1,304 research outputs found

    SWI-Prolog and the Web

    Get PDF
    Where Prolog is commonly seen as a component in a Web application that is either embedded or communicates using a proprietary protocol, we propose an architecture where Prolog communicates to other components in a Web application using the standard HTTP protocol. By avoiding embedding in external Web servers development and deployment become much easier. To support this architecture, in addition to the transfer protocol, we must also support parsing, representing and generating the key Web document types such as HTML, XML and RDF. This paper motivates the design decisions in the libraries and extensions to Prolog for handling Web documents and protocols. The design has been guided by the requirement to handle large documents efficiently. The described libraries support a wide range of Web applications ranging from HTML and XML documents to Semantic Web RDF processing. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 31 pages, 24 figures and 2 tables. To appear in Theory and Practice of Logic Programming (TPLP

    SWISH: SWI-Prolog for Sharing

    Full text link
    Recently, we see a new type of interfaces for programmers based on web technology. For example, JSFiddle, IPython Notebook and R-studio. Web technology enables cloud-based solutions, embedding in tutorial web pages, atractive rendering of results, web-scale cooperative development, etc. This article describes SWISH, a web front-end for Prolog. A public website exposes SWI-Prolog using SWISH, which is used to run small Prolog programs for demonstration, experimentation and education. We connected SWISH to the ClioPatria semantic web toolkit, where it allows for collaborative development of programs and queries related to a dataset as well as performing maintenance tasks on the running server and we embedded SWISH in the Learn Prolog Now! online Prolog book.Comment: International Workshop on User-Oriented Logic Programming (IULP 2015), co-located with the 31st International Conference on Logic Programming (ICLP 2015), Proceedings of the International Workshop on User-Oriented Logic Programming (IULP 2015), Editors: Stefan Ellmauthaler and Claudia Schulz, pages 99-113, August 201

    Portability of Prolog programs: theory and case-studies

    Get PDF
    (Non-)portability of Prolog programs is widely considered as an important factor in the lack of acceptance of the language. Since 1995, the core of the language is covered by the ISO standard 13211-1. Since 2007, YAP and SWI-Prolog have established a basic compatibility framework. This article describes and evaluates this framework. The aim of the framework is running the same code on both systems rather than migrating an application. We show that today, the portability within the family of Edinburgh/Quintus derived Prolog implementations is good enough to allow for maintaining portable real-world applications.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201

    Probabilistic inference in SWI-Prolog

    Get PDF
    Probabilistic Logic Programming (PLP) emerged as one of the most prominent approaches to cope with real-world domains. The distribution semantics is one of most used in PLP, as it is followed by many languages, such as Independent Choice Logic, PRISM, pD, Logic Programs with Annotated Disjunctions (LPADs) and ProbLog. A possible system that allows performing inference on LPADs is PITA, which transforms the input LPAD into a Prolog program containing calls to library predicates for handling Binary Decision Diagrams (BDDs). In particular, BDDs are used to compactly encode explanations for goals and efficiently compute their probability. However, PITA needs mode-directed tabling (also called tabling with answer subsumption), which has been implemented in SWI-Prolog only recently. This paper shows how SWI-Prolog has been extended to include correct answer subsumption and how the PITA transformation has been changed to use SWI-Prolog implementation

    Lock-free atom garbage collection for multithreaded Prolog

    Get PDF
    The runtime system of dynamic languages such as Prolog or Lisp and their derivatives contain a symbol table, in Prolog often called the atom table. A simple dynamically resizing hash-table used to be an adequate way to implement this table. As Prolog becomes fashionable for 24x7 server processes we need to deal with atom garbage collection and concurrent access to the atom table. Classical lock-based implementations to ensure consistency of the atom table scale poorly and a stop-the-world approach to implement atom garbage collection quickly becomes a bottle-neck, making Prolog unsuitable for soft real-time applications. In this article we describe a novel implementation for the atom table using lock-free techniques where the atom-table remains accessible even during atom garbage collection. Relying only on CAS (Compare And Swap) and not on external libraries, the implementation is straightforward and portable. Under consideration for acceptance in TPLP.Comment: Paper presented at the 32nd International Conference on Logic Programming (ICLP 2016), New York City, USA, 16-21 October 2016, 14 pages, LaTeX, 4 PDF figure

    TOR: modular search with hookable disjunction

    Get PDF
    Horn Clause Programs have a natural exhaustive depth-first procedural semantics. However, for many programs this semantics is ineffective. In order to compute useful solutions, one needs the ability to modify the search method that explores the alternative execution branches. Tor, a well-defined hook into Prolog disjunction, provides this ability. It is light-weight thanks to its library approach and efficient because it is based on program transformation. Tor is general enough to mimic search-modifying predicates like ECLiPSe's search/6. Moreover, Tor supports modular composition of search methods and other hooks. The Tor library is already provided and used as an add-on to SWI-Prolog.publisher: Elsevier articletitle: Tor: Modular search with hookable disjunction journaltitle: Science of Computer Programming articlelink: http://dx.doi.org/10.1016/j.scico.2013.05.008 content_type: article copyright: Copyright © 2013 Elsevier B.V. All rights reserved.status: publishe
    corecore