
Probabilistic Inference in SWI-Prolog

Fabrizio Riguzzi1, Jan Wielemaker2, and Riccardo Zese3

1 Dipartimento di Matematica e Informatica – University of Ferrara, Ferrara, Italy
2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
3 Dipartimento di Ingegneria – University of Ferrara, Ferrara, Italy

j.wielemaker@cs.vu.nl,[fabrizio.riguzzi,riccardo.zese]@unife.it

Abstract. Probabilistic Logic Programming (PLP) emerged as one of
the most prominent approaches to cope with real-world domains. The
distribution semantics is one of most used in PLP, as it is followed by
many languages, such as Independent Choice Logic, PRISM, pD, Logic
Programs with Annotated Disjunctions (LPADs) and ProbLog. A pos-
sible system that allows performing inference on LPADs is PITA, which
transforms the input LPAD into a Prolog program containing calls to
library predicates for handling Binary Decision Diagrams (BDDs). In
particular, BDDs are used to compactly encode explanations for goals
and efficiently compute their probability. However, PITA needs mode-
directed tabling (also called tabling with answer subsumption), which has
been implemented in SWI-Prolog only recently. This paper shows how
SWI-Prolog has been extended to include correct answer subsumption
and how the PITA transformation has been changed to use SWI-Prolog
implementation.

Keywords: Probabilistic Logic Programming, Tabling, Answer Subsumption,
Logic Programs with Annotated Disjunctions, Program Transformation

1 Introduction

Probabilistic Programming (PP) [13] allows users to define complex probabilistic
models and perform inference and learning on them. In fact, many real-world
domains can only be represented effectively by exploiting uncertainty. To model
complex domains containing many uncertain relationships among their entities,
Probabilistic Logic Programming (PLP) [8,16] has emerged among the PP pro-
posals as one of the most prominent approaches to cope with such relationships.

In PLP, the distribution semantics [22] is at the basis of many languages.
Examples of languages that follow the distribution semantics are Independent
Choice Logic [14], PRISM [22], Logic Programs with Annotated Disjunctions
(LPADs) [28] and ProbLog [9]. All these languages have the same expressive
power as a theory in one language can be translated into another [7]. LPADs
offer a general syntax as the constructs of all the other languages can be directly
encoded in this language.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301648277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The PITA algorithm (for “Probabilistic Inference with Tabling and Answer
subsumption”), presented in [18,19,20], takes as input an LPAD and builds Bi-
nary Decision Diagrams (BDDs) for every subgoal encountered during the deriva-
tion of the query. The use of BDDs is due to the fact that they allow an efficient
computation of the probability of the query. Specifically, PITA transforms the
input LPAD into a normal logic program in which the subgoals have an extra ar-
gument storing a BDD that represents the explanations for their answers. As its
name implies, PITA uses tabling with answer subsumption to store explanations
for a goal.

Tabling is a logic programming technique for saving time and ensuring ter-
mination for programs without function symbols. With tabling, the Prolog in-
terpreter keeps a store of the subgoals encountered in a derivation together with
answers to these subgoals. The stored answers are then retrieved in successive
calls of the subgoals, to avoid their re-computation and infinite loops.

PITA is also used in machine learning systems: EMBLEM [4,3] and SLIP-
COVER [5], performing respectively parameter and structure learning, use PITA
for computing the probability of examples.

Initially, PITA was implemented in the XSB and YAP systems, which allow
the use of answer subsumption. We decided to port it to SWI-Prolog in order to
exploit the SWISH framework for developing web applications [29]. This allowed
us to develop cplint on SWISH [1], a web application for probabilistic logic
programming available at http://cplint.eu.

The porting of PITA to the SWI-Prolog system led to the extension of its
tabling implementation to feature answer subsumption as well. With answer
subsumption, or mode-directed tabling, the answers for a goal are aggregated
when the individual answers are not needed.

In this paper, we discuss the extension implemented in SWI-Prolog’s tabling
and present how we modified PITA to cope with the new SWI-Prolog implemen-
tation of mode-directed tabling.

The paper is organized as follows. Section 2 briefly introduces PLP and
in particular the LPAD language. Section 3 discusses tabling in SWI-Prolog,
while Section 4 illustrates the implementation of answer subsumption. Section 5
presents the PITA algorithm and transformation, and Section 6 its adaptation
to SWI-Prolog. Finally, Section 7 concludes the paper.

2 Probabilistic Logic Programming

PLP languages under the distribution semantics [22] have been used to represent
a wide variety of domains [1,2,17]. A program in a language adopting the distri-
bution semantics defines a probability distribution over normal logic programs
called worlds. Each normal program is assumed to have a total well-founded
model [25]. Then, the distribution is extended to queries and the probability of
a query is obtained by marginalizing the joint distribution of the query and the
programs.

http://cplint.eu

Logic Programs with Annotated Disjunctions (LPADs) [27] have the most
general syntax among PLP languages under the distribution semantics.

In LPADs, heads of clauses are disjunctions in which each atom is annotated
with a probability. An LPAD T is a finite set of clauses: T = {C1, . . . , Cn}.
Each clause Ci takes the form: hi1 : Πi1; . . . ;hivi : Πivi :− bi1, . . . , biui

, where
hi1, . . . , hivi are logical atoms, bi1, . . . , biui

are logical literals and
Πi1, . . . ,Πivi are real numbers in the interval [0, 1] that sum to 1. bi1, . . . , biui

is indicated with body(Ci). Note that if vi = 1 the clause corresponds to a
non-disjunctive clause. We also allow clauses where

∑vi
k=1Πik < 1: in this case

the head of the annotated disjunctive clause implicitly contains an extra atom
null that does not appear in the body of any clause and whose annotation is
1−

∑vi
k=1Πik. We denote by ground(T) the grounding of an LPAD T .

We present here the semantics of LPADs for the case of no function symbols,
for the case of function symbols see [15].

Each grounding Ciθj of a clause Ci corresponds to a random variable Xij

with values {1, . . . , vi}, i.e., it indicates which head literal is chosen. The random
variables Xij are independent of each other. An atomic choice [14] is a triple
(Ci, θj , k) where Ci ∈ T , θj is a substitution that grounds Ci and k ∈ {1, . . . , vi}
identifies one of the head atoms. In practice (Ci, θj , k) corresponds to an assign-
ment Xij = k.

A selection σ is a set of atomic choices that, for each clause Ciθj in ground(T),
contains an atomic choice (Ci, θj , k). A selection σ identifies a normal logic pro-
gram lσ defined as lσ = {(hik :− body(Ci))θj |(Ci, θj , k) ∈ σ}. lσ is called a world
of T . Since the random variables associated to ground clauses are independent,
we can assign a probability to instances: P (lσ) =

∏
(Ci,θj ,k)∈σΠik.

We consider only sound LPADs where, for each selection σ, the well-founded
model of the program lσ chosen by σ is two-valued. We write lσ |= q to mean
that the query q is true in the well-founded model of the program lσ. Since the
well-founded model of each world is two-valued, q can only be true or false in lσ.

We denote the set of all instances by LT . Let P (l) be the distribution over
instances. The probability of a query q given an instance l is P (q|l) = 1 if l |= q
and 0 otherwise. The probability of a query q is given by

P (q) =
∑
l∈LT

P (q, l) =
∑
l∈LT

P (q|l)P (l) =
∑

l∈LT :l|=q

P (l) (1)

Example 1. The following LPAD models the appearance of medical symptoms
as a consequence of disease. A person may sneeze if he has the flu or if he has
hay fever:

C1 = strong sneezing(X) : 0.3 ; moderate sneezing(X) : 0.5←
flu(X).

C2 = strong sneezing(X) : 0.2 ; moderate sneezing(X) : 0.6←
hay fever(X).

C3 = flu(bob).
C4 = hay fever(bob).

Here clauses C1 and C2 have three alternatives in the head of which the one
associated to atom null is left implicit. This program has 9 worlds, the query

strong sneezing(bob) is true in 5 of them, and P (strong sneezing(bob)) = 0.3×
0.2 + 0.3× 0.6 + 0.3× 0.2 + 0.2× 0.5 + 0.2× 0.2 = 0.44.

3 Tabling

Tabling is a logic programming technique for saving time and ensuring termina-
tion for programs without function symbols.

With tabling, the Prolog interpreter keeps a store of the subgoals encountered
in a derivation together with answers to these subgoals. If one of the subgoals
is encountered again, its answers are retrieved from the store rather than re-
computing them. Tabling is implemented in the Prolog systems XSB [24], YAP
[21] and SWI-Prolog [30].

Tabling is implemented in SWI-Prolog using delimited control [10]. Delim-
ited control [6,11] was originally introduced in functional programming and
is based on two operators, implemented in SWI-Prolog with the predicates
reset(Goal,Cont,Term1) and shift(Term2). The first executes the goal in
Goal and unifies the other two arguments on the basis of the results of calls to
shift/1 during the execution of the goal. If Goal calls shift/1, the execution
of the goal is interrupted, the rest of its code up to the nearest call to reset/3,
called delimited continuation, is represented as a Prolog term and unified with
Cont in reset/3, while the value Term2 in shift/1 is unified with Term1 in
reset/3. Finally, the execution restarts from the code just after the call to
reset/3.

Example 2. We report here the example shown in [10]. Consider the following
program:

p :- reset(q,Cont,Term1),

writeln(Term1),

writeln(Cont),

writeln(’end’).

q :- writeln(’before shift’),

shift(’return value’),

writeln(’after shift’).

shift/1 instantiates Cont with the writeln(’after shift’) goal and Term1

with the term ’return value’ in reset/3. The output of this program is:

?- p.

before shift

return value

[$cont$(785488,[])]

end

As one can see, when entering in q the execution is interrupted by the call to
shift/1. The continuation in this case is not called, therefore what follows the
call to shift/1 is not executed.

If we modify p by replacing writeln(Cont) with call(Cont), then the input
would be

?- p.

before shift

after shift

end

In this case, continuation is called and, therefore, the goal writeln(’after shift’)

is executed.

Predicates are declared as tabled using the table/1 directive. Tabled pred-
icates are transformed in order to collect answers. This transformation makes
use of the table/2 predicate, which retrieves the table data structure containing
the answers to the tabled predicate.

Example 3. The program on the left is transformed in that shown on the right

:- table p/2.

p(X,Y) :- p(X,Z), e(Z,Y).

p(X,Y) :- e(X,Y).

→
p(X,Y) :- table(p(X,Y),p_aux(X,Y)).

p_aux(X,Y) :- p(X,Z), e(Z,Y).

p_aux(X,Y) :- e(X,Y).

When a tabled predicate is called, the execution enters in a delimited answer
computation starting the reset phase. If this phase succeeds normally, the an-
swer is added to the table of the tabled predicate. If the tabled predicate calls a
predicate that is tabled as well, then the computation enters in the shift phase
without producing an answer and the first predicate is suspended, capturing the
reminder in Cont. At this point the so-called completion phase starts, collect-
ing all the possible continuation, to find answers for the tabled predicate in the
reset phase.

A call to a tabled predicate can be either a leader or a follower: a leader
has only non-tabled ancestors in the call graph, while a follower has a tabled
ancestor in the call graph. The leader and the followers that are his descendants
make up a scheduling component. completion is performed on one component
at a time.

Each component is associated to a global worklist, i.e., a queue of tables.
There is a table for each subgoal for the tabled predicates, called call variants,
mapping it to a data structure containing its answers, in the form of an answer
trie.

Each table is also associated to a local worklist that is a dequeue containing
answers and dependencies. A dependency is a triple formed by a source, a contin-
uation and a target. If collecting answers for a tabled call p requires the answers
for a tabled call q (q may be p itself), then p is the target and q is the source. A
dependency indicates that, given an answer for the source call q, we can obtain
an answer for the target call p by resuming the suspended continuation. The
continuation’s answer is then unified with p.

During the completion phase, tables from the global worklist are extracted
one at a time and the local worklist of the considered table is used to find all the
answers for the corresponding tabled call. During the reset phase, each time
an answer is found for a call p, it is added to the list of answers in the table
for p and to the left of the dequeue of the local worklist of subgoals calling p,

while each time the execution enters in the shift phase a new dependency for
p is added to the right of its worklist. Then, pairs (answer, dependency) are
extracted from the dequeue of the local worklist to try to find new answers.
Note that the answer in the pair is an answer for the source predicate. Pairs
are created by associating an answer to the dependency that is immediately to
its right in the dequeue. After the combination, the answer and the dependency
just combined are swapped, moving the answer to the right of the dependency,
meaning that their pair have been already tested. Then, answer and dependency
from the pair are combined using values in answer to instantiate variables in
source, continuation and, eventually, in target, and the predicate in continuation
is called to find new answers for the target, i.e., instantiate all the remaining
free variables in target. The new answer for target is then added to the answers
list in its table and to the left of the dequeue of the local worklists where the
predicate is the source of some dependencies. The completion phase stops when
all the answers in all the local worklists are on the left of all the dependencies,
meaning that all the combinations have been tested and no more answers can
be found.

Note that in the real implementation there are some minor differences with
this description due to performance reasons. For example, answers and depen-
dencies in local worklists are considered in homogeneous batches instead of one at
a time and the combination of the two batches is performed by means of Carte-
sian product. Moreover, the batches containing answers contain also answers
for predicates different from that in source, however, during the combination if
answer and dependency do not match then their combination is discarded.

When all the answers for the subogoal in the reset phase are found, they are
returned by table/2 one at a time to continue the computation of the query.

4 Mode-Directed Tabling and Answer Subsumption

As seen in the previous section, plain tabling creates an answer table per call
variant and guarantees termination if the created data structures are finite. For
example, this allows us to prove whether a graph connects the nodes A and B
while the graph is undirected or cyclic. However, it does not allow us to return
the path between A and B because an infinite number of such paths can be
constructed by going back and forth or following cycles. This limitation also
blocks us from obtaining all proofs for a logical theory.

The above problem is resolved using tabling with answer subsumption, also
called mode-directed tabling [24,26]. In mode-directed tabling, a subset of the
predicate arguments defines the call variant while answers for the remaining ar-
guments are aggregated. A classical aggregation is, following the example above,
computing the minimum or shortest path. As the minimum can be considered
to subsume higher values this technique is also called Answer Subsumption.

To facilitate PITA, we extended SWI-Prolog’s original tabling implemen-
tation with mode-directed tabling. The specification was inherited from XSB,
B-Prolog and YAP and includes the most generic aggregation function called

lattice that allows a user defined predicate to determine the subsumer for the
aggregated answer so far and a new answer. The implementation is straight for-
ward. The modified table/1 directive is used to determine the term that is used
for call variant detection and compile a combined aggregation predicate that is
called for each answer that is added to the table. The answer table has been
extended such that each answer in the answer trie can be assigned an aggre-
gated value. The above mentioned generated predicate is called on each answer
to maintain the aggregated answer.

Note that tabling does not guarantee a particular order in which suspended
computations are resumed and thus requires the aggregation function to produce
the correct result regardless of the order.

Furthermore, if one mode-directed tabled goal is the follower of another as
in the example below where, given the goal p(A), p/1 is the leader and s/1 the
follower we get incorrect results because s/1 may succeed multiple times with
partial answers.

:- table

p(lattice(or/3)),

s(lattice(or/3)).

or(A,B,A-B).

p(A) :- s(A).

s(1).

s(2).

In the initial implementation of mode-directed tabling in SWI-Prolog, the query
p(A) succeeded with answer A = 1-2-(1-2) instead of the desired A = (1-2).

This has been highlighted in [26] that showed that many implementations of
mode-directed tabling produce unsound results. The authors of [26] thus define
a formal semantics for mode-directed tabling that allows the evaluation of the
soundness of implementations. For the program above, the semantics returns
A = (1-2).

In the semantics, aggregation is a post-processing step. Real systems ag-
gregate intermediate results during resolution for efficiency and to avoid loops.
The authors of [26] discuss conditions for this greedy strategy to be sound with
respect to the theoretical semantics.

In order to make SWI-Prolog sound, we modified its tabling implementa-
tion by creating a new component for every fresh mode-directed tabled goal we
encounter. This component is completed before execution of the parent compo-
nent is resumed with the complete aggregated result. This ensures soundness
with respect to the theoretical semantics of [26], provided that within the sub-
component we do not encounter a variant of a tabled goal that was started before
the subcomponent but has not yet been completed.

5 PITA

The PITA system [18,19,20] applies a program transformation to an LPAD to
create a normal program that contains calls for manipulating BDDs. In the

implementation, these calls provide a Prolog interface to the CUDD4 [23] C
library and use the following predicates5

– init, end : for allocation and deallocation of a BDD manager, a data structure
used to keep track of the memory for storing BDD nodes;

– zero(-BDD), one(-BDD), not(+BDDI, -BDDO), and(+BDD1, +BDD2, -
BDDO), or(+BDD1, +BDD2, -BDDO): Boolean operations between BDDs;

– add var(+N Val,+Probs,-Var): addition of a new multi-valued variable with
N Val values and parameters Probs;

– equality(+Var,+Value,-BDD): BDD represents Var=Value, i.e. that the ran-
dom variable Var is assigned Value in the BDD;

– ret prob(+BDD,-P): returns the probability of the formula encoded by BDD.

As said above, add var(+N Val,+Probs,-Var) adds a new random variable asso-
ciated to a new instantiation of a rule with N Val head atoms and parameters
list Probs. The auxiliary predicate get_var_n/4 is used to wrap add_var/3

and avoid adding a new variable when one already exists for an instantiation.
As shown below, a new fact var(R,S,Var) is asserted each time a new random
variable is created, where R is an identifier for the LPAD clause, S is a list of
constants, one for each variable of the clause, and Var is an integer that identifies
the random variable associated with clause R under a particular grounding. The
auxiliary predicate has the following definition

get_var_n(R,S,Probs,Var):-

(var(R,S,Var) ->

true

;

length(Probs,L),

add_var(L,Probs,Var),

assert(var(R,S,Var))

).

where Probs is a list of floats that stores the parameters in the head of rule R.
R, S and Probs are input arguments while Var is an output argument. assert/1
is a builtin Prolog predicate that adds its argument to the program, allowing its
dynamic extension.

The PITA transformation applies to atoms, literals, conjunction of literals
and clauses. The transformation for an atom a and a variable D, PITA(a,D),
is a with the variable D added as the last argument. The transformation for a
negative literal b = not a, PITA(b,D), is the expression

(PITA(a,DN)→ not(DN,D); one(D))

which is an if-then-else construct in Prolog: if PITA(a,DN) evaluates to true,
then not(DN,D) is called, otherwise one(D) is called.

4 http://vlsi.colorado.edu/~fabio/
5 BDDs are represented in CUDD as pointers to their root node.

A conjunction of literals b1, . . . , bm becomes:
PITA(b1, . . . , bm, D) = one(DD0),
P ITA(b1, D1), and(DD0, D1, DD1), . . . ,
P ITA(bm, Dm), and(DDm−1, Dm, D).

The disjunctive clause Cr = h1 : Π1 ∨ . . . ∨ hn : Πn ← b1, . . . , bm. where the
parameters sum to 1, is transformed into the set of clauses PITA(Cr):

PITA(Cr, i) = PITA(hi, D)← PITA(b1, . . . , bm, DDm),
get var n(r, S, [Π1, . . . ,Πn], V ar), equality(V ar, i,DD),
and(DDm, DD,D).

for i = 1, . . . , n, where S is a list containing all the variables appearing in r.
A non-disjunctive fact Cr = h is transformed into the clause
PITA(Cr) = PITAh(h,D)← one(D).

A disjunctive fact Cr = h1 : Π1 ∨ . . .∨ hn : Πn. where the parameters sum to 1,
is transformed into the set of clauses PITA(Cr, i)

PITA(Cr, i) = get var n(r, S, [Π1, . . . ,Πn], V ar),
equality(V ar, i,DD), and(DDm, DD,D).

for i = 1, . . . , n.
In the case where the parameters do not sum to one, the clause is first

transformed into null : 1 −
∑n

1 Πi ∨ h1 : Π1 ∨ . . . ∨ hn : Πn. and then into the
clauses above, where the list of parameters is [1−

∑n
1 Πi, Π1, . . . ,Πn,] but the

0-th clause (the one for null) is not generated.
The definite clause Cr = h← b1, b2, . . . , bm. is transformed into the clause
PITA(Cr) = PITA(h,D)← PITA(b1, . . . , bm, D).

Example 4 (Medical example - PITA). Clause C1 from the LPAD of Example 1
is translated to

strong sneezing(X,BDD)← one(BB0),flu(X,B1),
and(BB0, B1, BB1),
get var n(1, [X], [0.3, 0.5, 0.2], V ar),
equality(V ar, 1, B), and(BB1, B,BDD).

moderate sneezing(X,BDD)← one(BB0),flu(X,B1),
and(BB0, B1, BB1),
get var n(1, [X], [0.3, 0.5, 0.2], V ar),
equality(V ar, 2, B), and(BB1, B,BDD).

while clause C3 is translated to
flu(david,BDD)← one(BDD).

In order to answer queries, the goal prob(Goal,P) is used, which is defined by
prob(Goal, P)← init, retractall(var(, ,)),

add bdd arg(Goal,BDD,GoalBDD),
(call(GoalBDD)→ ret prob(BDD,P);P = 0.0),
end.

Predicate equality(+Var,+Value,-BDD) returns a BDD representing the equal-
ity Var=Value. Since variables may be multi-valued, an encoding with Boolean
variables must be chosen. The encoding used by PITA is the same as that used
to translate LPADs into ProbLog proposed in [7].

Example 5 (Example 1 Cont.). If we associate the random variables X11 with
(C1, {X/bob}, 1), X12 with (C1, {X/bob}, 2), X13 with (C1, {X/bob}, 3) X21 with
(C2, {X/bob}, 1), X22 with (C2, {X/bob}, 2) and X23 with (C2, {X/bob}, 3), the
BDD corresponding with the set LT for query strong sneezing(bob) is shown in
Figure 1. The probability of the query is computed by following the BDD and

C11 n1

X21 n2

1 0

Fig. 1. BDD for query strong sneezing(bob) in Example 1.

computing the probability of each node

Prob(n2) = 0.2 · 1 + 0.8 · 0 = 0.2

Prob(n1) = 0.3 · 1 + 0.7 · 0.2 = 0.44

so P (strong sneezing(bob)) = Prob(n1) = 0.44 as shown in Example 1.

6 Extension of PITA for SWI-Prolog

PITA in SWI-Prolog adds the library predicate:

– and check(+D1,+D2,-DO) fails if one of the input arguments is the BDD
representing the Boolean constant 0, otherwise it succeeds returning the
conjunction of the input arguments.

The tabling implementation in SWI-Prolog doesn’t handle cut thus the if-then-
else construct cannot be used to implement negation. In SWI-Prolog the trans-
formation for a negative literal b = not a, PITA(b,DN) is the conjunction
PITA(a,D), not(D,DN). A conjunction of literals b1, . . . , bm becomes:

PITA(b1, . . . , bm, D) = one(DD0),
P ITA(b1, D1), and check(DD0, D1, DD1), . . . ,
P ITA(bm, Dm), and check(DDm−1, Dm, D).

Clauses are then transformed as in PITA for XSB. Moreover, for each predicate
p/n, an extra clause of the form

p(X1, . . . , Xn, D)← nonvar(X1), . . . , nonvar(Xn), zero(D).

is added to the program, where nonvar/1 is an extra-logical predicate that
succeeds if its argument is not a variable. We call these zero clauses.

Such a transformation is used in combination with answer subsumption. Each
predicate is tabled and answer subsumption is applied to the BDD argument

added by the PITA transformation, defining as lattice the or/3 predicate. This
combines every BDD, which corresponds to a different explanation for the call
variant of the predicate, in order to compute a final BDD representing the set
of all the explanations. If the goal fails, the only BDD returned is the one rep-
resenting the 0 constant, which leads to the fail of and check/3, otherwise, the
zero BDD is disjoint with other BDDs, maintaining unchanged their truth value.

In this way, negative literals b = not a are handled by first collecting the
BDD representing all the explanations for a by means of answer subsumption.
The final BDD is then negated to find the BDD for b.

7 Conclusion

In this paper we presented an extension of the tabling system of SWI-Prolog
for including sound answer subsumption. Moreover, we presented an extension
of the PITA transformation, which takes an LPAD program and translates it
into a normal program using the tabling implementation of SWI-Prolog. Possi-
ble future directions for improving the tabling implementation are sharing tables
between threads, incremental tabling, handling negation, improving space and
time performance. We will also extend PITA to handle other reasoning types,
such as inference and learning for probabilistic abductive logic programs, ex-
tending [12]. In addition, we plan to make a comparison with XSB in terms of
performance.

References

1. Alberti, M., Bellodi, E., Cota, G., Riguzzi, F., Zese, R.: cplint on SWISH: Prob-
abilistic logical inference with a web browser. Intell. Artif. 11(1), 47–64 (2017)

2. Alberti, M., Cota, G., Riguzzi, F., Zese, R.: Probabilistic logical inference on the
web. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS,
vol. 10037, pp. 351–363. Springer International Publishing (2016)

3. Bellodi, E., Riguzzi, F.: Experimentation of an expectation maximization algorithm
for probabilistic logic programs. Intell. Artif. 8(1), 3–18 (2012)

4. Bellodi, E., Riguzzi, F.: Expectation maximization over binary decision diagrams
for probabilistic logic programs. Intell. Data Anal. 17(2), 343–363 (2013)

5. Bellodi, E., Riguzzi, F.: Structure learning of probabilistic logic programs by
searching the clause space. Theor. Pract. Log. Prog. 15(2), 169–212 (2015)

6. Danvy, O., Filinski, A.: Abstracting control. In: LISP and Functional Program-
ming. pp. 151–160 (1990), http://doi.acm.org/10.1145/91556.91622

7. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,
Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I.,
Vennekens, J.: Towards digesting the alphabet-soup of statistical relational learn-
ing. In: NIPS 2008 Workshop on Probabilistic Programming (2008)

8. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Induc-
tive Logic Programming, LNCS, vol. 4911. Springer (2008)

9. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and
its application in link discovery. In: Veloso, M.M. (ed.) IJCAI 2007. vol. 7, pp.
2462–2467. AAAI Press/IJCAI (2007)

http://doi.acm.org/10.1145/91556.91622

10. Desouter, B., van Dooren, M., Schrijvers, T.: Tabling as a library with delimited
control. Theor. Pract. Log. Prog. 15(4-5), 419–433 (2015)

11. Felleisen, M.: The theory and practice of first-class prompts. In: Ferrante, J., Mager,
P. (eds.) Conference Record of the Fifteenth Annual ACM Symposium on Princi-
ples of Programming Languages, San Diego, California, USA, January 10-13, 1988.
pp. 180–190. ACM Press (1988), http://doi.acm.org/10.1145/73560.73576

12. Kakas, A.C., Riguzzi, F.: Abductive concept learning. New Generat. Comput.
18(3), 243–294 (2000)

13. Pfeffer, A.: Practical Probabilistic Programming. Manning Publications (2016)
14. Poole, D.: The Independent Choice Logic for modelling multiple agents under

uncertainty. Artif. Intell. 94, 7–56 (1997)
15. Riguzzi, F.: The distribution semantics for normal programs with function symbols.

Int. J. Approx. Reason. 77, 1 – 19 (October 2016)
16. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers

(2018), to appear
17. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R., Cota, G.: Probabilistic logic pro-

gramming on the web. Softw.-Pract. Exper. 46(10), 1381–1396 (10 2016)
18. Riguzzi, F., Swift, T.: Tabling and answer subsumption for reasoning on logic

programs with annotated disjunctions. In: ICLP TC 2010. LIPIcs, vol. 7, pp. 162–
171. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

19. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theor. Pract. Log. Prog. 11(4–5), 433–449 (2011)

20. Riguzzi, F., Swift, T.: Well-definedness and efficient inference for probabilistic logic
programming under the distribution semantics. Theor. Pract. Log. Prog. 13(2),
279–302 (2013)

21. Santos Costa, V., Rocha, R., Damas, L.: The YAP Prolog system. Theor. Pract.
Log. Prog. 12(1-2), 5–34 (2012)

22. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Sterling, L. (ed.) ICLP 1995. pp. 715–729. MIT Press (1995)

23. Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0. University of
Colorado (2015), http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf

24. Swift, T., Warren, D.S.: XSB: Extending prolog with tabled logic programming.
Theor. Pract. Log. Prog. 12(1-2), 157–187 (2012)

25. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM 38(3), 620–650 (1991)

26. Vandenbroucke, A., Piróg, M., Desouter, B., Schrijvers, T.: Tabling with sound
answer subsumption. Theor. Pract. Log. Prog. 16(5-6), 933–949 (2016)

27. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic Programs With Annotated
Disjunctions. In: ICLP 2004. LNCS, vol. 3132, pp. 431–445. Springer (2004)

28. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3131, pp.
431–445. Springer (2004)

29. Wielemaker, J., Lager, T., Riguzzi, F.: SWISH: SWI-Prolog for sharing. In: Ell-
mauthaler, S., Schulz, C. (eds.) International Workshop on User-Oriented Logic
Programming (IULP 2015) (2015)

30. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theor. Pract.
Log. Prog. 12(1-2), 67–96 (2012)

http://doi.acm.org/10.1145/73560.73576
http://vlsi.colorado.edu/~fabio/CUDD/cudd.pdf

	Probabilistic Inference in SWI-Prolog

