemented, and thus most research is still focussed on refining systems, and testing 

these refinements by evolving simple circuits such as adders and multipliers. 

2.3 Chapter Summary 

The EHW field was primarily target-platform driven, with the Xilinx 6200 FPGAs initially being the platform of 

choice. Later, post 2000, the Xilinx Virtex FPGAs limited direct-bitstream evolution, leading to the 

popularisation of VRCs, with many designers favouring VRCs due to cost and portability advantages. 

Research is now concentrated on scalability—EHW needs to become more prominent in real-world 

applications. From the literature, there are many solutions to scalability, but the most promising solutions 

will need a multifaceted approach. 
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Chapter 3 THE VIRTUAL-FPGA 

THE VIRTUAL-FPGA 

This chapter discusses the V-FPGA architecture designed by Smith (2010). The V-
FPGA is a virtual reconfigurable electronic circuit dedicated to the implementation 
of EHW by means of partially reconfiguring an FPGA chip. The chapter is presented 
in twofold: first, how to configure a circuit’s logic elements within the V-FPGA; 
second, how to configure a circuit’s routing structure using a specialised Routing 
Matrix. The chapter ends with the simulation of a two-bit multiplier using QSim 
software. 

3.1 Introduction 

Like the VRC shown in Figure 1.3, the V-FPGA is a second reconfigurable layer residing on top of an FPGA, 

which takes the form of a two-dimensional array of logic blocks. It only makes use of a partial section of the 

FPGA. 

For clarity, the terminology used to describe a V-FPGA circuit will first be addressed. Each circuit created on 

the V-FPGA consists of external inputs, logic elements (LEs) and external outputs. The LEs can be configured 

to carry out any digital-logic function. Depending on how the LEs are routed, i.e. connected to one another, 

the LEs can form either a combinational or sequential digital circuit. Thus, when creating digital logic using 

the V-FPGA architecture, the designer needs to define/configure: 

1. The function of each LE 

2. The way in which the LEs, external inputs and external outputs are routed 

The circuit’s functionality and routing configuration is stored on the V-FPGA’s Logic and Routing 

Configuration Memories. These memories are implemented using registers. 

Because the V-FPGA’s configuration memory, style of reconfiguration, granularity and size can be designed 

exactly according to the requirements of a given application, designers can create an optimised application-

specific reconfigurable device. Furthermore, the V-FPGA is described in VHDL and is thus independent of a 

target platform. 

The V-FPGA’s VHDL code is obtained by running a C program. The C program outputs a VHDL file which can 

then be downloaded to any FPGA. In theory, the C code can generate a V-FPGA of any desired size. 
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The development of the V-FPGA architecture is described further in the sections below. 

3.2 The V-FPGA’s Logic Elements 

The V-FPGA architecture is fine-grained with each LE consisting of two inputs. Each LE models a two-bit 

lookup table (LUT), which is implemented using a four-to-one multiplexer, and can encode any two-bit 

Boolean function. Figure 3.1 illustrates how a multiplexer is used to implement an AND-gate. The LE’s 

multiplexer is configured as follows: 

 The multiplexer’s four input-bits determine the type of gate. For the V-FPGA architecture, there are 

four one-bit registers—found in the Logic Configuration Memory (LCM)—which are connected to 

the four multiplexer inputs in order to supply the multiplexer input values. This concept is illustrated 

in Figure 3.1. Depending on the function to be implemented, the contents of the four one-bit 

registers is set to   or  . It is set to   for all the 1-minterms of a two-variable Boolean function, and 

to   for all 0-minterms. 

 The multiplexer’s two select-lines form the inputs of the LUT—illustrated using line         and 

       . Depending on the values of these two inputs, the value from one of the four multiplexer 

inputs is passed to the LE’s output. For example, if both select-line were high (binary “11”), then the 

fourth multiplexer input would be selected, resulting in LE 0’s output being high. This is the 

expected value, since a high output is produced if both inputs to an AND-gate are high. 

 

Figure 3.1 AND-gate implementation using a multiplexer 

Table 3.1 illustrates all the different two-bit logic gates that can be implemented on the V-FPGA. The binary 

number next to each gate represents the four-bit multiplexer input needed to implement that particular 

logic gate. The gates are categorised as fundamental and non-fundamental. The fundamental gates include 

all the basic functions, namely: AND, NOT, XOR, OR and the wire gates. The gates with bubbled inputs or 

outputs, except for the NOT-gate, are considered non-fundamental. 
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Table 3.1 V-FPGA logic-gates 

Decimal 
Value 

        Binary Value 
Gate Name 

Simplified 
Boolean 

Expression 
Circuit Diagram 

Fundamental 
Gate? 

                

0 0 0 0 0 Always Off   
A

B 0

 
 

1 0 0 0 1 AND     
A

B

 
 

2 0 0 1 0 
Negated-

Input AND 
     

A
B

 
 

3 0 0 1 1     
A

B

 
 

4 0 1 0 0 
Negated-

Input AND 
     

A
B

 
 

5 0 1 0 1     
A

B

 
 

6 0 1 1 0 XOR     
A

B

 
 

7 0 1 1 1 OR     
A

B

 
 

8 1 0 0 0 NOR             
A

B

 
 

9 1 0 0 1 XNOR            
A

B

 
 

10 1 0 1 0 NOT      
A

B

 

 

11 1 0 1 1 
Negated-
Input OR 

     
A

B

 
 

12 1 1 0 0 NOT      
A

B

 

 

13 1 1 0 1 
Negated-
Input OR 

     
A

B

 
 

14 1 1 1 0 NAND          
A

B

 
 

15 1 1 1 1 Always On   
A

B 1

 
 

Now, consider an array of   LEs, as specified by the designer. Each LE is represented by one LE multiplexer—

as shown in Figure 3.2. Hence, for   LEs there are   LE multiplexers. 

                 

Equation 3.1 Maximum number of LE multiplexers 



 Page 26 |Hardware Evolution of a Digital Circuit using a Custom VLSI Architecture 

 

Figure 3.2 Logic Configuration Memory and Routing Matrix connected to the LE multiplexers 

The   LEs are addressed from   to    . As previously explained, the four-bit inputs are connected to the 

LCM, while all   LEs’ outputs (        to            ) and select-lines (        to             ) 

are connected to the Routing Matrix (RM). 

The RM allows the various LEs to connect to one another in order to route a circuit. But, before discussing 

the RM further (Section 3.3.1 ), first consider the LCM. Since the LCM stores the information that determines 

the functionality of each LE, it is important for a designer to be able to load configuration data onto the LCM. 

3.2.1 Programming the Logic Configuration Memory 

In order to access the LCM, a write-enable line (       ), write-address line (       ), a data line (      ) 

as well as clock line (     ) is provided. 

When programming an LE via the LCM, the designer needs to consider: 

1. The address of the LE 

2. The desired logic function of the LE, i.e. the gate type 

Generally, data can be loaded into the LCM by: 
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1. Setting         to high 

2. Specifying the LE address with         

3. Setting the logic function of the LE with        

4. Clocking the data with a positive-edge of a       pulse 

        addresses the LEs from   to    . Thus,     represents the maximum value that can be 

transmitted over the         line. 

        is the four-bit line used to implement the sixteen different logic functions (as described in Table 

3.1). Thus, “    ” (decimal 15) is the maximum value that can be transmitted over       . 

Consider the following example: Suppose we wish to use LE 1 in Figure 3.2 to implement a two-input OR-

gate. To do this, the following procedure would be followed: 

1. Set         equal to logic “ ” (set enable to true) 

2. Set         equal to “ ” (select LE 1)  

3. Set        equal to “    ” (configure the OR-gate) 

4. Produce a positive-edge       pulse 

The above example is illustrated in Figure 3.3. It shows, using a timing diagram, the configuration data being 

loaded onto the LCM. The LCM, in turn, sends “    ” to multiplexer 1 via its four-bit input, thereby creating 

the desired OR-gate. 

 

Figure 3.3 An example implementation of an OR-gate using the LCM and multiplexer 1 

3.3 The V-FPGA’s Routing Architecture 

To route a circuit within the V-FPGA, the RM and Routing Configuration Memory (RCM) is used. 

3.3.1 The Routing Matrix 
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The V-FPGA contains an RM (or switch box) for inter-LE communication. Similarly to the LE-multiplexer array, 

the RM is also implemented using multiplexers. This feature, although expensive in term of space and delays, 

avoids short circuits that could occur, either when partially reconfiguring the V-FPGA, or during an 

unconstrained evolution process (Smith, 2010). 

The purpose of the RM is to connect an LE’s output or an external input to the input of any other LE or 

external output. In order to connect an LE output or external input to any other element within the V-FPGA, 

all LE outputs and external inputs are simultaneously connected to the corresponding inputs of every 

multiplexer within the RM. This concept is illustrated in Figure 3.4, callout A. 

The output of each RM multiplexer—see callout B as an example—is in turn connected to either an LE input 

or an external output. By making use of this matrix routing architecture, each element can be connected to 

multiple elements within the RM. 

The number of multiplexers required in the RM depends on the number of LEs and external outputs. For a V-

FPGA with   LEs, the RM will require    multiplexers to represent the LEs’ inputs (since each LE has two 

inputs). In addition, for   external outputs, the RM will need require   multiplexers. Thus, the total number 

of RM multiplexers required is defined by: 

                    

Equation 3.2 Maximum number of RM multiplexers 

 

Figure 3.4 The Routing Matrix’s multiplexers linked to the Routing Configuration Memory 
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3.3.2 Programming the Routing Configuration Memory 

The RCM controls the routing resources within the RM. The RCM consists of registers connected to the 

select-lines of the RM multiplexers so as to route a particular input to an output, as shown in Figure 3.4, 

callout C. 

In order to load routing data into the RCM, a write-enable line (         ), write-address line (         ) 

as well as a data line (        ) is provided. The same clock line (     ), used to clock the LCM, is used. 

When routing a circuit on the V-FPGA, the           line defines where the circuit connection is going to. 

          addresses either an LE-input or external-output multiplexer in the RM. As described previously, 

there are      multiplexers, however, since the multiplexers are addressed from   (zero), the last 

multiplexer has address        (see callout D). Thus,        represents the maximum value that 

can be transmitted over the           line. 

The          line defines where a connection is coming from.          may address either an LE’s output or 

an external input. In Figure 3.4, the LEs’ output addresses are numbered from   (zero). Thus, if there are   

LEs, the last LE’s output will have address     (callout E). The external inputs are numbered after the last 

LE’s output. Therefore, the first external input’s address will be  , the next external input     and so forth. 

For a circuit with   external inputs, the last external input will have address       (callout F).       

represents the maximum value that can be transmitted over the          line. 

For further clarity, let us consider an example: A connection coming from LE 3 (address      ) and going to 

external output 1 (address      ) needs to be setup. 

First, it is necessary to know how many LEs, external inputs and external outputs there are in the V-FPGA. 

Hence, the internal architecture of the V-FPGA must be known in order to generate configuration data. For 

this example, let’s assume there are five LEs, three external inputs and three external outputs available. In 

order to generate the routing configuration data, the following procedure would be followed: 

1. Set           equal to logic “ ” (set enable to true) 

2. Set          equal to logic “   ” (decimal 3). This will select the fourth input of an RM multiplexer, 

addressed        . 

3. Set           equal to logic “    ” (decimal 11). This will address the eleventh RM multiplexer 

(                            ) whose output is linked to external output 1 (address 

        ). 

4. Produce a positive-edge       pulse 

Figure 3.5 shows the final routing configuration of the above example. This configuration will route the 

fourth input of RM multiplexer 11 (i.e. the output of LE 3) to its output. In this case, the multiplexer output is 

connected to external output 1. 
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Figure 3.5 Example implementation of a RM multiplexer 

3.4 V-FPGA Simulation 

This section describes the simulation of a two-bit multiplier circuit using the V-FPGA architecture. The 

purpose of this simulation is to assess the practical manner in which the logic and routing lines are used to 

program the LCM and RCM. Also, the following questions are addressed: Can the LCM and RCM be 

programmed simultaneously? Is it necessary to have the clock running once the V-FPGA is configured? Does 

the V-FPGA’s output correspond to the desired circuit’s output for a particular input combination? The 

answers to these questions will also help validate that the V-FPGA architecture is operating correctly, before 

commencing with evolution. 

Figure 3.6 shows a conventional two-bit multiplier, found in most introductory digital electronics textbooks. 

The multiplier is implemented using eight LEs, four external inputs and four external outputs. The external 

inputs are grouped as two two-bit inputs,   and  , and one four-bit output,  .   ,    and    represent the 

IO bits’ least-significant bit. The desired truth table of the multiplier is shown in Table 3.2. 

 

Figure 3.6 A conventional two-bit multiplier 
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0 0 0 1 0 1 0 0 0 0 0 

0 0 0 2 1 0 0 0 0 0 0 

0 0 0 3 1 1 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 0 0 

1 0 1 1 0 1 1 0 0 0 1 

1 0 1 2 1 0 2 0 0 1 0 

1 0 1 3 1 1 3 0 0 1 1 

2 1 0 0 0 0 0 0 0 0 0 

2 1 0 1 0 1 2 0 0 1 0 

2 1 0 2 1 0 4 0 1 0 0 

2 1 0 3 1 1 5 0 1 1 0 

3 1 1 0 0 0 0 0 0 0 0 

3 1 1 1 0 1 3 0 0 1 1 

3 1 1 2 1 0 6 0 1 1 0 

3 1 1 3 1 1 9 1 0 0 1 

To simulate the multiplier using the V-FPGA, the entire V-FPGA had to first be coded using C language. Once 

coded, the compiled C-code then prompted the user to enter four variables, shown in Figure 3.7. Based on 

the circuit in Figure 3.6, the following variable values were used: 

 Number of LEs ( ):  8 

 Number of D flip-flops:  0 

 Number of external inputs ( ): 4 

 Number of external outputs ( ): 4 

With these variables, the C-code then generated a unique VHDL-based V-FPGA file, which was the hardware 

description of the V-FPGA. 

 

Figure 3.7 C-code variable-prompt which configures the V-FPGA’s size 

The configured eight-LE V-FPGA used 28 multiplexers, of which eight were LE multiplexers (from Equation 

3.1) and twenty were RM multiplexers (from Equation 3.2). Sixteen of the RM multiplexers were needed for 

the eight LEs, as each LE has two inputs. The remaining four RM multiplexers were used by the four external 

outputs. 

Once the VHDL file was generated, it was compiled using Altera’s Quartus II software package. Thereafter, 

the V-FPGA was ready to be simulated using a Quartus II software add-on, called QSim. 

To program the multiplier’s configuration bits onto the V-FPGA’s LCM and RCM, a QSim timing diagram was 

used. The logic data was programmed using the        and         lines, while the routing data used the 

         and           lines. Each line was manually altered in the timing diagram in order to implement 
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the desired configuration bits. However, although done manually in simulation, ultimately during evolution 

the GA would need to automatically produce these configuration bits. 

3.4.1 Simulation Results 

The resulting QSim timing analysis is shown in Figure 3.8. All the logic bits were downloaded onto the LCM 

between callouts A to B. Similarly, for the routing lines, the routing bits were downloaded between callouts A 

to C. Thus, the logic and routing data could be programmed simultaneously, thereby answering the first 

question—can the LCM and RCM be programmed simultaneously? Stated differently, the LCM and RCM are 

independent entities. 

The clock was only active between callouts A to C, i.e. when downloading data onto memory. Thus, once the 

circuit was configured on the V-FPGA, the clock pulse was no longer needed. Hence, the second question—is 

it necessary to have the clock running once the V-FPGA is configured—has been answered. 

The third question—does the V-FPGA’s output correspond to the desired circuit’s output for a particular 

input combination—can be addressed by making a comparison between the simulation output (between 

callouts C to D) and the truth table from Table 3.2. All the external-input combinations were simulated on 

lines “Ex_In_A0A1” and “Ex_In_B0B1”. The corresponding output lines, “External_Output”, showed that the 

multiplier correctly computed the binary products. 

In closing, since a designer can swiftly implement any digital logic circuit on the V-FPGA (and indirectly on an 

FPGA) by simply manipulating the V-FPGA’s configuration bits, the above findings confirm that the V-FPGA 

architecture does provide a viable platform to facilitate and perform hardware evolution. 
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Figure 3.8 Simulation results 
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Chapter 4 EVOLVING A TWO-BIT MULTIPLIER CIRCUIT 

EVOLVING A TWO-BIT MULTIPLIER 

CIRCUIT 

This chapter demonstrates the evolution of a two-bit multiplier using the V-FPGA 
architecture. The chapter starts by describing the experimental  hardware setup. 
Part of the setup includes configuring and compiling the V-FPGA on an FPGA chip, 
and connecting interfacing hardware to a PC. Once the setup is complete, the 
effectiveness of two different GAs, namely the canonical and     GA, is 
investigated. Finally, the chapter closes with an account of three evolved 
phenotypes, as well as a discussion on the arising evolution difficulties, the possible 
causes and solutions. 

4.1 Introduction 

A combinational-multiplier circuit is an electronic circuit that computes the product of two unsigned binary 

numbers. Multipliers are often useful for computing mathematical instruction-sets in PCs’ arithmetic-logic 

units. Most multiplier circuits use the scheme of first computing the inputs’ partial products, and then 

summing the partial products to form the final product. The summing is done using adders, as shown in 

Figure 4.1. 

 

Figure 4.1 A two-bit multiplier using half-adders (HA) to sum the partial products 
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The complexity of a multiplier’s circuit increases exponentially with an increase in the number of output bits. 

For example, a conventional two-bit multiplier may use approximately eight LEs configured to implement 

two half-adders, while a four-bit multiplier may use up to 64 LEs configured to use four half- and eight full-

adders (Katz, 1993). Considering the above complexity, the simple two-bit multiplier circuit is a favourable 

initial circuit to evolve since it small enough to demonstrate EHW while still being a practical sub-circuit for 

many digital ICs. 

The rest of this chapter describes the implementation of the software and hardware needed to evolve a two-

bit multiplier. This includes setting up the hardware components, compiling and downloading the V-FPGA, 

and programming the GAs. 

There are two EHW GAs demonstrated in this chapter. The first GA variant, referred to as a canonical GA, 

uses the tournament-selection, uniform-crossover and mutation genetic operators. The outline of this GA 

was first described by Holland (1975), who played a vital role in popularising GAs. It is interesting to note that 

initial studies on canonical GAs did not value mutation, and thus mutation did not often feature 

(Engelbrecht, 2007). This is in direct contrast to the second GA variant, referred to as a     GA. 

The     GA relies only on the mutation operator. It makes use of      -selection, where   represents 

the number of parents and    the number of offspring. For example, a     GA uses a single parent that is 

mutated   times until a new generation is computed. This GA variant does not make use of tournament 

selection or crossover. 

As mentioned in the Chapter 1, the literature claims that     GAs—GAs without crossover—are more 

efficient for EHW problems. This chapter will investigate this claim by evolving a two-bit multiplier using both 

GAs. However, before any GA can be executed or discussed, the experimental hardware and V-FPGA needs 

to be examined. 

4.2 Hardware and V-FPGA Setup 

4.2.1 Hardware Components 

Figure 4.2 shows the EHW experimental setup
4
, which used three hardware components: 

1. A PC running the GAs using LabVIEW software 

2. A National Instruments (NI) data-acquisition card (DAQ card) 

3. An Altera DE2 development-and-education board running the V-FPGA 

                                                                 

4 For a more detailed experimental-setup schematic, the reader is referred to the A3-sized page entitled “APPENDIX A: Electrical 
Schematic of Complete EHW System” found in the Appendix. 
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Figure 4.2 Schematic of the hardware components used in the experimental setup 

4.2.1.1 PC running the LabVIEW Genetic Algorithm 

The LabVIEW software, in which the GAs were programmed, was developed by NI specifically to ease 

engineering prototyping. LabVIEW makes use of a graphical programming interface which helps with 

debugging and allows for uncomplicated data acquisition. 

LabVIEW programs and subroutines are called virtual instruments (VIs), and are saved using the .vi file 

extension. Each VI program makes use of a front panel and a back-panel diagram. The front panel uses an 

array of controls and indicators; and is used purely to display or indicate results. The back panel, presented in 

a block-diagram format, is where the user programs the source code of the VI. 

An important aspect of VIs is that they can operate independently, or run as sub-routines on other VIs. 

Hence, LabVIEW can implement VIs in a hierarchal structure. 

4.2.1.2 National Instruments’ Data Acquisition Cards 

The NI DAQ cards have “plug-and-play USB connectivity” and are “simple enough for home or academic 

applications, but robust and versatile enough for laboratory or industrial applications.” (National 

Instruments, 2012) The cards have been specifically designed to integrate with LabVIEW software. 

In the experimental setup, shown in Figure 4.3, the DAQ cards were used as the interfacing hardware, 

allowing the PC to access the FPGA’s pins via the DAQ cards’ digital IO lines. 
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Figure 4.3 Actual hardware setup 

For the two-bit multiplier evolved in this study, a total of 31 FPGA pins were used. (The derivation of these 

pins is shown later in Table 4.1.) Since each pin required one DAQ digital-IO line, a total of 31 IO lines were 

needed. This presented a problem, as the available DAQ cards had only 24 IO lines. To solve this, two DAQ 

cards were used: 

1. The NI USB-6501, in Figure 4.3 (callout C) and Figure 4.4, is a 24-line bidirectional digital-IO card. Of 

the 24 available lines, 23 lines were used as digital outputs. 

2. The NI USB-6009, in Figure 4.3 (callout D), is an 8-input, 14-bit multifunction IO card. It has 12 

bidirectional digital-IO channels. Four lines were configured as digital outputs, connected to the 

FPGA’s external-input pins; and four lines were configured as digital inputs, connected to the FPGA’s 

external-output pins. 

 

Figure 4.4 NI USB-6501 DAQ card (National Instruments, 2012) 

4.2.1.3 Altera DE2 Development-and-Education Board 

The Altera DE2 FPGA board, shown in Figure 4.3 (callout A), was launched in 2006, and is described by Altera 

(2008) as a “board specifically designed for education.” The DE2 makes use of, amongst other components, 

an Altera Cyclone II 2C35 FPGA chip, a USB host/slave controller and two 40-pin expansion headers. Figure 

4.5 shows the layout of the board with labelled key components. 
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Figure 4.5 The DE2 Board (Altera, 2006) 

The 2C35 FPGA chip makes use of 33 216 logic elements and 475 user IO-pins. Of the 475 pins, 72 are 

connected to the two 40-pin expansion headers. The expansion headers also provides two      5-volt pins, 

two     3.3-volt pins and four     ground pins (Altera, 2006). (Hence, the expansion headers have a total of 

80 available pins.) These header pins, when connected to the DAQ cards’ IO ports, provided a channel for 

LabVIEW to communicate to the V-FPGA. 

In order to use the DE2 board, the user needs to be familiar with Altera’s Quartus II software. This software, 

as used in Section 3.4 (V-FPGA Simulation, page 30), allows the user to compile and execute the hardware 

description code on the DE2 board. The board is programmed via the on-board USB blaster. 

4.2.2 Creating a 20-LE VHDL-Based V-FPGA File 

Theoretically, when generating a V-FPGA, the C-code can generate a V-FPGA of any desired size, i.e. any 

number of LEs and IOs (Smith, 2010). However, the size can also significantly influence the GAs effectiveness 

in finding a solution. If too few LEs are selected, the desired phenotype will never fully evolve since the 

solution circuit requires more LEs than the number of available LEs, i.e. the search space is too small and 

does not include a solution. On the contrary, creating a V-FPGA with too many LEs increases the search 

space, thereby decreasing the probability of the GA finding a solution. The above two problems are directly 

related to scalability, where the probability of finding a solution greatly deteriorates if the selected search 

space is too small or large. 

Looking at past research on evolved multipliers, Vassilev et al. (1999) made use of a 16-LE VRC, while Miller & 

Thomson (1998) used a 21-LE VRC. Using these figures as guidelines, the V-FPGA was configured to use 20 

LEs. 

As done in Section 3.4 (V-FPGA Simulation, page 30) and shown in Figure 4.6, a new VHDL-based V-FPGA file 

was configured using the following parameters: 

 Number of LEs ( ):  20 
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 Number of D flip-flops:  0 

 Number of external inputs ( ): 4 

 Number of external outputs ( ): 4 

 

Figure 4.6 C-code variable-prompt used to configure a 20-LE V-FPGA 

4.2.2.1 Compiling the V-FPGA 

An important aspect of the hardware setup was assigning every FPGA pin used by the V-FPGA to a particular 

header pin on DE2’s expansion headers. Table 4.1 shows the pin requirements of the 20-LE V-FPGA. A total of 

31 pins were assigned. 
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The pins were assigned using the Quartus II Pin Planner software, as shown in Figure 4.7. Pins belonging to 

the same logic- or routing-configuration lines were generally grouped next each other on the expansion 

headers to allow for easier troubleshooting. 
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Figure 4.7 Quartus II Pin Planner screen dump 

The pin assignment was followed by the V-FPGA compilation, which was also done using Quartus II. An 

interesting observation, noted during the compilation, was that the V-FPGA used a conservative amount of 

FPGA resources. Figure 4.8 shows, of the 33 216 available LEs on the FPGA, only 906 were used by the V-

FPGA—or approximately 3%. Furthermore, approximately 7% of the available pins were used. 

 

Figure 4.8 Compilation report 
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4.3 Implementing the LabVIEW Genetic Algorithms 

So far, the hardware and V-FPGA setup has been examined. We now turn our attention to the system’s 

software requirements. 

4.3.1 The Canonical Genetic Algorithm 

The LabVIEW algorithm
5
 consisted of a main routine, called MainEHW, which called eight smaller 

subroutines. Example subroutine files included: D&T.vi, NoDoubleInputs.vi, RemoveOutputDups.vi, 

TourSelect.vi, Mutation.vi, Crossover.vi, FindParents.vi and CreateCircuits.vi. In addition, the D&T.vi—or the 

download-and-test VI—called the FitnessTest.vi and the Download.vi files. Figure 4.9 shows the hierarchical 

structure of the GA’s VIs. 

 

Figure 4.9 Hierarchical structure of the LabVIEW VIs 

Using the above VIs, Figure 4.10 shows a flowchart overview of the canonical LabVIEW GA. 

                                                                 

5
 Refer to Appendix D for the LabVIEW code of the selected VIs. 
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Figure 4.10 Flowchart of the LabVIEW GA with the applicable VIs highlighted using bold text 

The algorithm is summarised as follows: 

1. Create a random six-individual population of chromosomes using the CreateCircuits.vi VI. 

2. Has the predefined number of generations been met? If yes, stop the algorithm. 

3. Check the validity of each chromosome. (These constraints are discussed later in Section 4.3.5 ) 

4. Execute loop A in Figure 4.10 using the download-and-test (D&T.vi) VI: 

a. Decode each chromosome and load each phenotype onto the V-FPGA 

b. Test the loaded phenotype by applying all possible input-combinations on the phenotype’s 

external inputs 

c. Using the fitness function, assign a fitness value to each phenotype 

5. Find the best parent using the FindParents.vi VI and directly copy this parent into the next 

generation (elitism). 

6. Is there a     -fit individual? If yes, stop the algorithm. 

7. Execute loop B in Figure 4.10: 
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a.  Create a new generation using the GA’s genetic operators, namely: tournament selection, 

crossover and mutation. Use the TourSelect.vi, Crossover.vi, Mutation.vi and FindParents.vi 

VIs. 

b. When enough offspring have been created for a new generation, return to Step 2. 

4.3.2 The     Genetic Algorithm 

In order to optimise the canonical GA, three different techniques, implemented successfully by Sekanina & 

Freidl (2005), were investigated: the      -selection method; the limiting of the LEs’ functionality and the 

optimisation of the fitness function. The LEs’ functionality (Section 4.3.5 ) and the optimisation of the fitness 

function (Section 4.3.8 ) are discussed later. 

 

Figure 4.11     mutation loop 

To implement the      -selection method, only loop B in Figure 4.10 was replaced with the loop shown in 

Figure 4.11. The     GA makes use of one parent that is mutated five times. The     loop’s algorithm is 

summarised as follows: 

1. Execute mutation loop B in Figure 4.11: 

a. Find the fittest individual using the FindParents.vi VI. 

b. Create   mutants, where    . Use the Mutation.vi VI. 

c. When enough mutants have been created for a new generation, return to Step 2 on page 

43. 
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4.3.3 Genetic Operators 

This section explains the tournament selection (TourSelect.vi), crossover (Crossover.vi), mutation 

(Mutation.vi) and elitism (MainEHW.vi) genetic operators
6
, shown in Loop B of Figure 4.10. The same 

mutation VI is also used in the     loop shown in Figure 4.11. 

4.3.3.1 Tournament-Selection Virtual Instrument 

Tournament selection, as used by Miller & Thomson (2000), selects a tournament (or group) of   individuals 

randomly from the population, where     and   is the total number of individuals in the population 

(Engelbrecht, 2007). The performance of all   individuals is compared, and the best two individuals from the 

tournament—called the parents—are selected for crossover. 

The advantage of tournament selection, provided   is not too large, is that it prevents the best individuals in 

a population from dominating the evolutionary process, thus allowing weaker individuals to add diversity to 

the population (Engelbrecht, 2007). 

In the case of the canonical GA, the tournament was set to     of the total population. (Thus     and 

   .) 

4.3.3.2 Crossover Virtual Instrument 

    GAs make use of asexual reproduction, where offspring are generated from one parent (Engelbrecht, 

2007). On the contrary, in sexual crossover, as used in the canonical GA’s Crossover.vi VI, two parents are 

used to produce one or two offspring (Engelbrecht, 2007). These parents reproduce by swapping random 

genes, or by combining the genes. The probability of the genes being swapped/combined is controlled by the 

crossover rate. 

A dynamic crossover, which depends on the weaker parent’s fitness, was used. For example, if parent 1 had a 

fitness of     and parent 2    , parent 1 will cause a crossover rate of             . This means that 

    of the genes will be swapped between the two parents. 

The dynamic crossover allowed for a larger exchange of genetic data when the parents are weak, thereby 

allowing the GA to explore a larger search space (global search). However, as the parents’ fitness values 

improved, the crossover rate is reduced in order to refine the GA search (local search). 

4.3.3.3 Mutation Virtual Instrument 

During mutation, the Mutation.vi VI simply replaced random genes with a random integer value that satisfied 

the configuration criteria discussed later in Section 4.3.5 . 

                                                                 

6
 See Appendix D for the genetic operators’ LabVIEW code. 
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The probability of mutation is determined by the mutation rate. For the canonical GA, a dynamic mutation 

rate was used. The dynamic mutation rate was determined by the weaker parent’s fitness. However, the 

mutation rate was restricted to the range of   to    . For example, a weak parent, with the fitness of    , 

will yield a mutation rate of    , and not           . 

Since the     GA only used one parent, a constant mutation rate of     was chosen after several trial 

runs. 

4.3.3.4 Elitism Virtual Instrument 

Elitism is an important operator that ensures the best individuals from each generation survives. The best 

individuals are copied to the new generation without being modified by crossover or mutation. 

Elitism should be used with care. The more individuals that are copied, the less diversity the new generations 

will have. 

Due to the nature of the     GA, only one elite individual was retained. This elite individual was used to 

produce the   mutants. For the canonical GA, two elite individuals were retained. 

4.3.4 Genotype-Phenotype Mapping 

First, the terminology used in this chapter needs clarification. In this chapter, genotype and chromosome are 

used synonymously, while the term phenotype is used to describe the circuit on the FPGA represented by the 

genotype. When converting a circuit’s genotype into the corresponding phenotype by decoding the 

genotype’s genes, the process is known genotype-phenotype mapping. 

Now, although there are many variations of GAs, all GAs make use of chromosomes—in this case, a 

chromosome describing the desired hardware circuit. The hardware chromosome carries all the necessary 

         ,         ,         and        data in order for any desired genotype to be mapped into a 

phenotype. For illustrative purposes, an example chromosome is represented using an integer column-vector 

in Table 4.2 (shaded grey). 

Table 4.2 An example hardware-chromosome (shaded grey) 
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Each gene in the column-vector chromosome carries two pieces of data—the index of the element and the 

value of the element. 

Consider the first section of the chromosome, which represents the phenotype’s routing data. The index of 

the element represents the           data, and the value represents the          data. The second section 

of chromosome represents the logic data, which defines the LEs. The index of the element represents the 

        data, and the value represents the        data. 

Now, consider an example. Gene 0 in Table 4.2 (highlighted yellow), when downloaded onto the RCM, will 

cause binary zero to be transmitted over the           line and binary one over the          line. Similarly, 

gene        (highlighted green) will transmit the binary number represented by     over the 

        line and binary nine over the        line to the LCM. 

Since        represents the last gene, the multiplier chromosomes consist of a total of      

           genes, of which                 are routing, and      are logic. Thus, the 

genotype is represented in LabVIEW software using a 64-integer array. 

A vital advantage of the devised chromosome representation in Table 4.2 is that it does not allow illegal 

configurations. Illegal configurations occur when two LE outputs or external inputs are connected to a single 

LE input or an external output, as shown in Figure 4.12. These configurations can create shorts, thereby 

physically damaging the FPGA chip. 

 

Figure 4.12 Illegal configurations 

The chromosome innately prevents illegal configurations by making each gene’s           data unique. 

Remember, the           data represents where a routing connection is going to, while          shows 

where a connection is coming from. Thus, each LE input or external output is unique and can only have one 

connection, whereas each LE output or external input can be connected to many different LE inputs or 

external outputs. 
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4.3.5 Evolution Constraints 

To encourage efficient and fast evolution, certain constraints were imposed on the evolved phenotypes. 

These constraints decreased the GA’s search space, thereby refining the search and minimising scalability. 

4.3.5.1 The Search Space 

To put in perspective the size of the GA’s search space, consider the following hardware-chromosome 

permutations
7
, which are based on the 64-gene chromosomes described in Section 4.3.4 : 

 For the routing of the external inputs and LEs, there are forty LE inputs (two inputs per LE) which 

can be connected to one of any of the other twenty LEs’ outputs, or any of the four external inputs. 

Thus, there are                possible LE permutations. 

 For the routing of the external outputs, there are four external outputs which can be connected to 

the output of any of the twenty LEs, or any of the four external inputs. Thus, there are         

    possible external-output permutations. 

 For the logic section of a chromosome, there are twenty LEs, each of which can be configured into 

one of 16 different logic functions. Thus, there are                possible logic permutations. 

The above three permutations clearly highlight the vast scale of possible solutions (or search space) that the 

GA has to explore. This is what makes GA algorithms unique—their ability to find solutions strategically and 

systematically in an almost infinitely large search space. 

However, GAs can be aided in finding solutions faster if these large search spaces are minimised. There are 

two strategies for reducing a GA’s search space—reduce the V-FPGA’s size or impose evolution constraints. 

Notice, in the above analysis, that the number of external IOs and LEs has a direct influence on the number 

of permutations and size of the search space. This reconfirms that the V-FPGA’s size is critical—it is 

important to choose an adequate, but not large, V-FPGA size. If too large, the GA runs the risk of not finding 

a solution in a reasonable amount of time. 

Evolution constraints can reduce the search space by lowering the possible routing and functionality 

permutations. For example, by limiting the LEs’ functionality to seven gates and not 16, the logic 

permutation can be reduced to            possibilities. This simple constraint reduces the number of 

possible logic permutations by over         

        . 

4.3.5.2 Reducing the Search Space 

                                                                 

7
 See “Appendix E: Search-Space Permutations” for an in-depth explanation. 
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In light of the above discussion, each circuit phenotype was routinely checked for the following 

configurations, which were not permitted during evolution: 

1. Each LE input had to be unique, i.e. an LE could not have the same two inputs 

Having identical inputs simply changes the LE’s gate-type. However, since every two-bit Boolean 

function can be represented by an LE’s multiplexer, changing the LE’s gate-type by having identical 

inputs is unnecessary. For example, a NAND-gate using two identical inputs acts as a NOT-gate. If a 

NOT-gate is required for that particular LE, the LE should be directly configured as a NOT-gate and 

not as an identical-input NAND-gate. Hence, the identical-input NAND-gate is unnecessary. 

The NoDoubleInputs.vi VI in Figure 4.10 was used in the GA to validate each LE input. 

2. Each LE’s function was limited 

The LEs’ functionality was limited to the seven fundamental gates, shown in Table 3.1 on page 25. 

All the non-fundamental gates from Table 3.1 can be created using a combination of fundamental 

gates. Thus, the main advantage of limiting the LEs’ functionality is to reduce the GA’s search space. 

3. An external input could not be directly connected to an external output 

If connected directly, all the LEs would be bypassed. 

4. Each external output had to be unique 

None of the external outputs could be connected to the same LE. This would create duplicate 

external outputs. 

Figure 4.10’s RemoveOutputDups.vi VI was used to validate each external output’s uniqueness. 

5. No feedback loops were allowed, i.e. only feed-forward circuits were allowed 

Feedback loops can create memory elements within circuits. This causes instability, thereby creating 

unreliable fitness values. For example, a feedback-loop circuit, producing a fitness of    during one 

evaluation, may produce a completely different fitness value when evaluated again. This unstable 

circuit will cause inevitable genetic problems, since there is a high probability of the feedback loops 

being passed to the offspring. 

An LE array of five rows by four columns, shown in Figure 4.13, which draws similarities from 

Cartesian Genetic Programming (CGP), was used to prevent feedback loops (Miller & Thomson, 

2000). The CGP array of LEs works as follows: An LE’s output can only be connected to an external 

output or the input of another LE which is in a following column. If an LE’s output is connected to a 

preceding column’s LE input, there is a risk of creating a feedback loop. 
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Figure 4.13 CGP layout of LEs used to permit only feed-forward circuits 

Figure 4.14 shows an example two-by-three LE array with three feedback loops (bold lines) which 

are not permitted in the CGP configuration. 

 

Figure 4.14 A CGP LE array with prohibited feedback loops 

6. External inputs could only be connected to column-zero LEs 

In order to further reduce the GA’s search space, the external inputs could only be connected to the 

inputs of LE 0 to 4 in column zero in Figure 4.13. 

4.3.6 Downloading a Genotype 

To download a chromosome onto the V-FPGA, the LabVIEW algorithm first decoded the chromosome into 

the logic and routing genotypes, as shown in Figure 4.15. Then, each gene was sequentially downloaded, via 

the relevant routing or logic lines, onto the V-FPGA’s RCM or LCM. 
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Figure 4.15 Decoding and downloading procedure 

The above decode-and-download procedure was performed using the D&T.vi VI, shown in Figure 4.9. This VI 

made use of software for- and while-loops to activate the appropriate DAQ output lines, which, in turn, 

activated the appropriate FPGA pins. 

The V-FPGA architecture only allowed the configuration memories to be altered on a rising-edge of the 

      line. Hence, the execution time of the downloading procedure was governed by the       frequency. 

The D&T.vi VI required one       pulse per downloaded gene; or a total of 46       pulses for every gene 

per chromosome download. 

4.3.7 Evaluating a Phenotype 

To evaluate each downloaded phenotype, a sub-VI of the D&T.vi VI, called the FitnessTest.vi VI (shown in 

Figure 4.9), was used. During each generation, every phenotype was evaluated. Testing was done by 

comparing a phenotype’s output to a truth table modelled on the solution circuit. 

Consider the truth table shown in Figure 4.16. The inputs on the left form binary row-vectors which count 

from   to   –          , where   represents the number of external inputs. These binary row-vectors 

are called test vectors. There are a total of          test vectors for a four-external-input V-FPGA. 

 

Figure 4.16 General truth table 

Testing a phenotype involved LabVIEW sequentially loading each test vector onto the FPGA’s external-input 

pins via the appropriate DAQ output lines. Once loaded, the LabVIEW GA read the DAQ input lines, which 

were connected to the FPGA’s external-output pins. 

Figure 4.17 shows an example test vector               being loaded onto the V-FPGA’s external inputs. 

The resultant output vector, which in this arbitrary example is            , can then be compared to the 
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corresponding output vector from the solution circuit’s truth table. According to how well the output vectors 

compare, the phenotype is assigned a fitness value. A     -fit phenotype will therefore have the exact 

same output vectors as the solution truth-table. 

 

Figure 4.17 Test vector with corresponding output vector 

4.3.8 The Fitness Function 

To explain how a phenotype’s fitness is calculated, first consider the conventional multiplier-circuit in Figure 

4.18. 

 

Figure 4.18 Conventional multiplier circuit (right) comprising of four smaller CP circuits (left) 

Each external output has its own critical path (CP). A CP is the direct path linking the external inputs to a 

particular external output. Hence, the multiplier circuit can be thought of as four, smaller CP circuits that 

have been coupled. 

CPs may be classified as either independent or dependent. An independent CP does not have any LEs in 

common with other CPs. For example,   ’s CP is independent since none of its LEs are used by any other CP 

(highlighted red in Figure 4.18). Dependent CPs, such as those of   ,    and   , have LEs in common. 

Now, consider the multiplier’s truth table, shown in Figure 4.19. There are three sets of data within the truth 

table that can be used to derive a phenotype’s fitness, namely: 
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1. The 16 output vectors of the corresponding test vectors 

2. The 64 individual output elements of the output vectors 

3. The 4 CP vectors of each external output 

 

Figure 4.19 Analysis of a 2-bit multiplier’s truth table 

First, consider the output vectors. In initial evolution trial-runs, the phenotypes were awarded fitness values 

according to Equation 4.1, which expresses the percentage of correct output vectors. For example, if a 

phenotype had 12 correct output vectors, it would score an output-vector fitness of        

  
    . 

     
                      

              
  

Equation 4.1 Fitness function of the output vectors 

However, it was soon discovered that this fitness scheme was flawed. To prove this, consider the AND-gate 

marked as callout A in Figure 4.18. This gate only affects the output of   . If the gate’s function was 

arbitrarily changed, most of   ’s outputs would be incorrect. This would, in turn, lead to most output vectors 

also being incorrect, thereby yielding a low fitness value. 

Nevertheless, this low fitness value would actually be underrated; since even though the phenotype’s output 

vectors are mostly incorrect, the phenotype’s LEs and routing is generally correct (only the changed gate is 

incorrect). For this reason, assigning fitness values using the output vectors was considered inaccurate and 

misleading. 

A more useful and precise fitness value was derived from the output elements and CP vectors. 

There are                output elements for   external outputs and   external inputs. Equation 4.2 

expresses the number of correct elements as a percentage. Thus, if an example phenotype had 24 of the 64 

elements correct, a fitness of            
  

  
       would be assigned. 
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Equation 4.2 Fitness function of the output elements 

The advantage of using output elements over output vectors is that every correct element in the output 

vectors contributes towards the final fitness value. For example, if all the    output elements in Figure 4.19 

were incorrect, the truth table would yield zero correct output vectors but 16 incorrect output elements. 

Thus, the phenotype would attain a fitness value of             

  
     for an element evaluation, but 

       for the output-vector evaluation. The output-element evaluation would provide a more accurate 

fitness value since the phenotype is partially correct. 

          does not, however, encourage the correct evolution of CPs. It merely gives an overall indication of 

a phenotype’s correctness. 

To understand why the correct evolution of the CPs is important, recall that CPs are often dependent. 

Because dependent paths rely on other CP LEs, correctly evolving one CP inevitably partially solves other CPs. 

For example, if   ’s CP in Figure 4.18 was to be successfully evolved, two of the five LEs in paths    and    

would, by default, also be correct. This would in turn make the GA more efficient. 

To encourage CP evolution, the CP vectors in Figure 4.19 need to be evaluated. To do this, the CP fitness, or 

   , is used to expresses the percentage of correct CP vectors, as shown in Equation 4.3. For example, if a 

phenotype has three correct CP vectors, it would score a CP-vector fitness of       

 
    . 

     
                             

                      
  

Equation 4.3 Fitness function of the CPs 

However,     is very rigid, and only awards fully evolved CP vectors—partially evolved CPs are not awarded. 

For partially evolved CPs, Equation 4.4 is used. 

           

  
                                                                                                

   

                      
  

Equation 4.4 Fitness function of the partial CPs 

To explain Equation 4.4, first consider each CP vector in Figure 4.19: 

   ’s CP vector requires 4      bits and 12       bits 

   ’s CP vector requires 6      bits and 10       bits 

   ’s CP vector requires 3      bits and 13       bits 

   ’s CP vector requires 1      bit and 15       bits 
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For each CP vector, the percentage of correct      and       bits is calculated, and weighted in a         

ratio in Equation 4.4. For example, if   ’s CP vector yielded 3 correct      and 10 correct       bits, a fitness 

of      

 
        

  
        would be assigned. Once all four CP-vectors have been assessed, the mean of 

the four CP-vector fitness values can then be expressed as             . 

An important aspect of Equation 4.4 is the         ratio, in which the percentage of correct      and       

bits are weighted. This ratio is essential. If not used, simply finding the percentage of correct bits will yield 

inaccuracies. To prove this, consider the circuit in Figure 4.20, which will always register a logic low 

regardless of the input signals. If, for example, this circuit was evolved as   ’s CP, the CP vector would 

register 16       bits. Thus, the CP-vector fitness evaluation would identify 15 of these       bits as correct 

and only one as incorrect. 

 

Figure 4.20 Logic-low circuit 

However, these 15 correct bits are deceptive. From Figure 4.19 note that   ’s CP is one of the multiplier’s 

most complex CPs and makes use of five LEs. When comparing the desired    CP circuit in Figure 4.19 to the 

evolved circuit in Figure 4.20, there is substantially difference. Thus, assigning a CP-vector fitness value of 

  

  
       will result in an overrated fitness score, since the evolved CP does not resemble the desired CP. 

One way to curb this inaccuracy is to place an equal amount of emphasis on both the      and       bits. 

This is what the         ratio does. If this ratio were to be applied to the above example, a fitness of 

     

 
        

  
      would be achieved. This lowered fitness value is more truthful, as it more fittingly 

describes the poorly evolved CP circuit. 

Finally, all three fitness values, namely          ,     and             could now be combined in order to 

describe the phenotype’s overall fitness, as shown in Equation 4.5. Both           and             were given 

an equal weighting of     of the overall fitness. However, to ensure that fully evolved CPs are preserved 

during the evolution process, a slightly higher     weighting was given to the     fitness. 

                                                    

Equation 4.5 Overall fitness function 

In summary:           provides an overview of a phenotype’s correctness;     ensures that correct CPs are 

sustained and             encourages the correct evolution of partially evolved CPs. 
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4.4 Results 

The results will be addressed in three parts: the clock frequency, the outcome of the canonical evolution and 

the outcome of the     evolution. 

Since this chapter’s objective is to compare the canonical and     GAs, the following control variables were 

kept constant: 

 Both GAs made use of a six-individual population 

 Both GAs made use of the same fitness function (Equation 4.5) 

 Both GAs made use of the same GA constraints (Section 4.3.5.2 ) 

4.4.1 Clock Frequency 

The first major difficulty experienced, when using the DAQ and DE2 setup, was the rate at which the 

LabVIEW application-programming interface (API) could be synchronised with the V-FPGA’s clock. The D&T.vi 

VI was the GA’s most time-consuming subroutine. 

Recall that the downloading routine is governed by the       line. Thus, the clock frequency has a major 

impact on the downloading accuracy and the execution time of the GA. It was imperative, to the success of 

the GA, that each chromosome was evaluated accurately. If inaccuracies occurred, false fitness values could 

have caused the GA to reject strong individuals. 

To test the download accuracy, a     -fit individual was first downloaded, and then tested on the 20-LE V-

FPGA. The download was deemed completely accurate if the evaluation revealed a fitness of     . 

The results
8
 in Figure 4.21 show the download accuracy at different clock frequencies. Each data point 

represents the average accuracy of 20 downloads taken at a particular frequency. Readings were taken at 10 

different frequencies, which varied according to the clock’s period from 10ms to 80ms. From the graph, it is 

evident that clock frequencies above 20Hz were to be avoided. 

                                                                 

8
 Refer to Appendix C for the raw data. 
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Figure 4.21 Download accuracy vs. clock frequency 

Now, consider Figure 4.22. Each data point shows the average download time of 20 downloads at varying 

frequencies. As expected, since the frequency is inversely proportional to the period, the download-time 

graph shown is exponential. The graph settles from as it approaches 100Hz, with only incremental 

improvements made on the download time from 70Hz and faster. Thus, any frequency above 70Hz would be 

ideal. 

 

Figure 4.22 Download time vs. clock frequency 
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However, taking both the accuracy and download time into account, the 16.67Hz clock was selected as the 

optimum due to it being the fastest accurate clock frequency. The download time of an individual using the 

16.67Hz clock was calculated as                    9. 

An additional observation worth noting is that the       line did not affect the testing VI. Thus, once a 

phenotype was downloaded onto the V-FPGA, it was tested as quickly as the LabVIEW program permitted. 

The time taken for the testing VI to test one individual was calculated as                    10. 

By comparing the downloading and testing times, downloading took over 22 times longer to execute than 

testing. This is expected, as the testing VI was not clocked and only needed to load 16 test vectors, compared 

to the 46 clock pulses needed by the download VI (as mentioned in Section 4.3.6 ). 

4.4.2 Canonical Evolution 

The canonical-evolution results are presented in two subsections below. The first section discusses the 

results of an initial trial run; the second section discusses the final-canonical GA results. The trial GA has been 

included purely to show the reader the various variables which were considered while deriving the final-

canonical and     GAs. The final-canonical and     GAs make use of all the operators and constraints 

previously discussed in this chapter. 

4.4.2.1 Trial-Canonical Results 

Since hardware evolution, using the V-FPGA, had never been performed before, all aspects of the 

implemented GA had to be experimentally optimised. To do this, many trial runs were executed and 

analysed. Each trial made use of different population sizes, elitism schemes,       frequencies and fitness 

functions. These trials were very time-consuming, with one trial typically taking well over 40 hours to 

complete. In addition, the trials yielded poor fitness values. 

However, after much experimentation, one trial run did evolve a     -fit phenotype. This successful-trial 

GA made use of fifty individuals; and all LE functionality was allowed, i.e. all 16 LE functions were permitted. 

(This is in direct contrast to the final-canonical GA’s parameters, which used a six-individual population and 

only fundamental LEs.) Furthermore, another notable difference was the trial’s fitness function shown in 

Equation 4.6. The function does not consider the CP vectors. 

                                     

Equation 4.6 Trial fitness function 

Nevertheless, even though the trial GA did not use optimised parameters, it was still successful. 

                                                                 

9 The result is displayed using the standard deviation of the mean at a 95% confidence interval. Thus, 95% of the measured values 
should lie within the given range. 
10 See footnote 9. 
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Figure 4.23 shows the progress of the fittest individual using the successful-trial GA. The first parent had an 

initial fitness of      , which steadily increased during the first 50 generations. Notice that there are large 

jumps in the graph. This is expected, since changing the routing or function of one LE can dramatically 

improve, or deteriorate, a phenotype’s fitness. 

 

Figure 4.23 The results of the successful trial 

The following milestones are also noted in Figure 4.23’s graph: 

 At fitness values      ,      ,       and     , the outputs   ,   ,    and    respectively are 

correctly evolved.   ’s CP passes two LEs,    and   ’s CPs pass three LEs, while   ’s CP passes six 

LEs. 

 It took a total of 885 generations to evolve the phenotype. This amounted to an evolution time of 

approximately 49 hours and 14 minutes. 

Figure 4.24 shows the evolved phenotype. The bold circuitry shows the CPs. Notice that of the twenty 

available LEs, only ten were used in the evolved circuit. 
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Figure 4.24 Evolved trial phenotype 

Figure 4.24 can be further simplified into the circuit shown in Figure 4.25
11

 by removing: 

 The wire LEs, i.e. LEs which only pass data through them. There are two examples of wire LEs in 

Figure 4.24, which have been demarcated as callouts A. 

 Redundant NOT-gates. The NAND-gate (callout B) is connected to a NOT-gate (callout C) and an 

inverted input to an AND-gate (callout D). Thus, the two bubbles and NOT-gate are, in reality, 

redundant and can be removed. 

 

Figure 4.25 Simplified trial phenotype (A red outline indicates an independent CP) 

4.4.2.2 Final-Canonical Results 

After analysing the successful trial runs, the importance of rewarding correctly evolved CPs was realised. This 

led to the derivation of the                fitness function (Equation 4.5). 

The final-canonical GA was executed eleven times before a     -fit phenotype was evolved. Each run was 

limited to 3000 generations, due to time constraints. 

                                                                 

11 To prove that the simplified evolved phenotypes do indeed produce the correct outputs, please refer to the document titled 
“APPENDIX B: Truth Tables of the Evolved Phenotypes”. All phenotypes included in this dissertation have been proven correct in this 
appendix. 
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Figure 4.26 shows the progress of the fittest parent using the final-canonical GA. Within the first 200 

generations, the GA had evolved two of the four CPs. Like with the trial-canonical GA, notice that there are 

large jumps in the graph. However, unlike in the trial, these jumps are largely due to the     function in the 

               fitness evaluation. When a correct CP is evolved, the     variable increases the overall fitness 

by    , resulting in noticeable jumps. 

 

Figure 4.26 Results of the final-canonical GA 

The following milestones are also noted in Figure 4.26: 

 At fitness values      ,      ,       and     , the outputs   ,   ,    and   respectively are 

correctly evolved.   ’s CP passes one LE,    and   ’s CPs pass three LEs, while   ’s CP passes five 

LEs. 

 It took a total of 2656 generations to evolve the phenotype. This amounted to an evolution time of 

approximately 15 hours and 49 minutes. 

The final-canonical phenotype is shown in Figure 4.27, with the bold circuitry showing the CPs. Out of the 

twenty available LEs, nine were used. 
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Figure 4.27 Canonical phenotype 

Figure 4.27 can be further simplified into the circuit shown in Figure 4.28 by removing the wire LEs. Since the 

final-canonical GA only made use of fundamental gates, there are no redundant bubbled or NOT-gates. 

 

Figure 4.28 Simplified canonical phenotype (A red outline indicates an independent CP) 

4.4.3     Evolution 

The     GA was executed eight times before a     -fit phenotype was evolved. Like with the canonical 

GA, each run was limited to 3000 generations. 

Figure 4.29 shows the progress of the fittest individual using the     GA. Notice that there are four spikes 

in the graph (demarcated with ×). These spikes represent downloading errors, where the phenotype has 

been incorrectly downloaded onto the V-FPGA. 
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Figure 4.29 Results of the     GA 

The following milestones are noted in Figure 4.29’s graph: 

 At fitness values      ,      ,       and     , the outputs   ,   ,    and   respectively are 

correctly evolved.   ’s CP passes one LE;   ’s CP passes three LEs;   ’s CP passes five LEs; while   ’s 

CP passes nine LEs. 

 It took a total of 1711 generations to evolve the phenotype. This amounted to an evolution time of 

approximately 9 hours and 59 minutes. 

The final     phenotype, shown in Figure 4.30, made use of eleven LEs. Of these eleven, three were wire 

LEs. 

 

Figure 4.30     phenotype 
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Again, the wire LEs have been removed in the simplified circuit, shown in Figure 4.31.   ’s CP is the only 

independent CP. 

 

Figure 4.31 Simplified     phenotype (A red outline indicates an independent CP) 

4.5 Discussion 

4.5.1 The V-FPGA and Hardware Setup 

From the compilation report (Figure 4.8), it is apparent that the 20-LE V-FPGA used a minimal amount of 

hardware resources. 

If one had to compare the V-FPGA to direct-bitstream evolution, due to the nature of the V-FPGA using 

registers and multiplexers to implement logic, the V-FPGA uses more FPGA logic blocks to configure a 

phenotype than by directly configuring the phenotype on the FPGA. Nonetheless, this trade-off is minimal, 

especially since the V-FPGA should to be kept small to avoid scalability problems. 

In future research, the remainder of the FPGA’s logic blocks could be used to implement a soft-processor, 

thereby creating a system-on-a-programmable-chip (SOPC) solution, as suggested by Smith (2010). The soft-

processor would manage the GA and fitness functions, while the V-FPGA would implement and test the 

phenotypes. 

Consider Figure 4.32, which shows an example SOPC. It makes use of Altera’s Nios II soft-processor, which 

runs on most of Altera’s FPGA chips, including the DE2’s Cyclone II chip. Although Altera’s products were 

used in this research, in principle, any FPGA vendor’s offering could be used. For example, Xilinx’s MicroBlaze 

soft-processor could be implemented in a similar manner. 

The Nios II uses the Avalon switch fabric to interface with any other embedded peripherals on the FPGA; and 

is accessed by the host computer via a JTAG debug module. A special JTAG UART interface is used to connect 

the USB-Blaster circuitry, which provides a USB link, to the host computer. 
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Figure 4.32 Future EHW SOPC 

This above solution demonstrates on-chip evolution. On-chip evolution could decrease the GA’s execution 

time by minimising the hardware resources needed to interface the GA with the V-FPGA. Even the slightest 

improvement in the       frequency will see significant improvements in the evolution time. For example, 

decreasing the download time by a half second per individual, for a six-individual population running for 

3000 generations, will save                  or 2.5 hours. This time saving becomes more significant 

as the number of generations increase. 

4.5.2 The Genetic Algorithms 

Comparing the final-canonical and     results, the final-canonical GA took 945 generations longer to find a 

solution, amounting to a further 5 hours 50 min of evolution time. In addition, the     GA found a solution 

after eight attempts, compared to the final-canonical GA’s eleven. 

Although the study was based on a small sample of evolution attempts, overall, the results suggest that the 

    GA was more efficient, and agree with the findings of Vassilev, et al (1999) and Sekanina & Freidl 

(2005). The subsections below discuss possible reasons why. 

4.5.2.1 The Crossover and Mutation Operators 

In traditional GAs, used to solve mathematical problems, the chromosomes are represented using floating-

point notation. The crossover operator creates new offspring by combining the parents’ genes. This is done, 

for example, by finding the arithmetic mean of each pair of genes. The result is that the offspring’s fitness is 

never worse than a parent’s fitness. 
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The above idea falls under the topic of “evolvability”. Evolvability is defined as the ability for an EHW system 

to produce individuals fitter than those found in previous generations (Altenberg, 1994). To examine why 

EHW systems have poor evolvability, we need to consider the GAs’ fitness landscapes. 

For traditional GAs, the fitness landscape is considered to be smooth, resulting in the offspring always 

converging towards a solution. However, this is untrue in EHW systems. 

EHW systems have rugged fitness landscapes, where small changes in a gene dramatically influence the 

fitness. For example, one altered gene can map a NOT-gate in a fit phenotype, thereby inverting all the 

output signals and completely spoiling the phenotype. Similarly, simple routing changes can also influence 

the fitness of a phenotype. 

Vassilev et al. (1999, p. 1) elaborates: “The difference [between a smooth and rugged landscape] originates 

in the structure of the genotypes, which are strings defined over two completely different alphabets, and are 

responsible for the functionality and connectivity of the array of logic cells.” Stated differently, there is no 

mathematical correlation between the phenotype’s fitness and the genotype’s logic and/or routing genes.  

During evolution, two parents may have similar fitness values, but their phenotypes can be completely 

dissimilar. This raises concerns as to how to implement crossover, if at all. Simply swapping the parents’ 

genes—randomly combining segments of two different parent phenotypes’ topologies and functionality—

will inevitably result in weak offspring. 

Thus, to maintain a system’s evolvability, crossover should be used with caution when applied to digital 

circuitry. Instead, as used in the     GA, an EHW GAs should rely on mutation. By making small 

adjustments to a phenotype, there is a greater probability of producing fit offspring. 

4.5.2.2 The Population Size 

In the initial trials, large populations, with fifty or more individuals, were used. These large populations 

inevitably took longer to execute since there were more individuals to evaluate. 

However, it was later found in the final-canonical and     GAs that large populations were unnecessary. To 

explain why, first consider a fifty-individual population. To create a new generation, the fittest parent in the 

population is crossed-over and/or mutated fifty times according to the implemented GA. This means that 

even if the first offspring is fitter than the parents, the GA will continue to crossover/mutate the parents 

from the original population until fifty new offspring are created. Only once the new generation is formed 

will this fitter offspring become the new parent. 

Now, consider a smaller six-individual population, where the GA crosses-over/mutates the parent six times. 

Unlike in the large population, if the first offspring is fitter, the GA only has to create five more offspring (and 

not 49) in order to form a new six-individual population. Again, once complete, this fitter offspring will 

become the new parent. 
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Because smaller populations are evaluated in smaller batches, the fittest parents are updated more regularly 

than in larger populations. This ensures the mutation and crossover operators are more effective and the GA 

has a greater level of efficiency. Thus, the smaller six-individual population was favoured. 

4.5.3 The Evolved Phenotypes 

4.5.3.1 Comparing the Simplified Evolved Phenotypes 

The conventional and evolved multiplier circuits show similarities in that they all made use of the same 

external-input combinations to the AND-gates. These AND-gates are crucial since they calculate the partial 

products of the multiplicand and multiplier. However, unlike in the conventional circuit which adds the 

partial products, none of the evolved phenotypes made use of the half-adders. 

All three simplified phenotypes are unique, showing that there is more than one solution circuit within a GA’s 

search space. In particular, the final-canonical phenotype is interesting because it did not evolve a second 

XOR-gate (as found in the trial-canonical and     phenotypes). This uniqueness is a by-product of the 

inherent degree of randomness a GA possess, as seen in the random mutation, crossover and initial 

population. Also, the uniqueness demonstrates a major advantage of using an EHW system—they can 

autonomously find unusual, novel and often more efficient solutions to problems. 

To shows that the evolved phenotypes are often more efficient, consider Table 4.3. The table summarises 

the total number of LEs used by each simplified phenotype, as well as the number of LEs used by each CP. 

Table 4.3 LE summary of the simplified phenotypes 

 

            

Total 
number of 

LEs 

Conventional Multiplier 1 3 5 5 8 

Trial-Canonical Phenotype 1 3 4 3 7 

Final-Canonical Phenotype 1 3 4 3 8 

    Phenotype 1 3 5 3 7 

From the table, the following is observed: 

    and   ’s CP remained unchanged in both the evolved and conventional circuits. 

   ’s CP in the conventional multiplier used five LEs. This was improved upon in both canonical 

phenotypes by using only four LEs, but remained unchanged in the     phenotype. 

 Again,   ’s CP in the conventional multiplier used five LEs. This was improved upon in all evolved 

phenotypes by using only three LEs. 

 Both the conventional circuit and final-canonical phenotype made used of eight LEs, while the trial-

canonical and     phenotypes only used seven. 
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Thus, in summary, of the four evolved CPs, two remained unchanged; one was usually improved upon; while 

one was always improved. No phenotype was less efficient than the conventional circuit, with two of the 

three evolved phenotypes improving the circuit’s efficiency by one LE. All evolved phenotypes were unique. 

4.5.3.2 The Evolved Critical Paths 

In all the experiments, using both the canonical and     GAs, the sequence in which the CPs were evolved 

was also unique. For the three successfully evolved phenotypes, the sequence of the evolved CPs was as 

follows: 

 Trial-canonical GA:             where    is independent 

 Final-canonical GA:             where    is independent 

     GA:              where    is independent 

The above CP results are summarised in Table 4.4: 

1. The first row in the table shows the number of LEs used by each CP. 

2. During evolution, due to some CPs being dependent, some LEs are shared and thus only need to be 

evolved once. This is shown in the second row. Thus, all independent CPs and the first evolved 

dependent CPs will always have no previously evolved LEs, and will yield a 0 in the second row of 

the table. 

3. Finally, by finding the difference between the number of used LEs and the number of previously 

evolved LEs, the net number of LEs that was needed to be evolved for the particular CP can be 

calculated, as shown in the final row. 

Table 4.4 Summary of the net number-of-LEs evolved by each CP (Red text indicates an independent CP) 

 Trial-Canonical Phenotype Final-Canonical Phenotype     Phenotype 

                                     

Number of evolved LEs 
used by the CP 

2 3 3 6 1 3 5 3 1 3 5 9 

Number of LEs, used by 
the CP, that were 
previously evolved by 
other CPs 

0 1 0 3 0 1 2 0 0 0 2 5 

Net number of LEs that 
were evolved (Net 
evolved LEs) 

2 2 3 3 1 2 3 3 1 3 3 4 

From the above table, the following is observed: 

   ’s CP was always evolved first, regardless of its dependence. This is due to its simplicity, i.e. it only 

used one or two LEs. 

   ’s CP sequence varied—from third to fourth to finally second place. 
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In both canonical GAs,    was independent and thus was never partially evolved with the evolution 

of the other CPs. This explains why the CP took longer to evolve when compared to the     

phenotype. 

For the     phenotype,   ’s CP was the first dependent CP to be evolved. This is due to its 

simplicity when compared to the other dependent CPs in the     phenotype, i.e. it used three LEs 

compared to the five and nine LEs used by    and    respectively. 

   ’s CP was evolved either third or last, mostly due to its complexity. In all three phenotypes,   ’s 

CP used the most LEs—it used five LEs in the final-canonical phenotype, six LEs in the trial-canonical 

phenotype and nine LEs in the     phenotype. However, due to   ’s CP always being dependent, 

the net number of evolved LEs was much lower, and thus   ’s CP evolved in a reasonable amount of 

time. This is particularly evident in the     GA, where   ’s CP is a key component to   ’s CP, 

providing five of the nine required LEs. 

 Although   ’s CP was evolved either second or third, it was always the second dependent CP to 

evolve due to it neither being the simplest, nor the most complex dependent CP. 

The net-evolved-LE number reveals an important insight into the manner in which a GA evolves the 

phenotypes. Notice that the net number, for a particular phenotype, increases for each CP. This shows that 

GAs tends to evolve CPs with a smaller net numbers first. Thus, the fewer net LEs a CP requires, the more 

likely a GA will correctly evolve the CP. This is expected, since intuitively there is a higher probability of 

correctly evolving a simpler CP which uses fewer LEs. 

4.5.4 Repeatability 

The results show that the GAs’ have low repeatability, with all the GAs being executed numerous times 

before being successful. 

Poor repeatability is common in EHW systems. In Chapter 2, it was mentioned that Wang, et al. (2007) was 

able to scale a three-bit multiplier and adder. But, even so, Wang, et al.’s results were also not repeatable, 

with a success rate of only 50%. 

One of the first symptoms of poor repeatability is the stalling effect. The stalling effect, as coined by Stomeo, 

et al. (2006), is defined as “non-improvements of fitness values during the evolutionary process.” Figure 4.33 

shows two sample failed attempts using the     GA, with the stalling effect clearly visible from the 1500
th

 

generation and onwards. 
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Figure 4.33 Sample failed attempts showing the Stalling Effect. 

Three potential reasons for poor repeatability have been identified, with the first two reasons contributing to 

stalling fitness values: 

1. Scalability 

2. Erroneously-evolved chromosomes 

3. Inaccurate phenotype downloads 

4.5.4.1 Scalability 

As discussed in Section 4.3.5.1 , even though the two-bit multiplier is considered to be a simple circuit, it has 

an almost infinite search space. In the experimentation, the search space was reduced using evolution 

constraints and a smaller V-FPGA. However, although reduced, the space still remained large. 

Since scalability is a direct consequence of a large search space, one cannot completely rule out the notion 

that the unsuccessful evolution attempts were partially due to scalability issues. The unsuccessful evolutions, 

in turn, resulted in poor repeatability. 

Thus, to summarise, the larger or more complex a circuit, or the larger the V-FPGA, the more prominent 

scalability issues become and consequently, the less repeatable the results. 

4.5.4.2 Erroneously-Evolved Chromosomes 

During evolution, as more CPs are successfully evolved, so the probability of mutating a correct LE increases; 

and the number of available LEs decreases. This implies that as individuals become fitter, so the difficulty 

finding a solution also increases. 
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For example, say for the 20-LE V-FPGA, one CP is correctly evolved using four LEs, with the remaining sixteen 

LEs yet to be evolved for the other CPs. One may think that the GA now has a greater chance of success since 

there are fewer routing or logic configurations, i.e. there are only sixteen potential LEs to be evolved 

compared to the initial twenty. However, this is not the case, since these four evolved LEs can still be altered 

by the GA. During evolution, the GA cannot distinguish between correctly and incorrectly evolved LE. 

Consequently, the GA can modify any LE—even if correct. Thus, in actuality, there is an increased chance of 

erroneously altering a correct LE, thereby making it less likely to successfully evolve the next CP. The above 

explanation is reflected in the results. Most failed attempts, such as those shown in Figure 4.33, managed to 

evolve three of the four CPs, with the complex or independent CP failing to evolve. 

To further clarify the above explanation, consider another example. Say a GA has correctly evolved three of 

the four CPs. During evolution, even if the GA correctly evolves the fourth CP in a particular phenotype, there 

is high probability that the GA, in the process of evolving this fourth CP, will erroneously alter the other three 

CPs. Thus, the fitness function will return a low value for this phenotype since one or more of the original 

three CPs are now incorrect. 

Future research could investigate using a GA that can identify and isolate correct genes within a 

chromosome. By doing this, there will be no chance of erroneously modifying correct LEs, and thus mutation 

and crossover will only be applied to the genes still requiring further evolution. 

4.5.4.3 Inaccurate Phenotype Downloads 

Though the 16.67Hz was chosen due to its perceived accuracy, some random downloading errors did still 

occur, as seen in Figure 4.29. In that particular example, the GA managed to recover from the downloading 

errors. However, this is not always the case, and in many of the trials, the downloading accuracy negatively 

impacted on the GA’s success. An unsuccessful recovery is illustrated in Figure 4.33, callout A. 

For the canonical GA in Figure 4.26, there are no perceived downloading errors because the canonical GA 

made use of two elite individuals (see Section 4.3.3.4 ), i.e. the two fittest individuals in a generation were 

retained. These two individuals usually had the same fitness values, differing from each other only for a few 

generations when a new elite individual was found. Thus, if the fittest individual failed to download properly, 

the second individual simply replaced the failed one. 
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Chapter 5 THE MODULAR EVOLUTION OF A FINITE-STATE MACHINE 

THE MODULAR EVOLUTION OF A 

FINITE-STATE MACHINE 

The aim of this chapter is to demonstrate a means of overcoming scalability by 
using modular evolution. Scalability is more prominent when evolving larger 
circuits, such as those used in real-world FSMs, since larger circuits naturally also 
have larger search spaces. The chapter starts by introducing a case study: A FSM’s 
control circuit, to be used in a typical mechatronics application, needs to be 
designed and evolved. To do this, the system’s control requirements, components 
and operation are first defined. Then, based on these parameters, the FSM is 
modelled using a state and block diagram. The state diagram describes each state’s 
operation and transition requirements, while the block diagram describes the 
sequential- and combinational-logic sub-circuits used to create the complete 
control circuit. The combinational-logic portion is then further analysed and 
described using truth tables, which later forms a core part of the GA’s fitness 
function. Finally, by using the hardware setup and     GA discussed in Chapter 4, 
each state’s combinational sub-circuit is then independently evolved. The chapter 
closes with a discussion. 

5.1 Introduction 

A packaging company
12

, which manufactures corrugated boxes, makes use of a FSM control circuit that 

controls the production of glue in two tanks. The first tank—the mixing tank—is used to mix starch and water 

together, at a specified temperature, in order to produce a batch of glue. The predefined temperature set-

point is selected by the tank’s operator via a numeric keypad. This set-point determines the glue’s viscosity—

an important aspect influencing the integrity of the final box. After mixing and heating, the glue is then 

pumped into a second tank—the holding tank. The holding tank stores the glue, also at a specific 

temperature, until it is needed by the factory’s gluing machinery. When the glue is pumped from the holding 

                                                                 

12
 The unique case study examined in this chapter is loosely based on an example control circuit discussed by Floyd (2009, p. 268). 
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tank, it is pumped in a ten-second-on, five-second-off cycle. The pumped glue is used to produce the board 

needed for the boxes. 

5.2 System Components 

The mixing and holding tanks make use of a number of digital sensors and actuators, i.e. the sensors can only 

output high or low, while the actuators can only be in an on or off state. 

Consider Figure 5.1 and Figure 5.2, showing all control components used by the mixing and holding tanks. 

The mixing tank makes use of four sensors and four actuators, while the holding tank uses only two sensors 

and two actuators. Each sensor and actuator is connected to an external IO on the FSM control circuit. 

 

Figure 5.1 Mixing-tank components 

 

Figure 5.2 Holding-tank components 

Table 5.1 and Table 5.2 summarises the tanks’ components from the above two figures. Each component’s 
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Table 5.1 Overview of the mixing-tank variables 

Variable IO Sensor/Actuator Name Description 

         Input Flow Sensor 

Determines whether water is 
running into the mixing tank. 
Outputs high if water flows into 
tank. 

        Input Maximum Water-Level Sensor 
Detects the maximum water level. 
Outputs high if water covers the 
sensor. 

       Input Minimum Water-Level Sensor 
Detects the minimum water level. 
Outputs high if water covers the 
sensor. 

   Input Temperature Sensor 
Detects the water’s temperature. 
Outputs high if temperature 
reaches the set-point. 

         Output Inlet Solenoid Valve Allows water into tank 

          Output Outlet Solenoid Valve Allows glue out of tank 

      Output Mixing Pump Mixes tank’s content 

        Output Water Heater Heats tank’s content 

Table 5.2 Overview of the holding-tank variables 

Variable IO Sensor/Actuator Name Description 

       Input Minimum Glue-Level Sensor 
Detects the minimum glue level. 
Outputs high if glue covers the 
sensor. 

   Input Temperature Sensor 
Detects the glue temperature. 
Outputs high if temperature 
reaches the set-point. 

       Input On-Delay Long Timer 
Determines whether the long 
countdown has elapsed. Outputs 
high after 10 seconds. 

       Input On-Delay Short Timer 
Determines whether the short 
countdown has elapsed. Outputs 
high after 5 seconds. 

          Output Outlet Solenoid Valve Allows glue out of tank 

        Output Water Heater Heats glue 

       Output Long Timer Activates or resets the long timer 

       Output Short Timer Activates or resets the short timer 

In addition to the holding tank’s control components, the tank also makes use of two timers. These timers 

are not represented by external sensors or actuators, but rather by timing circuitry found within the control 

circuit itself. Thus, the timers do not need, or have, external IOs on the control circuit. Nevertheless, Table 

5.2 has included the timers’ variables for completeness. 

5.3 System Operation and Analysis 

From the system components, the tanks’ operation can now be analysed. The system will be modelled as a 

FSM, using two states—the mixing-tank and holding-tank states. Each tank subsystem will be explained 

independently before examining the system as a whole. 

5.3.1 State One: The Mixing Tank 

Consider the mixing tank’s flowchart, shown in Figure 5.3. 



 Page 76 |Hardware Evolution of a Digital Circuit using a Custom VLSI Architecture 

 

Figure 5.3 Logic flowchart of the mixing tank 

To produce the required glue, the mixing tank makes use of four processes: 

1. Fill the tank with water 

2. Heat the tank’s content 

3. Mix the tank’s content 

4. Empty the tank 

Some of the above processes may run in parallel, and are not necessarily executed sequentially. For example, 

the tank’s content may be heated and mixed concurrently. 

Generally, when operating correctly, the mixing state executes as follows: 

1. First, the state starts by filling the mixing tank with water. 
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2. Then, once filled, both the mixing and heating processes are executed simultaneously. The mixing 

process is executed on condition that the tank is full; the heating process is executed if the tank’s 

temperature is under the set-point, regardless if the tank is full or empty. 

3. The tank’s content is only emptied to the holding tank while the content is at the desired 

temperature—if not, the heater will switch on. The above process is cyclic and can be repeated 

unconditionally. 

Figure 5.4 shows a schematic of the mixing tank’s active components during each process. 

 

Figure 5.4 Schematic of mixing-tank processes 

5.3.2 State Two: The Holding Tank 

Now, consider the holding tank’s flowchart, shown in Figure 5.5. 

Process 1: Fill Process 2: Heat

Process 4: EmptyProcess 3: Mix
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Figure 5.5 Logic flowchart of the holding tank 

The holding subsystem also makes use of four processes: 

1. Heat the tank’s glue 

2. Empty the tank 

3. Start the long timer 

4. Start the short timer 

Unlike with the mixing tank, the holding-tank subsystem starts with a full tank since it is first filled by the 

mixing tank. The control circuit then continually checks that the glue’s temperature is at the desired 

temperature. If the glue is under heated, the heater is activated (process 1), and expulsion is halted. No 

under-heated glue is allowed to be emptied from the tank. 

For process two—empty the tank—the glue is emptied according to a timer-activated cycle. Glue is expelled 

for ten seconds with five second pauses between the expulsions, i.e. glue will be expelled for ten seconds, 

followed by a five second break, then expelled again for ten seconds, so on and so forth. Two timers are used 

to do this—a long timer measuring ten seconds, and a short timer measuring five seconds. 
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Figure 5.6 shows a schematic of the holding tank’s active-components during the first two processes. 

Processes three and four—activating the timers—have not been included in the figure since the timers have 

no external components. 

 

Figure 5.6 Schematic of two holding-tank processes 

Finally, it should be noted that state two is also cyclic, in that the glue is continually emptied at timed 

intervals. However, unlike state one’s subsystem which can execute unconditionally, state two’s subsystem 

relies on state one to fill the holding tank. Hence, state two only executes on condition that the holding tank 

is full, i.e. the minimum water-level sensor needs to be activated. 

5.4 Modelling the Finite-State Machine 

Now that the operation of both state subsystems has been described, the complete system can now be 

examined. This will be done by first developing the system’s state diagram, and then developing a circuit 

block diagram. 

5.4.1 State Diagram 

Figure 5.7 shows a basic state diagram of the tank system with three important sets of data: 

1. The sequence in which the states are executed 

2. The conditions for the current state to be executed 

3. The conditions to transition from one state to the next 

 

Figure 5.7 State diagram of the tank system 
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The diagram makes use of two transition variables, namely         and      . These transition variables 

are defined as follows: 

        : The         variable is      if state one has been executed a predefined   number of 

times.   has arbitrarily been set to one, i.e. state one executes once before setting         to      

and transitioning to state two. 

      : The       variable is      if the minimum glue-level sensor in the holding tank is activated, 

i.e. the holding tank contains glue. If there is no glue in the holding tank,       becomes       

thereby transitioning to state one. 

Table 5.3 shows the possible transition-variable combinations, as well as the active state for each 

combination. In addition, since the FSM’s states are activated in a sequence, each transition-variable 

combination can only transition to the combination shown in the “Next Possible Input” column. 

Table 5.3 Possible transition-variable combinations 

Decimal 
Value of 
Variables 
(Decimal 

Input) 

              Active State 
Next 

Possible 
Input 

0 0 0 1 1 

1 0 1 1 3 

2 1 0 - 0 

3 1 1 2 2 

Under normal conditions, the FSM executes as follows: 

 Decimal Input 0: The FSM starts with state one being active. Both the counter and minimum glue-

level sensor output low. 

 Decimal Input 1: As state one is executed, glue is pumped into the holding tank, making           . 

 Decimal Input 3: Finally, once state one has finished executing     times, the         variable is 

set     , thereby activating state two. State two executes until all the glue from the holding tank is 

expelled, i.e.       is      . 

 Decimal Input 2: If              and            , the counter can be reset, thereby making 

the         variable       again. Thus, the cycle is repeated, with “Decimal Input 0” being the 

next combination to execute. 

5.4.2 Block Diagram 

By using the FSM state diagram as a guide, the system’s control circuit can now be modelled. Figure 5.8 

shows a block diagram of the control circuit, which can be implemented on an FPGA or ASIC. The system 

consists of five sub-circuits: combinational logic, sequential logic, counter circuit and two timing circuits. 



 

Chapter 5 | 5.4 Modelling the Finite-State Machine | Page 81 

 

Figure 5.8 Block diagram of the system’s control circuitry 

The combinational logic portion, implement using Boolean logic, connects directly to the system’s sensors 

and actuators. It controls the system’s external outputs according to the logic combination on the external 

inputs, timer inputs and state lines. 

The timing circuits act as on-delay timers, i.e. when the        or        lines are set to high, a predetermined 

amount of time elapses before the        or        lines are also set to high. To reset the timers, the        or 

       lines are set to low. There are various ways in which the long and short timers can be implemented. 

Both digital and analogue circuit configuration exist, which make use of components such as 555 ICs, 

transistors, capacitors, oscillators and MOSFETS (see (CircuitoZ, n.d.) and (Electronic Project Circuits, 2012)). 

The counter circuit, implemented using flip-flops, counts the number of times the mixing tank has been filled 

and emptied, i.e. the number of cycles the mixing tank has executed as explained in Section 5.3.1 . The 

mixing tank only needs to complete one cycle for the counter’s         line to be set high. To do this, the 

counter is activated according to three sensor inputs:        ,       and      ; and reset with lines         
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and      . The three input lines need to be low in order to increment the counter (discussed further in 

Section 5.5.1.1 ), while the reset lines,         and      , need to be high and low respectively to reset the 

counter (decimal 2 in Table 5.3). 

Finally, the sequential circuit forms the central control of the FSM. Unlike the combinational circuit, the 

sequential circuit consists of a memory section (flip-flops) which stores the current state. To determine 

whether to transition to the next state, two excitation lines are used. These excitation lines represent the 

transition variables in the state diagram (Figure 5.7). Thus, they are connected to the counter and minimum 

glue-level sensor. According to the active state, either state line    or    is high. (Note:    or    cannot be 

high simultaneously.)    controls state one’s combinational logic, while    controls state two’s combinational 

logic. 

5.5 Evolving the Finite-State Machine’s Combinational Logic  

In Chapter 4 it was shown how the V-FPGA and GA had been setup and optimised to evolve a four-

input/four-output circuit. One of the evolution constraints was that no memory elements were allowed in 

the evolved phenotype, resulting in feedback loops being prohibited. Thus, only combinational logic (and not 

sequential) could be evolved. 

Following on from the previous chapters, the same EHW setup, used to evolve the     multiplier, can now 

be used to evolve the combinational logic of the FSM. In addition, the reader is reminded about the 

following: The      GA will make use of the same evolutionary constraints, elitism, mutation and 

                fitness function (from Equation 4.5). 

5.5.1 The States’ Combinational Logic 

To evolve the FSM’s combinational circuit, a truth table used by the fitness function, representing the 

outputs for each possible external-input combination, is required for each state. 

5.5.1.1 State One 

Consider Table 5.4, which shows the truth table used to control the mixing tank’s inlet and outlet valves, 

heater and pump. Table 5.4 has been designed in such a manner as to allow the processes to be executed in 

the desired sequence. 

Table 5.4 State one’s truth table 

Decimal 
Value of 
Inputs 

                                                      

0 0 0 0 0 1 0 1 0 

1 0 0 0 1 1 0 0 0 

2 0 0 1 0 1 0 1 0 

3 0 0 1 1 1 0 0 0 

4 0 1 0 0 0 0 1 0 
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5 0 1 0 1 0 1 0 0 

6 0 1 1 0 1 0 1 0 

7 0 1 1 1 1 0 0 0 

8 1 0 0 0     

9 1 0 0 1     

10 1 0 1 0     

11 1 0 1 1     

12 1 1 0 0 0 0 1 1 

13 1 1 0 1 0 1 0 1 

14 1 1 1 0 0 0 1 1 

15 1 1 1 1 0 0 0 1 

A total of sixteen input combinations are shown, of which four input combinations are not possible. These 

not-possible inputs occurs when       is      while       is      ; and are invalid because the water 

cannot activate the maximum water-level sensor without also activating the minimum water-level sensor. 

Thus, the outputs of the not-possible inputs are irrelevant, i.e. they can be      or       (indicated using 

blank cells in Table 5.4). 

The sequence of processes that occur in Table 5.4 is clarified in Table 5.5. Table 5.5 shows the active process 

as well as the next-possible input combinations to which each input can transition. For example, input twelve 

will turn both       and         on (process two and three), and can transition to input thirteen. 

Table 5.5 Next-possible-input-combination table for state one 

Decimal 
Value of 
Inputs 

Current Process 
Next-Possible 

Input  
Description 

0 1 and 2 1 or 2         and         on 

1 1 0 or 3         on 

2 1 and 2 3 or 6         and         on 

3 1 2 or 7         on 

4 2 5         on 

5 4 1 or 4          on 

6 1 and 2 7 or 14         and         on 

7 1 6 or 15         on 

12 2 and 3 13       and         on 

13 3 and 4 5 or 12       and          on 

14 2 and 3 12 or 15       and         on 

15 3 13 or 14       on 

The above sequence of processes is graphically shown in Figure 5.9. The figure draws similarities from Figure 

5.7’s state diagram. Each input has a transition variable which, when toggled, allows the current input to 

transition to the next input. For example, for input seven to transition to six,    has to be negated, i.e. the 

water temperature needs to drop below the set-point. Likewise, for input seven to transition to fifteen, 

      has to be     , i.e. the tank must be filled to its maximum level. 
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Figure 5.9 State one’s input-combination diagram 

The above input-combination diagram shows, as previously discussed, that the mixing tank’s processes are 

indeed cyclic. According to the    variable, either input zero or one will be the first active input; with the final 

active input being input five. 

Finally, recall from Figure 5.8’s block diagram that the counter tallies the number of cycles the mixing 

subsystem executes. To do this, the counter must incremented every time input zero or one is activated. This 

occurs when        ,       and       are      . (   is irrelevant since the subsystem can start on either 

input zero or one.) Hence,        ,       and       form the counter’s inputs and are used to identify the 

start of a new cycle. 

5.5.1.2 State Two 

Table 5.6 shows the holding tank’s truth table. As for the mixing tank, different input combinations result in 

different processes being executed. 

Table 5.6 State two’s truth table 

Decimal 
Value of 
Inputs 

                                                      

0 0 0 0 0     

1 0 0 0 1     

2 0 0 1 0     

3 0 0 1 1     

4 0 1 0 0     

5 0 1 0 1     

6 0 1 1 0     

7 0 1 1 1     

8 1 0 0 0 0 1 0 1 

9 1 0 0 1 0 0 0 1 

10 1 0 1 0 0 1 1 1 

11 1 0 1 1 0 0 1 1 

12 1 1 0 0 1 1 0 0 

13 1 1 0 1 0 0 0 0 

14 1 1 1 0 0 1 1 0 

15 1 1 1 1 0 0 1 0 
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A total of eight not-possible input combinations occur. These are all based on       being      . Since       

is also the FSM’s transition variable (see Figure 5.7), when       toggles to      , the FSM immediately 

transition to state one. Thus, state two only executes while       is     . 

Table 5.7 shows the next-possible-input combination of each input. Again, each input activates certain 

processes in the tank. For example, input fourteen turns both the short and long timers on (process three 

and four). 

Table 5.7 Next-possible-input-combination table for state two 

Decimal 
Value of 
Inputs 

Current Process 
Next-Possible 

Input 
Description 

8 1 and 3 10 or 12         and        on 

9 1 8 or 13         on 

10 1 and 3 and 4 11 or 14        ,        and        on 

11 1 and 4  9 or 15         and        on 

12 2 and 3 8 or 14          and        on 

13 Reset 9 or 12 Reset all processes 

14 3 and 4 10 or 15        and        on 

15 4 11 or 13        on 

The above sequence of processes is graphically shown in Figure 5.10. Notice, in the figure, that the holding 

tank’s subsystem is also cyclic on condition       is     . 

 

Figure 5.10 State two’s input-combination diagram 

There are two sub-cycles shown in Figure 5.10: The one sub-cycle—inputs eight, ten, eleven and nine—does 

not allow glue to be pumped, while the other cycle—inputs twelve, fourteen, fifteen and thirteen—does. The 

latter cycle executes under normal conditions, i.e. when the glue’s temperature is above the set-point. Thus, 

it is possible to transitions between the two sub-cycles by toggling the    variable. 

 

 

Temperature not at 

set-point

No glue pumped

Normal Operation

 ¬ TS_I_2

9H
eat

11Heat, TS
10

Heat, T
L, TS

8
H

ea
t,

 T
L

12
Em

pty, TL

14TL, TS
15

TS

13
R

es
et

¬T2

T2

¬T2

T2

¬T2

T2

¬T2

T2

T L_
I_

2 

TS_I_2

 ¬ T
L_I_2

 ¬
 T L_

I_
2

TS_I_2

T
L_I_2 

 ¬ TS_I_2

TL = Long Timer

TS = Short Timer



 Page 86 |Hardware Evolution of a Digital Circuit using a Custom VLSI Architecture 

5.6 Results 

The successful evolution results, for each state, are discussed below. Like with the evolved multipliers, each 

evolution attempt was limited to 3000 generations. Not all evolution attempts were successful: State one 

was evolved seven times, while state two was evolved four times before a finding a fit phenotype. 

As discussed in Chapter 4, the     GA is more prone to downloading errors (see Section 4.5.4.3 , page 71), 

hence there are spikes in the graphs (Figure 5.11 and Figure 5.15) which have been demarcated with ×. In 

addition, there are large jumps in the graphs due to the     variable in the                fitness evaluation. 

For referencing purposes, the independent CPs have been coloured red. 

5.6.1 State One 

Figure 5.14 shows the evolution of state one’s     -fit phenotype. Within the first 39 generations, two of 

the four CPs were evolved, with the third and fourth CPs taking 1890 and 2964 generations respectively. 

 

Figure 5.11 Results of state one’s evolution 
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As expected, Figure 5.12 shows why the first two CPs,        and        , evolved quickly—the CPs only 

pass one LE. In contrast,          and         pass five and six LEs respectively. In total, ten of the twenty 

available LEs were used, with five of the ten LEs placed in column zero. 

 

Figure 5.12 State one’s final phenotype 

The final simplified phenotype is shown in Figure 5.13, using only eight of the original ten LEs. Notice that 

      and          are independent of each other, but dependent on        , i.e.       and          were 

independent CPs until         was evolved. The significance of this is discussed in later in Section 5.7.1 . 

 

Figure 5.13 State one’s simplified phenotype 
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Figure 5.14 Results of state two’s evolution 

Again, the following milestones are noted in Figure 5.14’s graph: 

 At fitness values      ,    ,       and     , the outputs        ,       ,        and          

respectively are correctly evolved. The        ,        and        CPs pass one LE while          CP 

passes six. 

 It took a total of 1085 generations to evolve the phenotype. This amounted to an evolution time of 

approximately 6 hours and 29 minutes. 

The evolved phenotype, shown in Figure 5.15, makes use of eight LEs. As with state one, note the 

distribution of used LEs: All five LEs in column zero, but no LEs in column three, have been used. 
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Figure 5.15 State two’s final phenotype 

Finally, Figure 5.15 can be simplified by removing the wire LEs, as shown in Figure 5.16. The simplified 

phenotype uses only six of the eight LEs. 

 

Figure 5.16 State two’s simplified phenotype 
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During evolution, two or more initially independent CPs, or pre-independent CPs, can be linked together to 

form a third CP, thereby making all the CPs dependent. The third CP will take longer to evolve since the pre-

independent CPs first need to be evolved; but will require fewer net LEs because the CP will be dependent. 

This explains why the         CP, although last to evolve, has a lower net-number. 

Table 5.8 Summary of the net number-of-LEs evolved by each CP 

 State-One’s Phenotype State-Two’s Phenotype 

                                                               

Number of evolved 
LEs used by the CP 

1 1 5 6 1 1 1 6 

Number of LEs, used 
by the CP, that were 
previously evolved 
by other CPs 

0 0 0 2 0 0 0 1 

Net number of LEs 
that were evolved 
(Net evolved LEs) 

1 1 5 4 1 1 1 5 

All CPs with one net LE were evolved within the first 200 generations. In contrast, the          and          

CPs both have a net number of five—the highest of all the CPs evolved in this study. Both took over 1000 

generations to evolve, with the          CP taking 1890 generations. 

The above results are in concurrence with the results of the multiplier CPs in Chapter 4—the more net LEs a 

GA has to evolve, the longer the evolution takes (with the exception of pre-independent CPs). 

5.7.2 Modular Evolution and Scalability 

From the simplified phenotypes, the complete combinational-logic circuit for the FSM can now realised by 

adjoining the sub-circuits as shown in Figure 5.17. The complete circuit makes use of 10 inputs, 8 outputs and 

22 LEs. 
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Figure 5.17 Complete combinational-logic of the FSM 

Of the 22 LEs, eight are AND-gates (coloured green in Figure 5.17) connected to the sequential logic’s state 

lines. These AND-gates have direct control over the external outputs. For example, if state one is active, i.e. 

   is high and    is low, then all of state one’s external outputs will be on/off according state one’s 

combinational logic, while state two’s external outputs will all be off. 

Comparing the complete combinational circuit and the state’s evolved circuits, the complete circuit is much 

larger, having over double the number of inputs, external outputs and LEs. However, even so, the majority of 

the circuit has been autonomously evolved, with only minimal human expertise needed only to adjoin the 

sub-circuits. Had the complete circuit been evolved using the 20-LE V-FPGA, no solution would be evolved 

due to there not being enough available LEs, or IOs. A larger V-FPGA could be employed, with more LEs, 

external outputs and inputs. However, this would substantially enlarge the GA’s search space. Both examples 

would result in an increase in scalability problems, with inevitable long evolution-times and poor 

repeatability. 

Consequently, the modular evolution has successfully demonstrated a method of dealing with scalability—by 

decomposing circuits into sub-circuits and evolving the sub-circuits at gate-level. 
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Nevertheless, future work will still need the designer to have insight into the EHW setup’s capabilities in 

order to select the size of each sub-circuit and V-FPGA. Sub-circuits can, of course, be any size. For example, 

it is possible to evolve each CP independently; or larger state combinational circuits. But large sub-circuits 

should, again, be used cautiously, since scalability problems can occur even when using modular evolution. 

Finally, the above modular evolution demonstrated state decomposition, i.e. each state’s sub-circuit is 

independently evolved. Although decomposition strategies, as discussed in Chapter 2, have proven 

successful (Kalganova, 2000), a major problem is defining the decomposition, i.e. defining how the circuit 

should be dividing into sub-circuits. The size of each sub-circuit in this research is primarily based on each 

state’s requirements. However, more complex states would require further decomposition. 

Stomeo, et al (2006) have proposed a new method called “Generalised Disjunction Decomposition”, or GDD, 

where a circuit is decomposed according to the inputs. This is based on the fact that the number of 

generations required to evolve a circuit is directly influenced by the number of external inputs. In fact, 

Stomeo, et al (2006) showed that a 15-input circuit can take ten times longer to evolve than a 10-input 

circuit. 

Future work can consider using GDD when evolving larger state sub-circuits, especially since the GDD 

research has shown usefulness in combinational-logic evolution. In addition, Stomeo, et al (2006) have 

concluded that GDD-evolved circuits have reached “higher values of fitness during optimisation”, and are 

thus more efficient. 

5.7.3 The Distribution of Logic Elements and External Outputs 

CPs make use of multiple external inputs, but only one external output, i.e. CPs taper towards their outputs. 

This is evident when analysing Table 5.9. The table summarises the distribution of the external outputs and 

the used LEs for all the evolved CPs when using the 20-LE CGP layout. 

Table 5.9 The distribution-of-external-outputs and used-LEs per CGP column 

 Distribution of External 
Outputs 

Number of used LEs per 
Column 

CGP Column 0 1 2 3 0 1 2 3 

Trial-Canonical Phenotype 0 3 0 1 4 4 1 1 

Final-Canonical Phenotype 1 2 1 0 4 4 1 0 

    Phenotype 1 1 1 1 4 4 2 1 

State One’s Phenotype 2 0 2 0 5 3 2 0 

State Two’s Phenotype 3 0 1 0 5 2 1 0 

Total 7 6 5 2 22 17 7 2 

Percentage 35% 30% 25% 10% 88% 68% 28% 8% 

From the first set of data, i.e. the distribution of external outputs, 35% of external outputs were placed in 

column zero. This means that 35% of the CPs used only one LE. The percentage steadily decreases as the 

column number increases, with only 10% of the evolved CPs having external outputs in column three. 

Column three’s external outputs used LEs from all four columns. 
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A similar trend is noted in the second set of data, which shows the number of used LEs per column. The 

reader is reminded that there are five available LEs per column. For column zero, 88% of the available LEs 

were used by the CPs. On the contrary, only 8% of the LEs in column three were utilised. 

Overall, only 48% of the available LEs were used. This is not necessarily a negative point, as the evolution 

process needs unused LEs, when evolving novel solutions, in order to prevent scalability. However, the 

distribution of these unused LEs can be improved upon by assigning more LEs to the columns that are likely 

to use the LEs. 

Now, consider the state-one and state-two phenotypes, which both made use of all five LEs in column zero, 

but no LEs from column three. There are a number of consequences to consider for using the 20-LE CGP 

layout: 

 Since there are no free LEs in column zero, it remains unproven, but possible, that more efficient 

CPs may be evolved if more LEs are made available in these columns. Column zero’s LEs are also 

important since the evolution constraints only allow external inputs to be connected to these LEs. 

 Since more of the column-zero LEs are utilised, there is a higher probability of the GA erroneously 

altering a correctly evolved column-zero LE, while trying to evolve the remaining CPs. 

 Since the last column does not feature in the either of the evolved phenotypes. Thus, the column is 

unnecessary and only adds to the search space and evolution time. 

Consequently, the standard CGP layout of LEs is questionable. One solution to this problem could be to use 

the proposed pyramid layout of LEs, as shown in Figure 5.18. 

 

Figure 5.18 Proposed pyramid layout of LEs 

The exact size of each column in the pyramid is left to the designer, but the idea is to arrange the LEs in a 

pyramid or triangular formation. The layout does not reduce the GA’s search space, but rather places more 
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emphasis on the external-input LEs in column zero. Since there are more LEs in the first column, there is a 

higher probability, i.e. eight in twenty chance, of an external output being connected to LE 0 to 7. Likewise, 

there is a low probability, i.e. only three in twenty chance, of LE 17 to 19 being connected to an external 

output. Thus, the GA is more likely to connect the external outputs to correctly evolved CPs. In addition, each 

column will proportionally have more available LEs, thereby preventing scalability problems. 
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Chapter 6 CONCLUSION 

CONCLUSION 

6.1 Introduction 

This study set out to explore the implementation of an EHW system as an alternative method of synthesising 

digital circuits. Three key issues have been investigated: the design and implementation of a custom VLSI 

architecture; the effectiveness of optimising the GA and its genetic operators; the evolution of a real-world 

control circuit. More specifically, from the investigated issues, the research sought to answer the following 

questions: 

1. Although theoretically proven, practically could the V-FPGA be a viable evolution platform? 

2. Do     GAs provide advantages over canonical GAs when used in EHW systems? 

3. Could a simple FSM be scaled and evolved if modular evolution was used? 

The above questions related closely to two pressing issues found in EHW systems: portability and scalability. 

6.2 Contributions 

According to the literature, portability was mainly being solved using VRCs. Although the VRC concept was 

first introduced in the early 2000s, it was evident in many current research papers that VRCs were still 

popular and relevant due to their device independence, cost minimisation and flexibly. But flexibility also 

meant that VRC architectures were not standardised, differing according to their design, granularity, 

implementation and size. 

The V-FPGA architecture is one example of a VRC, which before this research, had not yet been implemented 

on an FPGA. Generally it was found that although it was advantageous to understand how the V-FPGA’s LCM, 

RCM, RM and multiplexers operated, it was more critical for the designer to understand how to program the 

LCM and RCM using the write-enable, write-address, data, routing and clock lines. Through the successful 

simulation of a multiplier, it was shown that: the LCM and RCM are independent entities, and could thus be 

programmed individually using parallel communication; the clock and write-enable lines should only be 

active while programming the memories. 

Overall, the simulation proved the architecture to be a viable platform on which to perform hardware 

evolution. Thus, the first question of the study has been shown to be true. 

The analysis of Chapter 3 led to a new genotype representation in LabVIEW software. This representation 

could serve as a model for future V-FPGA studies, since it was able to represent all the necessary          , 
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        ,         and        data needed for genotype-phenotype mapping, while still placing special 

attention on the prohibition of illegal connections. 

Besides portability, it was evident from numerous sources that scalability was an even more pressing 

problem prohibiting real-world EHW applications, with side-effects including poor performance, evolution-

times and repeatability. The literature suggested that scalability be overcome using a multifaceted approach, 

which was partly done in Chapters 4 and 5 by optimising the GAs’ operators, using evolution constraints and 

decomposing the solution circuit. 

One noteworthy contribution this research has made is the in-depth analysis of the phenotypes’ CPs. 

Through analysing the CPs, it has been shown that a great amount of insight can be gained into a 

phenotype’s fitness. Particularly, the identification of the CP’s dependence is valuable, since dependent CPs 

reduced the required net number of evolved LEs.  

Generally, in both the multiplier and state phenotypes, the CPs were evolved in ascending order of the net 

LEs. This suggests that evolution always favoured CPs with lower net numbers. However, we have seen that 

in one special case, if two independent CPs are used by a third CP, the resulting third CP has a lower net 

number than both independent CPs. 

The CP analysis also led to the development of the                fitness function, which had a distinctive 

way of not only rewarding correct out elements, but also encouraging more efficient evolution through 

sustaining evolved CPs, and further developing partially-evolved CPs. 

Like the fitness function, the development of the GAs’ parameters was largely achieved on a trial-and-error 

basis. The empirical findings in this study provided a new understanding of: 

 The scalability consequences for configuring V-FPGAs that were too large or small. 

 Constrained evolution, and how it could be used to minimise the number of routing and logic 

permutations, thereby reducing the GA’s search space. 

 How poor repeatability, of which the stalling effect was an indicator, could be linked to scalability, 

erroneously-evolved chromosomes and inaccurate downloads. 

By comparing the final-canonical and     results, the study confirmed previous findings that suggest the 

    GA is more effective in EHW. It was shown that     GA was substantially quicker to evolve a solution, 

and found a solution within a fewer number of attempts, when compared to the canonical GA. Thus, 

although the study was based on a small sample of evolution attempts, the results imply the     GA is 

more suitable and efficient for EHW. It was discussed that this was possibly due to crossover reducing the 

canonical system’s evolvability, and that the     GA’s smaller population size was better suited for EHW 

systems. Having argued that the     GA has shown more favourable results, the second question of the 

study has thus been addressed and shown true. 
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An interesting and valuable finding to emerge from the study is that all five evolved phenotypes had unique 

topologies. Further analysis of the multiplier phenotypes also revealed that none of the evolved phenotypes 

were less efficient than the conventional multiplier. In fact, it was shown that two of the three phenotypes 

reduced the total number of LEs, with the third phenotype reducing the number of used LEs in two CPs. 

Thus, it has been experimentally shown that hardware evolution was able to optimise a conventional 

multiplier. Even so, considerably more work will need to be done to determine if the previous statement can 

be generalised to all circuits, and not just multipliers. 

Although all the phenotypes were all unique, similarities in the placement of external outputs and the 

number of used LEs were found. We have seen that as the number of columns in the CGP array increases, so 

the likelihood of an external output being placed in the column decreases. Furthermore, the number of used 

LEs per column also substantially decreases per added column. Thus, increasing the number of columns in a 

CGP array should always be done with care. 

Finally, Chapter 5 demonstrated the evolution of a state-decomposed control circuit. At this point, we need 

to consider the following objection: The research only evolved the combinational logic, thus excluding the 

control circuit’s sequential, timing and counter logic. Although true, the aim of the chapter was to only 

demonstrate modular evolution, even if only on a sub-section of the control circuit. The development of the 

state diagram, block diagram and state truth tables proved to be critical to developing the FSM. It was shown 

that the evolution of each state’s sub-circuit was possible; and that the final control circuit made use of 22 

LEs, 10 inputs and 8 outputs—more than double the available resources on the 20-LE V-FPGA. Thus, modular 

evolution has been shown to be a successful tool when dealing with scalability, thereby affirming the third 

question. 

6.3 The Way Forward: Future Work 

A number of important limitations need to be considered. Firstly, while recognising that the hardware setup 

produced successful results, it is hesitantly recommended for future work. Chapter 4 showed that data 

communication between LabVIEW and the V-FPGA was mostly slow, inaccurate and detrimental. This was 

evident in: the spikes seen in the “Results” sections; the long evolution times; the poor repeatability. Future 

research should therefore investigate completely eliminating LabVIEW and the DAQ interfacing hardware, 

and instead concentrate on implementing the GA using a soft-processor, thereby creating an on-chip 

solution. 

Secondly, an issue that was not addressed in this study was whether sequential logic could be evolved. The 

evolution constraints prohibited this possibility. For now, these constraints allowed this study to focus on 

minimising scalability. But eventually, research into evolving sequential logic—or specifically unconstrained 

evolution—using the V-FPGA will be necessary, since real-world control circuits require more than just 

combinational functions. 
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Thirdly, it would be interesting to compare the results of a GA using a pyramid LE-array with that of a GA 

using a CGP LE-array. The pyramid array could present further GA enhancements. 

Fourthly, the current study has only examined modular evolution using state decomposition, which relied on 

each state’s sub-circuit being evolvable. However, this will not always be the case, as complex states will 

require further decomposition. Thus, in future studies, better decomposition techniques, such as GDD, will 

need to be investigated to ensure the successful evolution of complex sub-circuits. 

Fifthly, whilst this study did focus on scalability, there is still a need to further examine multi-VRCs and 

parallel evolution as possible solutions to scalability. It is hoped that, if all scalability solutions, namely multi-

VRCs,     GAs, SOPCs, parallel evolution and modularisation, are to used in one system, the evolution of 

real-world circuits will be attainable. 

Finally, though recognising the research documented here and by others involved small and simple circuits, 

these circuits should not be dismissed, as they still play a major role in fine-tuning system parameters. Small 

circuits are far more practical to analysis, and provide important insight into scalability and the unusual ways 

in which GAs synthesise circuits. 

Until scalability is overcome, and evolution can provide solutions to real-world applications, further progress 

in the field will be required to make EHW a credible engineering tool. 
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APPENDICES 

APPENDICES 
APPENDIX A  Electrical Schematic of Complete EHW System 

See Section 4.2.1 (Hardware Components) on page 36. 
 
 

APPENDIX B  Truth Tables of the Evolved Phenotypes 
See Section 4.4.2.1 (Trial-Canonical Results) on page 58. 

 
 

APPENDIX C  Raw Download Data 
See Section 4.4.1 (Clock Frequency) on page 56. 
 
 

APPENDIX D  Selected LabVIEW Code 
See Section 4.3.1 (The Canonical Genetic Algorithm) on page 42. 
See Section 4.3.3 (Genetic Operators) on page 45. 
 
 

APPENDIX E  Search-Space Permutations 
See Section 4.3.5.1 (The Search Space) on page 48. 
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APPENDIX B: Truth Tables of the Evolved Phenotypes 

By using Boolean algebra, the following truth tables prove that the evolved phenotypes are indeed logically valid, i.e. 

the phenotypes produce the correct outputs. 

Multiplier Truth Tables 

 

Simplified trial phenotype 

Truth table of the simplified trial phenotype 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
 
  

 

 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 1 0 0 0 0 0 0 0 1 

0 1 1 0 0 0 1 0 0 0 0 1 0 

0 1 1 1 1 0 1 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 1 0 0 0 1 0 

1 0 1 0 0 1 0 0 0 0 1 0 0 

1 0 1 1 0 1 0 1 0 0 1 1 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 1 1 0 0 1 0 0 0 1 1 

1 1 1 0 0 1 1 0 0 0 1 1 0 

1 1 1 1 1 1 1 1 1 1 0 0 1 

 

 

Simplified canonical phenotype 
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Truth table of the simplified canonical phenotype 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
  

 

 
 
 
 
  

 

 
 
 
 
  

 

 
 
 
 
 
 

 

 
 
 
 

 

0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 0 

0 0 1 1 0 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 0 0 1 0 0 0 0 

0 1 0 1 0 1 0 0 0 0 0 0 1 

0 1 1 0 0 0 1 0 1 0 0 1 0 

0 1 1 1 0 1 1 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 1 0 0 0 0 

1 0 0 1 0 0 0 1 1 0 0 1 0 

1 0 1 0 1 0 0 0 1 0 1 0 0 

1 0 1 1 1 0 0 1 1 0 1 1 0 

1 1 0 0 0 0 0 0 1 0 0 0 0 

1 1 0 1 0 1 0 1 0 0 0 1 1 

1 1 1 0 1 0 1 0 1 0 1 1 0 

1 1 1 1 1 1 1 1 0 1 0 0 1 

 

 

Simplified     phenotype 

Truth table of the simplified     phenotype 

 
 

 

 
 

 

 
 

 

 
 

 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
 
 
  

 
 

 
 
 
  

 

 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
  

 
 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 0 0 

0 1 0 1 0 0 0 0 0 0 0 1 

0 1 1 0 1 0 0 0 0 0 1 0 

0 1 1 1 1 0 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 1 0 0 0 1 0 

1 0 1 0 0 1 0 0 0 1 0 0 

1 0 1 1 0 1 1 0 0 1 1 0 

1 1 0 0 0 0 0 0 0 0 0 0 

1 1 0 1 0 0 1 0 0 0 1 1 

1 1 1 0 1 1 0 0 0 1 1 0 

1 1 1 1 1 1 1 1 1 0 0 1 
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Finite-State Machine Truth Tables 

 

State one’s simplified phenotype 

Truth table of state one’s simplified phenotype 

 
 
 
 
 

 

 
 
  
 

 

 
  
  
  

 

 
 

 

 
 
 
 
 
 
 

  
  
  
  

 

 
 
 
 
  
 

  
  
  
  

 

 
 
 
 
  
 
  
 

 

 
 
 
 
 
  
  
  

 

 
 
 
  
  
  

  
  
  
  
  

 
  
  
  
 
 
  

 

 
 
 
  
 
  
 
 
  

 

 
 
 
  
 
 
 
 
 
   
  

 
 
 
 
 
 
 
 
 
 
 

 

0 0 0 0 1 1 0 1 1 1 0 1 0 

0 0 0 1 1 1 0 1 1 1 0 0 0 

0 0 1 0 1 1 0 1 0 1 0 1 0 

0 0 1 1 1 1 0 1 0 1 0 0 0 

0 1 0 0 1 0 0 0 1 0 0 1 0 

0 1 0 1 1 0 1 0 1 0 1 0 0 

0 1 1 0 1 0 0 1 0 1 0 1 0 

0 1 1 1 1 0 1 1 0 1 0 0 0 

1 0 0 0 0 1 0 1 1 0 0 1 1 

1 0 0 1 0 1 0 1 1 0 0 0 1 

1 0 1 0 0 1 0 1 0 0 0 1 1 

1 0 1 1 0 1 0 1 0 0 0 0 1 

1 1 0 0 0 0 0 0 1 0 0 1 1 

1 1 0 1 0 0 1 0 1 0 1 0 1 

1 1 1 0 0 0 0 1 0 0 0 1 1 

1 1 1 1 0 0 1 1 0 0 0 0 1 
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State two’s simplified phenotype 

Truth table of state two’s simplified phenotype 

 
 
  
 

 

 
 

 

 
 
  
  

 

 
 
  
  

 

 
 
 
 
 
 
 
  
  

 

 
 
 
 
 
 
 
  
  

 

 
 
 
 
  
 
 
 
 
  
  

 

 
 
 
  

 

 
 
 
  
 
  
 
 
  

 

 
 
  
  
 
 

 

 
 
  
  
 
 
 
  
  

 

 
 
 
  
 
 
 
 
 
  
 
 
 
 

 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 1 1 0 0 1 0 0 

0 0 1 0 1 0 0 0 0 0 1 0 

0 0 1 1 1 1 1 1 1 1 1 0 

0 1 0 0 1 1 0 0 0 0 0 1 

0 1 0 1 1 1 1 1 1 1 0 1 

0 1 1 0 0 1 0 0 0 0 1 1 

0 1 1 1 0 1 1 0 0 1 1 1 

1 0 0 0 0 0 1 0 0 1 0 1 

1 0 0 1 0 1 0 0 0 0 0 1 

1 0 1 0 1 0 1 1 0 1 1 1 

1 0 1 1 1 1 0 0 0 0 1 1 

1 1 0 0 1 1 1 1 1 1 0 0 

1 1 0 1 1 1 0 0 0 0 0 0 

1 1 1 0 0 1 1 0 0 1 1 0 

1 1 1 1 0 1 0 0 0 0 1 0 
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APPENDIX C: Raw Download Data

1 0 0.582033 0 0.672039 0 0.853049 1 0.962055 1 1.38708 1 1.83711 1 2.30113 1 2.76016 1 3.22118 1 3.68121 0.119007

2 0 0.626036 0 0.670038 0 0.834048 0 0.937054 1 1.38108 1 1.83811 1 2.29913 1 2.76316 1 3.22418 1 3.68221 0.123007

3 0 0.634036 0 0.677039 0 0.831048 0 0.924053 1 1.38608 1 1.8361 1 2.30513 1 2.76016 1 3.22818 1 3.68121 0.118007

4 0 0.640037 0 0.69704 0 0.828047 0 0.926053 0 1.38008 1 1.84511 1 2.31013 1 2.75916 1 3.23018 1 3.68421 0.124007

5 0 0.595034 0 0.666038 0 0.838048 1 0.919053 1 1.38308 1 1.84011 1 2.30113 1 2.76016 1 3.22618 1 3.68321 0.121007

6 0 0.629036 0 0.70704 1 0.829047 0 0.929053 1 1.38908 0 1.84711 1 2.30213 1 2.74416 1 3.19418 1 3.68021 0.120007

7 0 0.642037 0 0.674038 0 0.830048 0 0.928053 1 1.41708 1 1.84111 1 2.30013 1 2.76216 1 3.22118 1 3.68021 0.120007

8 0 0.618036 0 0.681039 0 0.830048 1 0.926053 0 1.38508 1 1.8291 1 2.30913 1 2.77116 1 3.23118 1 3.68121 0.123007

9 0 0.634037 0 0.668038 0 0.830048 0 0.921053 0 1.38108 1 1.8351 1 2.30013 1 2.76116 1 3.23418 1 3.67921 0.122007

10 0 0.643345 0 0.677039 0 0.842048 0 0.917053 1 1.39008 1 1.8291 1 2.30113 1 2.76316 1 3.22018 1 3.69221 0.120007

11 0 0.639093 0 0.71214 0 0.838048 0 0.936054 0 1.38308 1 1.84111 1 2.31313 1 2.76516 1 3.22118 1 3.66221 0.134007

12 0 0.669833 0 0.678039 0 0.829047 0 0.920053 1 1.37708 0 1.84011 1 2.28813 1 2.75916 1 3.22018 1 3.68221 0.139008

13 0 0.658811 0 0.679039 0 0.830047 0 0.919053 0 1.37008 1 1.84011 1 2.28913 1 2.76316 1 3.33254 1 3.68021 0.120007

14 0 0.645037 0 0.678039 0 0.830048 0 0.920053 0 1.37908 1 1.83711 1 2.35013 1 2.76916 1 3.18559 1 3.68421 0.130008

15 0 0.639929 0 0.689039 0 0.841048 0 0.921053 0 1.37308 1 1.84211 1 2.30213 1 2.76216 1 3.22018 1 3.68121 0.120007

16 0 0.662922 0 0.672038 0 0.831048 0 0.917053 1 1.37508 1 1.85811 1 2.29713 1 2.75316 1 3.22118 1 3.68021 0.122007

17 0 0.679677 0 0.684039 0 0.841048 0 0.921053 1 1.37308 0 1.86711 1 2.30313 1 2.76916 1 3.22118 1 3.64921 0.121007

18 0 0.640961 0 0.681039 0 0.831048 0 0.941053 1 1.38708 1 1.84011 1 2.30513 1 2.77016 1 3.19918 1 3.68221 0.124007

19 0 0.648037 0 0.680039 0 0.845048 0 0.932054 1 1.37608 1 1.8301 0 2.30213 1 2.76316 1 3.19418 1 3.65421 0.123007

20 0 0.656037 0 0.666039 0 0.841048 0 0.927053 0 1.38008 0 1.8261 1 2.32113 1 2.76216 1 3.22018 1 3.68721 0.119007

0 0.6392 0 0.680444 5 0.835148 15 0.927203 60 1.38268 80 1.840007 95 2.30503 100 2.76206 100 3.223319 100 3.67841 0.123107

0.022879 0.012506 0.006859 0.010704 0.009848 0.009556 0.012896 0.006034 0.028978 0.010631 0.00533

Accuracy Percentage

Mean Download-Time

Standard Deviation of the Mean

Testing VI20 Hz 16.67 Hz 14.29 Hz 12.5 Hz100 Hz 71.43 Hz 55.56 Hz 50 Hz 33.33 Hz 25 Hz

Page 1 of 1
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APPENDIX D: Selected LabVIEW Code 

Download-and-Test VI 

 

 

      = Number of Routing Genes 

Routing Genes 

Logic Genes 
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Tournament-Selection VI 

 

 

  



Page 3 of 7 
 

Mutation VI 

 

 

 

Case statement ensures the new mutation-gene complies with the evolution constraints. 
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Crossover VI 

 

 

 Loop swaps a percentage of genes. The stop condition is 

determined by the Weak-Parent-Fitness-Difference variable. 

Random genes swapped. 
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Main VI: Canonical Overview 

 

 

This loop ensures the elite parents are inserted at random, unique indexes in the new population 

Elitism (Ensures the survival of parent 1 and 2) 

Loop B 
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Main VI: Detailed View of Loop B in Canonical GA Calculates weaker parent’s fitness 

This loop places the selected tournament individuals into a separate array 
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Main VI:     Overview 

 

Main VI: Detailed View of Loop B in     GA 

 

Elite parent carried through to next generation 

Loop stops when enough mutants have been created 

This case statement creates a new population 

Feedback node allows the GA to be cyclic, carrying 

through chromosomes from previous generations 

Loop B 
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APPENDIX E: Search-Space Permutations 

Summary of the Hardware Chromosome 

Consider the 64-gene chromosome shown below, as used in the research (see Section 4.3.4.). 

 

64-Gene Chromosome 

Genes 0 to 43 are Routing Genes, and genes 44 to 63 are Logic Genes. Genes 40 to 43—Section A-A in the above 

figure—define the four external outputs. 

Permutations and Combinations 

In the mathematics of counting, two concepts are used: permutations and combinations. 

Permutations are used when the order of the selected items are important. For example, an ATM pin 1234 will not 

be the same as 4321. 

Combinations are used if the order does not matter. For example, for lottery numbers, the order of the six winning 

numbers is irrelevant, as long as the correct six numbers are chosen. 

Now, consider the hardware chromosome again. The genes are arranged in a specific order, with each gene 

configuring a specific LE or external IO. For example: 

 Gene 0 configures the first input to LE 0 

 Gene 5 configures the second input to LE 2 

 Gene 41 configures the second external output 

 Gene 56 configures LE 12’s logic 

(The above examples have been highlighted in the “Layout of LEs” figure below.) 

Hence, in order to find the number of routing and logic possibilities—and since order is important—permutations 

(and not combinations) have to be used. 

An important factor to consider when calculating permutations is whether or not repetition is allowed. For the 

unconstrained chromosome, repetition is allowed. For example: 

 Any of the routing genes could have the same values. For example, gene 0 and gene 5 could have the same 

value, thus the first input of LE 0 and the second input of LE 2 will be routed from the same source. 

 Any of the logic genes could have the same values, i.e. configure the same logic gate. For example, gene 44 

and 56 could both be configured as NOT-gates. 

0 1 2 3 4 5 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

A A

Routing Data Logic Data
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Layout of LEs 

For permutations with repetition, the following formula is used (Math is Fun, 2011): 

   

where there are   things to choose from, and   things are chosen. For example, a combination lock requires four 

numbers in a specific order. If there are ten numbers to choose from (0, 1, 2, 3...9), and we choose four of them, 

then there are              permutations. 

Now, recall from Section 4.3.4. that the value of each gene is determined by          and        . Also, recall from 

Section 3.2.1. and 3.3.2. that: 

 the maximum number that          can equal is                , i.e. 24 possible values 

 the maximum number that        can equal is 15, i.e. 16 possible gates 

Hence, each Routing Gene can be defined as an integer ranging from 0 to 23, and each Logic Gene an integer from 0 

to 15. 

The Unconstrained Permutations 

Routing the LEs: Genes 0 to 39 

For the routing of the LEs, there are forty LE inputs (two inputs per LE) which can be connected to one of any of the 

other twenty LEs’ outputs, or any of the four external inputs. Hence, stated differently, there are 24 values to choose 

from, and we choose forty of them for each gene. Thus, there are                possible LE permutations. 

Routing the External Outputs: Genes 40 to 43 

LE

0

0
1

LE

1

2
3

LE

4

8
9

LE

3

6
7

LE

2

4
5

LE

5

1
0

1
1

LE

6

1
2

1
3

LE

7

1
4

1
5

LE

8

1
6

1
7

LE

9

1
8

1
9

LE

10

2
0

2
1

LE

11

2
2

2
3

LE

14
2

8
2

9

LE

13

2
6

2
7

LE

12

2
4

2
5

LE

19

3
8

3
9

LE

18
3

6
3

7

LE

17

3
4

3
5

LE

15

3
0

3
1

LE

16

3
2

3
3

A0 20

A1 21

B0 22

B1 23

C0

C1

C2

C3

4
0

4
1

4
2

4
3

LE

19

3
8

3
9

Logic Element Output

Logic Element Input

C04
0

External Output C0

B1 23 External Input B1

0 1 2 3
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Similarly, for the routing of the external outputs, there are four external outputs which can be connected to the 

output of any of the twenty LEs, or any of the four external inputs. Thus, there are             possible 

external-output permutations. 

Defining the LEs’ Logic: Genes 44 to 63 

For the logic section of a chromosome, there are twenty LEs, each of which can be configured into one of 16 

different logic functions. Again, stated differently, there are 16 possible logic values to choose from, and we choose 

twenty of them for each Logic Gene. Thus, there are                possible logic permutations. 


