ToR: Modular Search with Hookable Disjunction

Tom Schrijvers®*, Bart Demoen®, Markus Triska®, Benoit Desouter®
*Ghent University, Krijgslaan 281 89 WEO02, 9000 Gent, Belgium
YKU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium
¢Vienna University of Technology, Karlsplatz 13, 1040 Wien, Austria

Abstract

Horn Clause Programs have a natural exhaustive depth-first procedural se-
mantics. However, for many programs this semantics is ineffective. In or-
der to compute useful solutions, one needs the ability to modify the search
method that explores the alternative execution branches.

TOR, a well-defined hook into Prolog disjunction, provides this ability.
It is light-weight thanks to its library approach and efficient because it is
based on program transformation. TOR is general enough to mimic search-
modifying predicates like ECLiPSe’s search/6. Moreover, TOR supports
modular composition of search methods and other hooks. The ToOR library
is already provided and used as an add-on to SWI-Prolog.

Keywords: Prolog, tree search, heuristics, modularity

1. Introduction

Kowalski’s well-known adage [1] crisply captures the essence of program-
ming in the equation:

ALGORITHM = Locgic + CONTROL

In Prolog, the logic part is captured in the programmer-supplied rules or
clauses that have a first-order logic interpretation. The control component
is supplied by the Prolog engine and essentially consists of search. In order

*Corresponding author
Email addresses: Tom.Schrijvers@ugent.be (Tom Schrijvers),
Bart.Demoen@cs.kuleuven.be (Bart Demoen), triska@dbai.tuwien.ac.at (Markus
Triska), Benoit.Desouter@ugent.be (Benoit Desouter)

Preprint submitted to Science of Computer Programming May 28, 2013

to answer queries, a Prolog engine performs a backward-chaining depth-first
tree search.

Prolog’s default search strategy is in practice inadequate to effectively
scour large search spaces. As a consequence, the programmer often has to
complement Prolog’s control with additional hints or heuristics in the form of
extra code. This is particularly prevalent in the context of Constraint Logic
Programming where it is common practice for the programmer to comple-
ment a constraint model with a search specification.

Unfortunately, it is not all that easy to cleanly separate logic and control
when implementing search heuristics in Prolog. When one discovers that
Prolog’s control is ineffective, it is often impossible to orthogonally add one’s
own control without touching the existing logic. The problem is that syntac-
tically logic and control in Prolog are tightly coupled, and adding a different
control means cross-cutting existing code.

In this paper we present a novel approach to adding, in an orthogonal
manner, control. Our solution features the following properties:

e [t is a light-weight library-based approach that is easily portable to dif-
ferent Prolog systems: it is currently an SWI-Prolog library [2] available
at http://www.swi-prolog.org/pack/list?p=tor.

e Our approach has all the benefits of modularity: search methods can
be composed and the library of these heuristics is (user-)extensible.

e We demonstrate on benchmarks that its overhead is negligible com-
pared to typical CLP applications where constraint propagation is the
bottleneck. Also we demonstrate that the absolute overhead can be fur-
ther eliminated through term expansion/2; a feature present in most
Prolog systems.

With TOR, we capture all common search methods in CLP(FD) libraries such
as ECLiPSe’s search/6 [3]. This approach is indeed particularly suitable for
Constraint Logic Programming, but also useful for general Prolog programs
with a large search space.

2. Problem Statement

We illustrate the heart of the matter on a simple labeling predicate
label/1 written against SWI-Prolog’s clpfd library [4] (see Fig. 1, left).

label ([1). label([] ,_).
label([Var|Vars]) :- label([Var|Vars] ,D) :-
(var(Var) —> (var(Var) ->
fd_inf (Var,Value), D >0,
(Var #= Value, ND is D - 1,
label(Vars) fd_inf (Var,Value),
; (Var #= Value,
Var #\= Value, label(Vars ,ND)
label([Var|Vars]) ;
) Var #\= Value,
; label ([Var|Vars] ,ND)
label(Vars))
). :
label(Vars ,D)
).

Figure 1: Labeling predicate: plain (left) and with depth bound (right).

label/1 defines a search tree where the branches are created by the disjunc-
tion.!

Suppose that for a certain call 1abel ([Xy, ...,X,]) the search tree is too
large to fully explore. In order to get some useful answers, certain parts of
the tree can be left unexplored, effectively pruning the tree. One particular
way in which this can be done is by reaping the low-hanging solutions only,
and pruning the subtrees that are below a certain depth. This is achieved
by imposing a depth bound on Prolog’s depth first search. Figure 1 shows
on the right a variant of label/1 that implements this idea; the additional
parameter is the depth bound.

Imposing a depth bound may or may not be a successful approach to get-
ting useful answers. If it turns out to be unsuccessful, other pruning strate-
gies can be tried, like imposing a node bound or a discrepancy bound. Each
of these requires rewriting the label/1 predicate to incorporate a different
pruning technique. In general, an explorative process takes place whereby

Lfd_inf/2 returns the smallest value in a variable’s finite domain.

several different variants of the labeling code are written and evaluated until
an effective pruning strategy is found.

2.1. Problems with this Approach
The problems with the above approach should be apparent:

e The approach follows the well-known copy-paste-modify anti-pattern.
Variants of the labeling code are copied all over the place, potentially
propagating bugs and rendering maintenance into a nightmare. Work-
ing code is modified.

e The same heuristic is implemented over and over in different settings
(different applications, different labeling predicates, different Prolog
systems, ...). This process is error-prone, wastes precious programmer
time and is bound to yield non-optimal code quality.

e The effort and expertise required to combine working labeling code
with various search heuristics is non-trivial. This means that fewer
combinations are explored by programmers under time pressure or un-
familiar with particular heuristics. The end result is that suboptimal
solutions are obtained.

e As soon as the labeling code spans several different predicates or multi-
ple invocations of the same predicate, the complexity of adding search
heuristics increases drastically.

2.2. Current Solutions

Most of the current solutions are specific to CLP, and we are aware of
one general Prolog approach.

CLP Solutions. In the context of CLP ECLiPSe [3] copes with this problem
by providing a number of search methods in the search/6 predicate. This
predicate lets the user control through its various arguments the selection
method, the choice method and the search method: the former two decide
on which variable is used during labeling, and which value it is assigned first.
They do not concern us here. The search method controls how the search
tree is explored, e.g., depth-bounded, node-bounded or limited discrepancy
search. Apart from individual search methods, only a fixed number of com-
positions is supported, such as changing the strategy when a depth bound is

reached. In this setting users can extend the set of supported heuristics and
combinations by reprogramming parts of the search/6 predicate.

The same approach can be found in other Prolog systems’ CLP(FD)
libraries, albeit to a more limited extent. SICStus Prolog [5] allows imposing
discrepancy and time limits, and B-Prolog [6] provides a time limit. GNU
Prolog [7] and Ciao’s new clpfd library provide no ways to limit the search
on top of depth-first.

All CLP(FD) libraries do provide one extra search method: optimization
with respect to an objective value. Optimization is typically implemented as
either branch-and-bound or by restarting the whole search with a new bound
whenever a solution is found.

Typically these approaches only support adding search heuristics to a
simple goal made up of a labeling predicate defined in the corresponding CLP
library. This means that complex goals made up of a conjunction of labeling
calls or custom labeling predicates are not supported. ECLiPSe is the only
system that provides one search method, branch-and-bound, independent
from a particular labeling predicate.

Prolog Solution. We are aware of only one other approach to modify Pro-
log’s own search method: the breadth-first and iterative deepening program
transformations in Ciao [8]. These modify annotated predicates in place and
are not compositional.

All in all the available library support that Prolog systems provide is very
limited indeed. As soon as users face a (constraint) problem that requires a
non-trivial search method, they are forced to write all their search code from
scratch, and it can be very daunting to combine different search methods.

Non-Prolog Solutions. There are a range of effective search techniques that
are not based on tree search like local search, genetic algorithms, simulated
annealing, ...as well as tree search techniques that are not based on depth-
first search like breadth-first and A*. However, these techniques are out of
scope of this article. We only consider search methods that are compatible
with Prolog’s depth-first search.

Article Organization. The rest of this article is structured as follows. First,
Section 3 outlines the TOR approach. Next, Section 4 reviews TOR’s stan-
dard library of search methods. Then, Section 5 covers the TOR’s implemen-
tation. Section 6 discusses how TOR allows to observe the search tree for
(performance) debugging purposes. We illustrate the application of TOR on

5

an example Prolog problem in Section 7. Next, Section 8 evaluates the TOR
implementation. In Section 9, we present a simple automatic specializer that
mitigates overhead even in applications without constraint propagation using
ToOR. Section 10 addresses related work and Section 11 concludes.

3. Solution Overview

3.1. User Perspective

ToOR divides search code into two parts: a) the code that defines the
search tree, and b) the code that defines the search method. The user defines
these separately (or reuses existing definitions from a library) and combines
them into a search goal.

Search Tree Code. The search tree code sets up the problem specific search
tree. An example of such code is of Figure 1. To fit in the TOR framework one
provision that has to be made: the code must use TOR’s custom disjunction
tor/2 rather than ;/2. For instance, tor_label/1 is the TOR-compatible
variant of label/1.

tor_label([]).
tor_label([Var|Vars]) :-
(var(Var) ->
fd_inf (Var,Value),
(Var #= Value,
tor_label (Vars)
tor
Var #\= Value,
tor_label ([Var|Vars])
)

tor_label(Vars)

Search Methods. A search method is defined as a predicate that captures the
essence of that method in a declarative way, as a bare-bones search tree with-
out any useful work (such as labeling variables). For instance, dbs_tree/1
captures the depth-bounded search method.

Depth-bounded search

dbs_tree(Depth) :-
Depth > O,
Depthl is Depth - 1,
(dbs_tree(Depthl)
tor
dbs_tree(Depthl)
).

Just like the search tree code, the search method code must respect syn-
tactic restrictions: it must be defined as a predicate with a single clause.
This clause must contain at most one invocation of tor/2. Moreover, each
of the two branches of that disjunction may contain at most one directly
recursive invocation. Finally, there may be no indirectly recursive calls and
no indirect invocations of tor/2 outside of the recursive calls.

Combining Search Tree and Search Method. The user imposes a search method
on a search tree by calling the TOR predicate tor_merge (MGoal,TGoal),
where MGoal is a call to the search method predicate and TGoal is a call to
the search tree predicate. Conceptually, tor merge/2 overlays or merges the
search trees of the two goals, synchronizing their tor/2 disjunctions.

An example of tor merge’s behavior is graphically depicted in Figure 2.
The top left search tree is that of dbs_tree(4), where all the red leaves at
level 5 denote failures. The top right search tree is that of tor_label ([X,Y]),
where the blue leaves at various levels denote solutions. The bottom search
tree is obtained by merging both other trees. The corresponding leaves are
overlaid. When an internal node is overlaid with a leaf, the leaf wins out. If
both nodes are internal nodes, the resulting node is an internal node. When
both nodes are leaves, the leaf from the left tree wins out.

To facilitate reuse, we generally recommend to encapsulate the applica-
tion of tor merge/2 to a particular search method in a separate predicate,
like dbs/2 for dbs_tree/1.

dbs (Depth,Goal) :-
tor_merge (dbs_tree(Depth) ,Goal) .

This makes for more concise calls, like dbs(4,tor_label(Vars)).

Figure 2: The search trees of tor merge(dbs_tree(4),tor_label([X,Y])).

Wrapping Up. In the final step, the TOR predicate search(Goal) is used to,
conceptually, replace all the occurrences (merged or not) of tor/2 by proper
Prolog disjunctions.

In summary, the behavior of label/2 of Fig. 1 is recovered as follows:

search(dbs (Depth,tor_label(Vars)))

label (Vars,Depth)

3.2. Modularity Aspects

The big contribution of the TOR approach is its modularity. Here we look
in more detail at the modularity aspects of TOR that are not found in any
of the existing systems.

3.2.1. Decoupling of Search Tree and Search Method

The first modularity advantage of TOR is that it decouples the code that
defines the search tree from the code that defines the search method. This
decoupling means that new search methods and new search tree code can
be written without awareness of one another and without the modification
of any existing code. This means that, once developed, new search methods

and labelling code can easily be reused in many different settings. Contrast
this with ECLiPSe’s search/6 predicate. It tightly couples the options for
setting up the search tree (like variable and value selection strategies) with
those for the search method.

Finally, we note that this decoupling does not exclude already supported
forms of modularity. In particular, various problem-specific heuristics exist
for deciding how to build the search tree. Well-known examples are variable
and value selection strategies in CLP(FD) and these are an essential part
of an effective search. There are already good solutions for modularizing
variable and variable selection strategies in CLP(FD) libraries and TOR does
not duplicate their effort. Nevertheless TOR is inherently compatible with
these modular solutions: the strategies can easily be integrated in the search
tree code. We refer to the companion code of this paper for several examples.

3.2.2. Modular Combination of Search Tree Code and Search Method

Because their implementations are decoupled, there is no inherent restric-
tion on the combination of search tree code with search method code. To
make matters more concrete, let us consider an additional search method
1ds/1 (short for limited discrepancy search) and an additional search predi-
cate tor_member/2 (the TOR variant of the well-known member/2). We can
now express four different search scenarios by varying both the search tree
and search method code:

?- search(dbs(10,tor_label([X1,...,Xn]))).
?- search(dbs(10,tor_member ([X1,...,Xn]))).
?- search(lds(tor_label([X1,...,Xn]))).

?- search(lds (tor_member([X1,...,Xn]))).

More concretely, any other search method and labeling predicate can be
combined in the same way, whether they originate from the TOR library or
are defined by the user. Of course, it is still up to the user to assess which
composition is effective for his problem. No CLP(FD) library we are aware
of provides this functionality.

3.2.3. Advanced Compositions

Beyond the basic combinations illustrated above, TOR supports the mod-
ular composition of multiple search methods and/or multiple labeling goals.
None of these are readily expressible in existing CLP(FD) systems.

Composition of Labeling Goals. A user can define a complex labeling goal as
the conjunction of two invocations of tor_label/1.?

?- search(1lds((tor_label([X1,...,Xn])
,tor_label([Y1,...,Ym])))).

This example becomes more interesting when the two lists of variables are
labeled with different variable and value selection strategies.

Composition of Search Methods. With nested invocation the user can com-
pose two (or more) existing search methods into a new one. This composition
denotes that both search methods are simultaneously active in every node of
the search tree.

For instance, we can simultaneously apply a depth limit and perform a
limited discrepancy search:

?7- search(dbs(10,1ds(tor_label([X1,...,Xn])))).

Contrast this with the non-modular approach where the user would face the
much more complex task of writing a combined search heuristic dbs_1ds/2
from scratch.

Putting Fverything Together. Finally, the compositional nature of the nota-
tion can be exploited to its fullest potential to obtain sophisticated search
specifications. For instance, the goal

2
! ceey

search(1ds((dbs(XsLimit,tor_label(Xs))
,dbs (YsLimit,tor_label(Ys))))).

applies limited discrepancy search to the whole search tree, and additionally
imposes one depth-limit on the search of the Xs and another to that of the
Ys.

4. Search Method Library

Following the TOR approach, it is easy to write various search methods in
a modular way. While the user can write custom ones himself, TOR already
provides a substantial library of search methods. We cover several of them
here.

2Observe that this example is fundamentally distinct from the simpler goal
?- search(lds((tor_label([X1,...,Xn])))), search(lds((tor_label([Y1,...,¥Ym])))).

10

4.1. Discrepancy-Bounded Search

The discrepancy-bounded search heuristic is a small variant of depth-

bounded search: the bound is only updated in right branches.
Discrepancy-bounded search

dibs(Discrepancies,Goal) :-
tor_merge(dibs_tree(Discrepancies) ,Goal).

dibs_tree(Discrepancies) :-
(dibs_tree(Discrepancies)
tor
Discrepancies > O,
NDiscrepancies is Discrepancies - 1,
dibs_tree(NDiscrepancies)

).

4.2. Iterative Deepening

Iterative deepening emulates breadth-first search by means of increasing
depth-bounds. The implementation consists of a driver id_loop/3 that ini-
tiates an iteration with a given depth bound and, if pruning occurred, starts
the next one with an incremented depth-bound.

An iteration consists of a search with a variant of the depth-bounded
heuristic, id_tree/3; it differs from depth-bounded search in that it reports
its pruning in the non-backtrackable mutable variable PVar.® This variable
communicates to the driver whether a new iteration should be started or not.
Iterative deepening

id(Goal) :-
new_nbvar (not_pruned,PVar),
id_loop(Goal,0,PVar).

id_loop(Goal,Depth,PVar) :-
nb_put (PVar,not_pruned),
(tor_merge(id_tree(Depth,PVar),Goal)
nb_get (PVar,Value),
Value == pruned,
NDepth is Depth + 1,

3See Appendix A for the definition of mutable variables.

11

id_loop(Goal,NDepth,PVar)
).

id_tree(Depth,PruneVar) :-
(Depth > 0 ->
NDepth is Depth - 1,
(id_tree(NDepth, PruneVar)
tor
id_tree(NDepth, PruneVar)
)
nb_put (PruneVar,pruned) ,
false

4.8. Limited Discrepancy Search and Factored Iteration

The traditional limited discrepancy search [9] is a minor variant of it-
erative deepening. It applies the depth-bound only in right branches. Put
differently, limited discrepancy search is to discrepancy-bounded search what
iterative deepening is to depth-bounded search.

With some abstraction, we can factor out the common iteration part of
iterative deepening and limited discrepancy search:

iterate(PGoal) :-
with_pruned(
iterate_loop(0,PGoal)).

iterate_loop(N,PGoal) :-
(
call(PGoal,N)

is_pruned,
reset_pruned,

Mis N + 1,
iterate_loop(M,PGoal)

This iteration pattern runs a goal PGoal that is parameterized by a natu-
ral number N. The goal uses this number as a bound and applies pruning

12

when the bound is exceeded. The iteration repeatedly restarts the goal with
successive values for N until the goal completes without pruning.
With this iteration pattern we can express iterative deepening and limited
discrepancy search as follows:
— TIterative deepening & limited discrepancy search —
id(Goal) :- iterate(flip(dbs,Goal)).
1lds(Goal) :- iterate(flip(dibs,Goal)).

flip(Goal,Y,X) :- call(Goal,X,Y).

There is only one complicating factor: we need to communicate the prun-
ing from the handler to the iteration. Fortunately, global variables allows us
to do that.

prune :-
set_pruned(true),
fail.

reset_pruned :-
set_pruned(false).

is_pruned :-
get_pruned(true) .

get_pruned(Flag) :-
nb_getval (pruned,Flag) .

set_pruned(Flag) :-
nb_setval (pruned,Flag) .

with_pruned(Goal) :-
get_pruned(01dFlag),

(reset_pruned,
call(Goal)
set_pruned(0ldFlag),
fail

13

With the imperative ugliness hidden in the above definitions, the following
new definition of dbs_tree handler subsumes both id_tree/2 and the pre-
vious dbs_tree/1 definitions.

dbs_tree(Depth) :-
(Depth > 0 —>
Depthl is Depth - 1,
(dbs_tree(Depthl)
tor
dbs_tree(Depthl)
)

prune

4.3.1. Node-Bounded Search

A node-bounded search is much like a depth-bounded search, except that
the decrements of the limit are not backtracked. Hence, as an optimization
we abort the whole search at once by throwing an exception rather than
gradually failing out of the search tree.

Node-bounded search

nbs(Nodes,Goal) :-
new_nbvar (Nodes,NodesVar),
catch(
tor_merge (nbs_tree(NodesVar) ,Goal),
out_of_nodes (NodesVar),
fail

nbs_tree(Var) :-
nb_get (Var,N),
(N>0 —>
N1 is N - 1,
nb_put (Var, N1),
(nbs_tree(Var)
tor
nbs_tree(Var)

)

14

throw(out_of_nodes(Var))

4.4. Branch-and-Bound Optimization

This well-known optimization approach posts constraints in the inter-
mediate nodes of the search tree to find increasingly better solutions. Our
implementation uses TOR to access those intermediate nodes and generate
increasingly larger values of the Objective variable. It uses two variables,
BestVar and Current. The former keeps track of the overall best solution
so far, while the latter is the solution that the current node tries to improve
upon.

Both the overall and current best solution are initialized to a value smaller
than the infimum of the objective variable’s domain. Whenever a solution is
found, the overall best solution is updated. Whenever we backtrack into a
ToOR choice point, the heuristic synchronizes the current best solution with
the overall best solution. If the current best solution was out of sync, the
handler also imposes a new lower bound on the objective variable. Note that
inf denotes negative infinity.

Branch-and-Bound

bab(0Objective,Goal) :-
fd_inf (Objective,Inf),
LowerBound is Inf - 1,
new_nbvar (LowerBound,BestVar) ,
Current = LowerBound,
tor_merge (bab_tree(Objective,BestVar,Current) ,Goal),
nb_put (BestVar,Objective).

bab_tree(Objective,BestVar,Current) :-
nb_get (BestVar,Best),
(Best \= inf , (Current == inf ; Best > Current) ->
Objective #> Best,
NCurrent = Best

NCurrent = Current

),
(bab_tree(Objective,BestVar,NCurrent)
tor

15

bab_tree(0Objective,BestVar,NCurrent)
).

4.5. More Search Methods

We have implemented many other orthogonal search methods with TOR,
including all those offered by ECLiPSe’s search/6 predicate. These can be
found in the companion code.

5. Tor Infrastructure Implementation

5.1. Hookable Disjunction
TOR is built around one core predicate, tor/2, which replaces the regular
Prolog disjunction in search tree code. The predicate is defined as:

Gl tor G2 :-
(b_getval(left,Left),
call(Left,Gl) % conceptually: Left(G1)
b_getval(right,Right),
call(Right,G2) 7% conceptually: Right(G2)
).

This definition provides two hooks into the disjunction by means of global
variables left and right.? In these hooks the programmer installs han-
dlers for the left and right branches to control the search. These handlers
are higher-order predicates that take a goal and execute it in a (possibly)
modified manner.

We obtain standard Prolog disjunction, if we use call/1 as handler:

?- findall(X, (X in 1..10
, b_setval(left,call)
, b_setval(right,call)
, tor_label([X])
), Values).

Values = [1,2,3,4,5,6,7,8,9,10].

4Note that b_getval/2 and b_putval/2 are SWI-Prolog builtins for reading and writing
global mutable variables, whose names are atoms. Their non-backtrackable counterparts
are nb_getval/2 and nb_putval/2.

16

The point of TOR is of course to install more interesting handlers.

5.2. From Search Methods to Handlers

More interesting handlers originate from the search method. The tor_merge/2
predicate transforms their high-level definitions into pairs of low-level han-
dlers, before it installs those handlers. This transformation proceeds in two
phases. First the search method definition is normalized, and then the han-
dlers are extracted.

5.2.1. Search Method Normalization
In the first phase, the rewrite/2 predicate rewrites the search method
definition into a normal form

sm(X1,...,Xn) :-
(Left
tor
Right
).

If tor/2 is defined as the usual disjunction, both arguments of rewrite/2
have (on success) the same logical interpretation.

rewrite((Head :- Body),(Head :- Left tor Right)) :-
split(Body,Left,Right).

split(tor(GL,GR),GL,GR) :- !.
split((G1,G2), (GL1,GL2),(GR1,GR2)) :- !,
split(G1,GL1,GR1),
split(G2,GL2,GR2) .
split((Test -> G1 ; G2),
(Test -> GL1 ; GL2),(Test -> GR1 ; GR2)) :- !,
split(G1,GL1,GR1),
split(G2,GL2,GR2) .
split((G1;G2), (GL1;GL2),(GR1;GR2)) :- !,
split(G1,GL1,GR1),
split(G2,GL2,GR2) .
split(G,G,G).

17

5.2.2. Handler Extraction
The left and right handlers are derived from the Left and Right branches
of the search method’s normal form:

sm_left(X1,...,Xn,Goal) :-
NLeft.

sm_right(X1,...,Xn,Goal) :-
NRight .

where NLeft and NRight are derived from Left and Right by replacing
any recursive calls with call(Goal). Moreover, if any of the recursive calls
features parameters that are not the same as in the head, that parameter
is wrapped in a mutable variable. For instance, the Depth parameter of
dbs_tree/1 changes to Depthl in the recursive calls. Hence, the following
handlers are derived:

dbs_tree_left(MDepth,Goal) :-
b_get (MDepth,Depth),
Depth > O,
Depthl is Depth -1,
b_put (MDepth,Depthl),
call(Goal).

dbs_tree_right (MDepth,Goal) :-
... % identical

Finally, a tor merge(sm(T1,...,Tn),Goal) goal is rewritten into the
appropriate invocation of tor_handlers/3:

tor_handlers(Goal, sm_left(T1,...,Tn), sm_right(T1,...,Tn))

In case any of the parameters need to be wrapped in a mutable variable,
tor_merge/2 also takes care of that. For instance,

7- tor_merge(dbs_tree(4),tor_label(Xs)).
becomes

?- new_bvar(4,MVar),
tor_handlers(tor_label(Xs) ,dbs_tree_left(MVar)
,dbs_tree_right (MVar)) .

18

5.8. Handler Infrastructure

5.3.1. Default Handler

The predicate search/1 sets up the default handler for both hooks:
call/1.5

search(Goal) :-
b_setval(left,call),
b_setval (right,call),
call(Goal).

With this default handler, tor/2 corresponds simply to plain disjunction
(;)/2.% For instance, with search/1 we recover the behavior of label/1 of
Fig. 1 from the TOR-variant:

search(tor_label(Vars)) = 1label(Vars)

5.3.2. Extending Installed Handlers

In order to facilitate installing new handlers, TOR provides a convenient
predicate: tor_handlers/3.

tor_handlers(Goal,Left,Right) :-
b_getval(left,LeftHandler),
b_getval(right,RightHandler),
b_setval(left,compose(LeftHandler,Left)),
b_setval(right,compose(RightHandler,Right)),

call(Goal),

b_setval(left,LeftHandler),
b_setval(right,RightHandler) .

compose (G1,G2,Goal) :- call(Gl,call(G2,Goal)).
% conceptually: G1(G2(Goal))

This predicate assumes that there are already handlers installed, either by
search/1 or a previous invocation of tor_handlers/2. It does not replace

5By storing the previous values of the handlers and restoring them after the search, we
can easily support nested scopes with entirely different search methods.
6 Apart from the scope of any cuts in the alternative branches

19

the installed handlers by the new ones, but composes them with compose/3.”
This accounts for the ability to compose search methods, discussed in Sec-
tion 3.2.3.

Finally, tor_handlers/2 also scopes the effect of the new handlers: they
are only active in the provided goal. After execution of the goal, the old
handlers are reset.

5.4. Custom Low-Level Handlers

In addition to writing high-level search methods, expert users can also
exploit TOR’s low-level infrastructure and write custom low-level handlers
that don’t fit the search method pattern. Here we show two such cases.

5.4.1. Higher-Order Search Methods

ECLiPSe’s search/6 provides several higher-order search methods. These
are search methods that are parameterized by other search methods.

An example of this is the following dbs/3 variant on depth-bounded
search. When it reaches the depth bound, it does not prune the remain-
ing subtree, but activates the search method Method. A typical example is
to limit the discrepancy once we reach a certain level in the search tree. This
is achieved with dbs(Level,lds(Discrepancies),Goal).

dbs(Level, Method, Goal) :-
new_bvar (yes(Level),Var),
tor_handlers(Goal,dbs_handler (Var,Method)
,dbs_handler (Var,Method)) .

dbs_handler (Var,Method,Goal) :-
b_get (Var,MDepth),
dbs_handler_(MDepth,Var,Method,Goal) .

dbs_handler_(yes(Depth),Var,Method,Goal) :-
(Depth > 1 ->
NDepth is Depth - 1,
b_put (Var,yes (NDepth)),
call(Goal)

"While compose is a ternary predicate, recall that it has to be used in partially applied
form in left and right.

20

b_put (Var,no),
call (Method,Goal)
).
dbs_handler_(no,_,_,Goal) :-
call(Goal).

The original first-order search method dbs/2 can be defined as dbs (Level, prune,Goal)
where:

prune(Goal) :- prune.

In ECLiPSe, only a fixed number of parameters can be supplied to these
higher-order search methods, and search/6 explicitly caters for each sep-
arate combination in its implementation. Not so with TOR. There is no
restriction on the possible combinations; the higher-order search methods
are truly parametric.

5.4.2. Parallel Search

It turns out that the comparatively simple interface of TOR is even gen-
eral enough to express at least a naive implementation of parallel search.
The query 7- search(parallel(tor_label(Vars),5)) uses 5 processes to
explore parts of the search tree in parallel. It is based on the definition of
parallel/2 below.

Parallel

parallel(Goal,N) :-
set_available_processes(N),
tor_handlers(Goal, tor_fork, call).

tor_fork(Goal) :-
(i_am_a_child ->
call(Goal)

wait_for_available_process,
fork(PID),

PID == child,

call(Goal)

21

The code uses the fork/1 predicate to duplicate the current Prolog pro-
cess,® yielding a so-called parent process and a concurrent child process. The
child process (determined via i_am a child/0) explores the goal. Since the
goal PID == child fails in the parent process, this parent process backtracks
and considers the alternative which is delegated by the installed handler to
the built-in call/1 predicate, and whose left tor-branches are again subject
to tor_fork/1.

We have used three more predicates that need explanation:

e set_available processes/1 initializes the number of available (sub-)
processes,

e i am a child/0 succeeds if and only if the current process is not the
main Prolog process, and

e wait_for_available_process/0 waits until a process is available and
then succeeds: any time a process is forked, the number of available
processes goes down by one, and when a process finishes, the number
of available processes goes up by one.

All three predicates can be implemented in an ad-hoc way in SWI-Prolog.
To illustrate the parallel exploration of two independent branches in a
simple and self-contained example, consider the query:

7- search(parallel(repeat tor X = 2,1)).

which yields X = 2 on the toplevel (a shared resource among all created
processes), whereas this specific solution cannot be obtained with regular
Prolog disjunction because it is hidden by an infinite branch due to the goal
repeat.

Clearly, the possibilities of search parallelism based on the TOR frame-
work are worth exploring further, in particular regarding communication
between processes, and using threads instead of processes for portability and
efficiency.

8fork/1 is available in SWI-Prolog on Unix platforms

22

6. Search Tree Observation

The original purpose of TOR was to allow the manipulation of search tree
traversal by various search heuristics. It turns out that TOR also enables
various ways to observe the search tree, so that one can gain insight in
the search process itself, e.g., for (performance) debugging purposes. We
illustrate in the next sections plain statistics and visualization.

6.1. Statistics

Similar to SWI-Prolog’s profile/1, time/1 and statistics/0 predi-
cates, we can provide different components that monitor various metrics of
the search tree and provide us with a convenient summary. In the follow-
ing example, we constrain 4 finite domain variables to the domain 1,...,4
via the library’s ins/2 constraint’ and emit all solutions found by labeling,
including accompanying statistics:

?7- length(Xs,4), Xs ins 1..4,
search(tor_statistics((tor_label(Xs) ,writeln(Xs)))),

false.
[1,1,1,1]
% Number of solutions: 1
% Number of nodes: 4
% Number of failures: 0
[4,4,4,4]
% Number of solutions: 256
% Number of nodes: 510
% Number of failures: 0

The code for tor_statistics/1 is in the TOR library.

To support users who want to check whether they have successfully re-
placed all regular disjunctions with TOR, we also provide a tool that uses
SWI-Prolog’s choice point inspection primitive prolog current choice/1
to verify this.

9This constraint restricts the domains of the variables in the given list to the given
range.

23

6.2. Visualization

In addition to summarized data of the search tree, we can also visual-
ize the actual search tree itself with TOR. For that purpose, we provide a
predicate that emits a textual representation, a log, of the search tree:

log(Goal) :-
tor_merge (log_tree,Goal),
writeln(solution).

log_tree :-
((writeln(left)
tor
writeln(right)

),
log_tree
writeln(false),
false

A complimentary tool that turns this log into a PDF image is also available
from our public code repository. Due to our concise decision to transform the
textual logs to scalable vector graphics in PDF format, there is no inherent
limit on the sizes of search trees that users of TOR can visualize with this
tool.

Fig. 3 shows the complete search tree for labeling 3 variables with domains
of size 3 that are not involved in any constraints. The symbol T denotes that
a solution is found at this node, while [and r denote internal nodes generated
by left and right branches of tor/2 respectively.

Fig. 4 shows two search trees for the 8-queens puzzle: The left one was
created with depth limit (search strategy dbs) 4 and contains no solutions.
The right one was created with depth limit 7 and stopped the search after
finding the first solution. Hence, only the right-most leaf is a solution. The
symbol L denotes pruning due to constraint propagation, and ! denotes a
node that is not explored because the depth limit is exceeded at this level of
the search tree.

It would be interesting to further integrate the logging output with the
more powerful CP visualization tool CP-Viz [10].

24

Toot

A A AL AL N AL N

T T T r T r T r 1 r T r 1 r
A NVANVANRVANERVAN ANVANERVAN
T T T T T T T r T T T T r T r
ANEEVAN /NN
T T T T T T T T

/\ t
NN NN NN N N |
AANANANANNNNNNAAND A AN AN N —
..... MAA‘AA/\/‘\/\
111 LLLLA]AL,AAA
ALLL LLLLA

Figure 4: Search trees of 8-queens with depth bound 4 and 7

7. Plain Prolog Example

While the application of TOR to CLP problems is obvious, we wish to
emphasize that TOR is not limited to CLP.

For that reason we illustrate the use of TOR on the well-known problem of
the wolf, the goat and the cabbage. The following code, adapted from Sterling
and Shapiro [11], implements this decision problem in plain Prolog (without
constraints). Naive depth-first execution of this code loops infinitely.

wge -
initial_state(State),
wgc(State) .

wgc(State) :-
final_state(State), !.

25

wgc(State) :-
move (State,Move),
update (State,Move,Statel),
legal(Statel),
wgc(Statel).

initial_state(wgc(left, [wolf, goat, cabbage]l, [1)).
final_state(wgc(right, [], [wolf, goat, cabbagel)).

move (wgc (Bank, Left, Right),Move) :-
(Bank == left,
tor_member (Move, Left)
tor
Bank == right,
tor_member (Move, Right)
tor
Move = alone

:— tor tor_member/2.
tor_member (X, [X|_]).
tor_member (X, [_|Xs]) :- tor_member(X,Xs).

update (wgc(B,L,R), Cargo, wgc(B1, L1, R1)) :-
update_boat (B, B1),
update_banks(Cargo, B, L, R, L1, R1).

update_boat(left, right).
update_boat(right, left).

update_banks(alone, _B, L, R, L, R) :— !.
update_banks(Cargo, left, L, R, L1, R1) :- !,
select(Cargo, L, L1),
insert(Cargo, R, R1).
update_banks(Cargo, right, L, R, L1, R1) :-
select(Cargo, R, R1),
insert(Cargo, L, L1).

insert (X, [YIYs], [X,YlYs]) :-

26

precedes(X,Y), !.
insert(X, [YlYs]l, [YIZs]) :-
precedes(Y,X), !,
insert(X,Ys,Zs).
insert(X, [1, [X1).

precedes (wolf, _X).
precedes(_X, cabbage).

legal(wgc(left, _L, R)) :- \+ illegal(R).
legal (wgc(right, L, _R)) :- \+ illegal(L).

illegal(Bank) :- memberchk(wolf, Bank),
memberchk (goat, Bank).

illegal(Bank) :- memberchk(goat, Bank),
memberchk (cabbage, Bank) .

The nondeterministic enumeration in this code is situated in the move/2 and
tor_member/2 predicates.!? In order to use TOR, we have replaced ordinary
Prolog disjunction with tor/2.

To avoid the non-termination, we can apply a depth-bound and discover
in finite time that the problem has a solution.

7- search(dbs(17,wgc)) .
true.

Of course this is not the only search method that solves the problem. Thanks
to TOR, it is convenient to explore many others and to determine the most
effective one for the problem at hand.

8. Evaluation

To study TOR’s overhead, we have performed a number of benchmarks
on a MacBook Pro, with a 2.4 GHz CPU and 4 GB RAM, running Mac
OS X 10.6.7. We compare two Prolog systems with different performance

10The tor/1 declaration implicitly adds TOR-disjunctions between the clauses of a pred-
icate.

27

characteristics. On the one hand we consider SWI-Prolog 5.11.7, a feature-
rich, but relatively slow Prolog system with a CLP(FD) solver written in
Prolog. On the other hand, we consider B-Prolog 7.5#3, one of the fastest
Prolog systems with a highly optimized CLP(FD) implementation.

8.1. Pure Search

Figure 5 considers the extreme situation where the search is pure enu-
meration of unconstrained constraint variables: length(N,Vars), Vars ins
1..D. Hence, no constraint propagators are activated due to choices. Values
are simply enumerated.

The first column denotes the problem size, expressed in the number of
variables N and their domain size D. The other three pairs of columns denote
different implementations of labeling: 1) label/1 as listed in this paper, 2)
label/1 from SWI-Prolog’s c1pfd library and the corresponding labeling/1
provided by B-Prolog, and 3) search/6 ported from ECLiPSe to SWI-Prolog
and B-Prolog with minimal changes. For each of these, we show the absolute
runtime of the standard/manual version (man) and the relative runtime of
the TOR version (tor).

In both SWI-Prolog and B-Prolog the impact of TOR is pretty consis-
tent across the problem sizes, but depends on the labeling implementation.
In SWI-Prolog, the overhead is most prominent (140-180 %) in our bare-
bones label/1, while it is less so (50-60 %) in clpfd’s label/1. The latter
delegates to labeling/2, which involves more generic option processing. Fi-
nally, in search/6 TOR compensates its overhead further (to 30-40 %) by
not collecting search statistics when these are not demanded. In ECLiPSe’s
implementation, these statistics are collected regardless of demand.

In B-Prolog, the performance characteristics of the labeling predicates are
markedly different. Firstly, the cost of the inequality (#\=)/2 in our label/1
is relatively high, which keeps the overhead of TOR low (60%). In contrast,
the two other labeling predicates rely on B-Prolog’s domain inst next/3
for enumeration, which compiles down to a single abstract machine instruc-
tion. As a result the overhead of TOR is much higher, more so in the tight
labeling/1 (170%-230%) than the more bloated search/6 (120%).

In summary, in these propagation-free benchmarks, the overhead of TOR
goes up to about a factor three for tight labeling loops, but is lower for
option-rich labeling predicates. Moreover, TOR is better behaved in SWI-
Prolog than in B-Prolog. All in all, we find that this is a very reasonable

28

our label/1 clpfd’s label/1 search/6
B-Prolog’s 1labeling/1
man ToRr man TOR man TOR
SWI-Prolog
N=6,D= 8 1.80s 240 % 2.08s 151 % 2.55s 132%
N=6,D= 9 3.63s 249% 4.20s 153 % 5.09s 135%
N=6,D=10 6.82s 269 % 7.87s 155 % 9.53s 137%
N=7,D= 8 14.44s 244 % 16.63s 153 % 20.40s 134%
N=7,D= 9 32.80s 269% 37.80s 155 % 46.04s 136 %
N=7,D=10 68.27s 278% 78.63 s 157% 94.30s 139%
B-Prolog
N=6,D= 8 0.49s 156 % 0.09s 276 % 0.12s 223%
N=6,D= 9 0.99s 157% 0.18s 283 % 0.23s 221%
N=6,D=10 1.87s 160 % 0.32s 291 % 0.44s 219%
N=7,D= 8 4.56s 144% 0.71s 306 % 0.94s 220%
N=7,D= 9 8.90s 163% 1.59s 301 % 2.06s 225%
N=7,D=10 18.64s 163% 3.258 332 % 4.37s 220%

29

Figure 5: Labeling benchmarks without propagation.

our ff label/1 labeling/2 search/6
man Tor man TOR man TOR

SWI-Prolog
allinterval 4.03s 101% 4.02s 101% 4.01s 101%
golf 3.93s 99 % 3.92s 100% 3.96s 99%
mhex 18.59s 102% 18.61s 101 % 18.46s 101 %
n_queens 2.03s 103% 2.05s 102% 2.09s 102%
sudoku 2.14s 101 % 2.15s 101% 3.40s 100%

B-Prolog

allinterval 1.14s 100% 0.81s 112% 0.89s 109 %
knapsack 3.94s 125% 2.11s 175% 2.17s 172%
knight 0.67s 101% 0.71s 100% 0.91s 100%
mhex 0.23s 106 % 0.19s 107% 0.23s 104 %
n_queens 1.01s 107% 0.89s 107% 1.03s 106 %

Figure 6: Labeling benchmarks with propagation. (Note that the problem sizes of the
benchmarks are not the same for SWI-Prolog and for B-Prolog.)

price to pay for the extra flexibility that TOR provides. Still, invoking TOR’s
specializer (see the next section) can get rid of all overhead.

8.2. Search vs. Propagation

While the performance penalty of TOR is limited in the previous bench-
marks, the performance-wary user may not be willing to accept the overhead.
However, the previous benchmarks are not representative of realistic CLP
problems, that spend a lot of time on constraint propagation in every node
of the search tree. All this extra work easily dwarfs the overhead of TOR.
Figure 6 illustrates this observation on a number of typical CLP benchmarks.

For added realism, the benchmarks use the first-fail variable selection
strategy, with hand-written labeling code £f _1abel/1, the two library pred-
icates labeling/2 (SWI-Prolog) and labeling ff/1 (B-Prolog), and the

30

plain 1ds dibs-1 dibs-2 credit/bbs

N= 95 2.11s 0.66s 0.45s 0.28s 0.33s
N= 96 0.65s 4.98s 4.89s 1.13s 1’O4ST o solution
N= 97 T/O 3.68s 3.56s 22.66s 4,08s
N= 98 T/O 15.67s {5.71s 10.16s 2.50s
N= 99 T/O 242s 2.22s 9.85s 2.57s

Figure 7: N-Queens benchmarks with various search methods

ported search/6. Because B-Prolog’s CLP(FD) solver is orders of magni-
tude faster than SWI-Prolog’s, it makes little sense to use exactly the same
benchmarks for the two platforms. Instead, we resorted to different problem
sizes or different benchmarks altogether.

In the case of SWI-Prolog, we see that TOR introduces no (significant)
overhead; its runtime is marginal compared to that of constraint propagation.
In the case of B-Prolog, the overhead of TOR is more noticeable, in the order
of 10% for most benchmarks. Only in the case of the knapsack problem does
it go up to 75% for the tightest labeling loop.

In summary, we see no performance reason to avoid the use of TOR for
most CLP problems. Especially in SWI-Prolog there is no runtime price to
pay. In the setting of B-Prolog, an extra 10% runtime is a low price for the
extra flexibility that TOR provides. Moreover, in the next section we will see
how we can eliminate TOR’s overhead to the extent that we don’t pay for it
if we don’t use the capabilities it provides.

8.8. Search Methods

Finally, Figure 7 illustrates once more why we want to use different search
methods: they can significantly reduce the runtime while still leading to use-
ful solutions. The figure shows the runtime for finding the first solution of
the n_queens benchmark in SWI-Prolog for 5 different problem sizes and 5
different search methods: (plain) plain depth-first search, (lds) limited dis-
crepancy search, (dibs-1/-2) discrepancy bounds of 1 and 2, and (credit/bbs)
credit-based search with 10,000 credits that switches to a bounded backtrack-
ing (1 backtrack) search when the credits are exhausted.

31

9. Automatic Specialization

TOR encourages writing fairly abstract and generic code. This style
clearly incurs some overhead (notably due to meta-calling) compared to
specialized search code. Fortunately, in the case of CLP applications, this
overhead is very modest compared to the cost of constraint propagation.
However, in the case of applications without constraint propagation, we do
observe an overhead that is significant. In order to mitigate that overhead,
we exploit Prolog’s homoiconic nature to provide a simple but effective au-
tomatic specializer.

Even though there is a large body of work on automatic program spe-
cialization for Prolog, notably involving partial evaluation, we decided to
write our own program specializer. Its main tasks are 1) to perform constant
propagation on the global variables left and right, 2) to replace instan-
tiated meta-calls by direct calls and 3) to inline the handler code into the
main search loop. For control we follow a light-weight approach based on
declarations of what predicates to inline and specialize.

Example 1 Our specializer yields label/1 for the generic composition
search(tor_label(Vars)). Similarly, we recover SWI-Prolog’s labeling/2
by specializing its TOR variant. Hence, we do not pay if we do not modify
the search.

Example 2 The specialized form of the goal search(dbs (N, tor_label(Vars)))
is new_bvar (N,DVar), label21(Vars, DVar), with:

label21([],).
label21([Var|Vars], DVar) :-
(var(Var) ->
fd_inf (Var, Val),
(b_get(DVar, Depth),
Depth>0,
NDepth is Depth+ -1,
b_put (DVar, NDepth),
Var#=Val,
label21(Vars, DVar)

b_get (DVar, G),

G>0,

NDepth is G+ -1,
b_put (DVar, NDepth),

32

Var#\=Val,
label21([Var|Vars], DVar)
)

label21(Vars, DVar)

This code is slightly less efficient than that of 1abel/2. Firstly, the overhead
of mutable variables is not entirely eliminated here, as DVar is still present.
Secondly, the two branches have some code in common that could be shared.
However, there are no more meta-calls and all code is inlined in the recursive
loop of 1abel21/2.

In future work, we intend to get rid of the remaining inefficiencies by im-
plementing additional transformations, including Peter Schachte’s approach [12]
for eliminating mutable variables adapted to our setting.

10. Related Work

We have already covered the most closely related work, existing ap-
proaches to search heuristics in Prolog, in Section 2.2. Here we cover other
important related topics.

Combinators. TOR is related to earlier work on Monadic Constraint Pro-
gramming (MCP) [13] in the context of Haskell, and Search Combinators [14]
in the context of C++ and the Gecode library!!. In contrast to those works,
TOR is tailored towards Prolog’s built-in depth-first search and, as a conse-
quence, consists of a much simpler and more elegant design.

Comet. The imperative Comet language [15] features fully programmable
search by means of search controllers [16]. There are two main differences
between TOR and Comet’s search controllers. Firstly, search controllers trade
simplicity for flexibility, providing more hooks and first-class continuations
to manipulate the search. Secondly, search controllers are not intended to
be composed, in contrast to TOR’s handlers that are explicitly designed to
support composition.

Uhttp://www.gecode.org

33

Gecode. Gecode [17] is a C++ library for constraint programming that pro-
vides two complimentary means to control the search: search engines and
branchers. A valid search consists of a combination of one search engine and
one or more branchers. The search engine determines how to navigate the
search tree (e.g., depth first search, depth-first search with iterative deep-
ening, ...) and the branchers define the search tree. A typical brancher
is defined, like typical CLP(FD) labeling predicates, in terms of a set of
variables, and a variable and value selection strategy. Multiple branchers
denote a conjunction. Unlike TOR search engines cannot be composed, and
all branchers are subject to one and the same search engine.

Aspect-Oriented Programming. The TOR approach is closely related to Aspect-
Oriented Programming (AOP) [18, 19]. AOP provides a generic approach for
modularly cross-cutting existing code with new code, so-called advice. This
advice is injected in arbitrary join points (i.e., program points) based on a
pointcut predicate.

Obviously TOR is more limited in scope, as only tor/2 disjunctions are
cross-cut and only at the positions of the two hooks. However, we believe
that these “limitations” are actually TOR’s strength: its simplicity makes it
easy to express all common search methods and its discipline favors compo-
sitionality.

11. Conclusion and Future Work

We have presented TOR, a light-weight library-based approach for mod-
ifying Prolog’s depth-first search with reusable and compositional search
methods. While the notion of hookable disjunction has enabled a surpris-
ingly large number of possibilities for modifying Prolog search, we still see a
few areas that could be improved in future work:

Increased Ezrpressivity. Simplicity has been a guiding principle in the design
of TOR. In order to minimize the threshold for users, we keep the effort
and complexity of defining and using search methods low. We pay for this
simplicity with a somewhat restricted expressivity. An example of a search
method that cannot be expressed with TOR is swapping the order of branches
in a disjunction. In order to overcome this limitation we would have to add
extra complexity to the tor/2 built-in in the form of an additional hook.
However, we choose simplicity over additional expressivity. Nevertheless,

34

TOR is remarkably expressive as it is, covering all of the commonly found
search methods in CLP(FD) libraries.

On a more drastic account, we will investigate ways to replace the under-
lying depth-first queuing strategy. The stack freezing functionality of tabling
systems like XSB [20] and YAP [21] provides interesting perspectives for this
purpose.

Multiway Disjunctions. TOR currently only supports binary disjunctions;
multiway disjunctions have to be decomposed into binary ones. For some
applications, this decomposition can be somewhat unnatural. For instance,
when enumerating all the values V of a constraint variable X, one might expect
that all alternative assignments X #= V sit at the same level in the search
tree. This is of course generally not the case in a binary decomposition. For
that reason we are considering backward compatible ways to generalize the
handler approach.

Declarative State Management. We have hidden the operational aspects of
ToOR from the programmer with the use of the high-level programming in-
terface for heuristics. Even though the underlying implementation relies on
mutable variables, the interface provides a declarative view on state manage-
ment.

Unfortunately, non-backtrackable state is not covered by the high-level
interface; the programmer has to manage it explicitly in an imperative style.
The problem is that non-backtrackable state updates are often followed im-
mediately by failure. There is no idiomatic declarative alternative for this
technique. However, we could turn to pure deterministic encodings of fail-
ure with non-backtrackable state, like Haskell’s ListT (State s) monad [22]
and use Filinski’s reification/reflection technique [23] to translate to and from
Prolog’s native effects.

Acknowledgements. We are grateful to Rémy Haemmerlé, Jose Morales Ca-
ballero and David S. Warren for our discussions on TOR, and to Neng-Fa
Zhou for revealing B-Prolog’s labeling/1 code to us.

References

[1] R. Kowalski, Logic for Problem Solving, North-Holland, 1979.

[2] J. Wielemaker, T. Schrijvers, M. Triska, T. Lager, SWI-Prolog, Theory
and Practice of Logic Programming 12 (2012) 67-96.

35

3]

[4]

[10]

[11]

[12]

[13]

J. Schimpf, K. Shen, ECLiPSe From LP to CLP, Theory and Practice
of Logic Programming 12 (2012) 127-156.

M. Triska, The finite domain constraint solver of SWI-Prolog, in: Pro-
ceedings of the 11th International Symposium on Functional and Logic
Programming (FLOPS 2012), volume 7294 of Lecture Notes in Com-
puter Science, 2012, pp. 307-316.

M. Carlsson, P. Mildner, SICStus Prolog - The first 25 years, Theory
and Practice of Logic Programming 12 (2012) 35-66.

N.-F. Zhou, The language features and architecture of B-Prolog, Theory
and Practice of Logic Programming 12 (2012) 189-218.

D. Diaz, S. Abreu, P. Codognet, On the implementation of GNU-Prolog,
Theory and Practice of Logic Programming 12 (2012) 253-282.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez-Garcia, E. Mera,
J. F. Morales, G. Puebla, An overview of Ciao and its design philosophy;,
Theory and Practice of Logic Programming 12 (2012) 219-252.

W. D. Harvey, M. L. Ginsberg, Limited discrepancy search, in: Proceed-
ings of the 15th International Joint Conferences on Artificial Intelligence
(ILJCAI 1995), 1995, pp. 607-613.

H. Simonis, P. Davern, J. Feldman, D. Mehta, L. Quesada, M. Carlsson,
A generic visualization platform for cp, in: Proceedings of Principles
and Practice of Constraint Programming - CP 2010, volume 6308 of
Lecture Notes in Computer Science, Springer, 2010, pp. 460-474.

L. Sterling, E. Shapiro, The Art of Prolog: Advanced Programming
Techniques, 2. ed., MIT Press, Cambridge, MA, 1994.

P. Schachte, Global variables in logic programming, in: Proceedings of
the International Conference on Logic Programming (ICLP 1997), 1997,
pp. 3-17.

T. Schrijvers, P. J. Stuckey, P. Wadler, Monadic constraint program-
ming, Journal of Functional Programming 19 (2009) 663-697.

36

[14]

[16]

[17]

[18]

[21]

[22]

T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, P. Stuckey, Search
Combinators, in: Proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming (CP 2011), volume
6876 of Lectures Notes in Computer Science, Springer, 2011, pp. 774—
788.

P. Van Hentenryck, L. Michel, Constraint-Based Local Search, MIT
Press, 2005.

P. Van Hentenryck, L. Michel, Nondeterministic control for hybrid
search, Constraints 11 (2006) 353-373.

C. Schulte, et al., Gecode, the generic constraint development environ-
ment, 2013. http://www.gecode.org/, accessed March 2013.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. V. Lopes, J.-
M. Loingtier, J. Irwin, Aspect-oriented programming, in: Proceed-
ings of the 11th European Conference on Object-Oriented Programming
(ECOOP 1997), volume 1241 of Lecture Notes in Computer Science,
1997, pp. 220-242.

W. Lohmann, G. Riedewald, G. Wachsmuth, Aspect-Orientation in
Prolog, in: Proceedings of the 16th International Symposium on Logic-
based Program Synthesis and Transformation, 2006.

T. Swift, D. S. Warren, XSB: Extending Prolog with Tabled Logic
Programming, Theory and Practice of Logic Programming 12 (2012)
157-187.

V. Santos Costa, R. Rocha, L. Damas, The YAP Prolog system, Theory
and Practice of Logic Programming 12 (2012) 5-34.

M. P. Jones, L. Duponcheel, Composing monads, Research Report
YALEU/DCS/RR-~1004, Yale University, Department of Computer Sci-
ence, New Haven, Connecticut, 1993.

A. Filinski, Monads in action, in: Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2010), ACM, 2010, pp. 483-494.

37

[24] A. Aggoun, N. Beldiceanu, Time stamps techniques for the trailed data
in constraint logic programming systems, in: SPLT’90, 8EMe Séminaire
Programmation en Logique, 16-18 mai 1990, Trégastel, France, 1990,
pp. 487-510.

38

Appendix A. Mutable Variables

TOR’s mutable variables (also known as reference cells) are implemented
by means of mutable terms, as proposed by Aggoun and Beldiceanu [24].
Our implementation for creating, reading and writing such variables comes
in a backtrackable and a non-backtrackable version, and is as follows:

new_bvar(InitialValue,Var) :- new_nbvar(InitialValue,Var) :-
var (Var) , var (Var) ,
Var = bvar(InitialValue). Var = nbvar(InitialValue).
b_put (Var,Value) :- nb_put (Var,Value) :-
Var = bvar(), Var = nbvar(),
setarg(l,Var,Value). nb_setarg(1l,Var,Value).
b_get (bvar(Value),Value). nb_get (nbvar(Value) ,Value).

The non-backtrackable variant of reference cells is useful in case handler
information must persist across backtracking.

The mutable variables are available as a separate library at http://www.
swi-prolog.org/pack/list?p=mutable_variables.

39

